Ion Fragmentation of Small Molecules in Mass Spectrometry
Total Page:16
File Type:pdf, Size:1020Kb
Ion fragmentation of small molecules in mass spectrometry Jeevan Prasain [email protected] 6-2612 J. Prasain 01/19/11 Nomenclature: the main names and acronyms used in mass spectrometry • Molecular ion: Ion formed by addition or the removal of one or several electrons to or from the sample molecules- Electron Impact (EI-MS). M + e- M+• + 2e- • Adduct Ion: Ion formed through interaction of two species and containing all the atoms of one of them plus one or several atoms of them (e.g. alkali, ammonium). J. Prasain 01/19/11 1 Contd.. • Pseudomolecular ion: Ion originating from the analyte molecule by abstraction of a proton [M-H]- or addition of proton [M+H]+ • Tandem mass spectrometry (Cooks, 1976): MS/MS (McLafferty, 1978), tandem in space or time • Precursor ion/parent ion: Ions undergoing fragmentation. • Product ion/daughter ion: Ions resulting from parent/precursor ions. • Neutral loss: Fragments lost as neutral molecules • In positive ionization mode, a trace of formic acid is often added to aid protonation of the sample molecules; in negative ionization mode a trace of ammonia solution or a volatile amine is added to aid deprotonation of the sample molecules. Proteins and peptides are usually analysed under positive ionization conditions and polyphenols and acids under negative ionization conditions. In all cases, the m/z scale must be calibrated. J. Prasain 01/19/11 Terminology.. • Ionspray denotes pneumatically assisted ESI operating at aflow rate of approximately 5 to 50 uL/min. • Turboionspray is ionspray with additional heated gas for flow rate of 0.1 to 2 ml/min. • Heated nebulizer is the trade mark of AB Sciex for APCI. J. Prasain 01/19/11 2 What is Collision Induced Dissociation (CID) or Collisionally Activated Dissociation (CAD) ? Fragmenting ion Collision gas Collision cell o o o o o o o o o o o o Product ions Precursor ion o or parent ion Activated ion Neutral loss Schematic of CID fragmentation Other activation processes: PSD (post source-decay) ECD (electron capture dissociation) SID (surface-induced dissociation J. Prasain 01/19/11 Various types of MS/MS experiments Hopfgartner etal. J. Mass Spectrom, 2004 J. Prasain 01/19/11 3 Steps involved in fragmentation Step # 1: Creation of ions C N OCH2CH3 ESI H Step # 2: Add energy of activation CID Step # 3: Charge directed fragmentation Fragment ion + neutral molecule J. Prasain 01/19/11 Applications of MS/MS • Identification and characterization drug metabolites • Authentification and profiling of chemical components in a crude mixture • Substructure analysis of unknown components • Quantification of analytes in biological samples J. Prasain 01/19/11 4 Ways to approach predicting MS/MS • Likely sites of protonation or deprotonation. • Likely leaving group. • Mobility of protons CH OH • Literature study HO 2 O HO HO OH O OH Where are the sites of HO OH Deprotonation/protonation? O O COOH What is the most likely leaving O Group in this molecule? Fragmentation always follows the basic rules of chemistry J. Prasain 01/19/11 Ion fragmentation for identification of phase II drug metabolites (glucuronide/sulfate conjugates) J. Prasain 01/19/11 5 What fragment ions are characteristics for glucuronide conjugates? Product ion spectrum of genistein glucuronide in ESI-MS/MS 100 269 COOH Aglycone O genistein HO OH OH 445 50 Characteristic fragments Parent Neutral loss (176 Da) Relative Relative Intensity (%) ion 85 59 113 133 181 224 0 100 200 300 400 m/z Glucosides/glucuronides conjugates are easily cleaved off by higher potential at orifice J. Prasain 01/19/11 The loss of 80 Da from the parent ion and the presence of m/z 80 in the product ion spectra are the indicative of sulfate conjugates of phenolic compounds like daidzein [A] and equol [B] 116.9 O O 5.5e6 S O O- HO O 4.5e6 [A] Intensity, cps Intensity, 3.5e6 253.0 O 2.5e6 1.5e6 134.9 224.0 80.091.0 132.9 252.0 5.0e5 207.9 96.9 160.0 197.0 225.0 20 60 100 140 180 220 260 300 121.0 1.4e7 O- O 1.2e7 [B] O S O 1.0e7 O Intensity, cps Intensity, 8.0e6 119.0 6.0e6 135.0 4.0e6 79.9 OH 2.0e6 93.0 241.0 147.0 91.0 320.9 20 60 100 140 180 220 260 300 340 m/z, amu J. Prasain 01/19/11 6 What happens with aliphatic sulfates in MS/MS? Aliphatic and aromatic sulfate conjugates behave differently in MS/MS aliphatic typically show m/z 97 (HSO4-) and m/z 80 (SO3-.) J. Prasain 01/19/11 The absence of the m/z 97 fragment with the base peak m/z 80 makes the distinction between aromatic and aliphatic sulfates Source: Weidolf et al. Biomed. and Environ. Mass Spec. 15, 283-289, 1988 J. Prasain 01/19/11 7 Change in mass is associated with possible metabolic reaction Metabolic rxn Change in mass Methylation 14 Demethylation -14 Hydroxylation 16 Acetylation 42 Epoxidation 16 Desulfuration -32 Decarboxylation -44 Hydration 18 Dehydration -18 J. Prasain 01/19/11 Characteristic fragmentation of drug conjugates by MS/MS Conjugate Ionization mode Scan Glucuronides pos/neg NL 176 amu Hexose sugar pos/neg NL 162 amu Pentose sugar pos/neg NL 132 amu Phenolic sulphate pos NL 80 amu Phosphate neg Precursor of m/z 79 Aryl-GSH pos NL 275 amu Aliphatic-GSH pos NL 129 taurines neg Precursor of m/z 124 N-acetylcysteins neg NL 129 amu J. Prasain 01/19/11 NL = neutral loss. 8 How steroids get fragmented in MS/MS? +OH2 +OH2 6.5e6 107.1 5.5e6 HO + + m/z 135 4.5e6 m/z 107 135.1 HO Intensity, cps Intensity, 3.5e6 m/z 159 HO 2.5e6 159.0 Estradiol 1.5e6 109.1121.2133.0 m/z 273 81.1 93.1 147.1 173.1 5.0e5 145.1 20 60 100 140 180 220 260 133.1 8.4e6 O OH+ 159.1 6.5e6 157.1 Intensity, cps Intensity, 4.5e6 HO 2.5e6 197.1 Estrone m/z 271 145.1 107.1 171.1 81.1 213.1 93.1 121.2131.1 183.0 198.1 253.2 5.0e5 79.1 105.1 141.1147.1 179.1 20 40 80 120 160 200 240 J. Prasain 01/19/11 Estradiol Standard Curve 0.05 – 25 µM r = 0.9959 Untitled 1 (Estradiol 273.2 / 107.1): "Quadratic" Regression ("1 / (x * x)" weighting): y = -215 x^2 + 1.7e+004 x + -104 (r = 0.9959) 3.0e5 2.8e5 2.6e5 2.4e5 2.2e5 2.0e5 1.8e5 1.6e5 1.4e5 Area, counts 1.2e5 1.0e5 8.0e4 6.0e4 4.0e4 Sensitivity is an issue in quantification of steroids 2.0e4 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Concentration, uM J. Prasain 01/19/11 9 Derivatization of estradiol with dansyl chloride leads to the formation of E2-dansyl (m/z 506) Easy protonation Source: Nelson et al. Clinical Chemistry, 2004 J. Prasain 01/19/11 Does derivatization help increase sensitivity? Representative MRM chromatogram (mass transition 506/171) obtained from 50 picomole concentration of dansylated E2 5.62 460 400 340 Intensity, cps Intensity, 280 220 160 5.80 100 6.26 6.627.09 7.80 5.225.50 7.53 8.00 4.88 8.49 40 4.37 8.63 0 1 3 5 7 9 Time, min J. Prasain 01/19/11 10 Calibration curve for dansylated E2 showing linearity from 50 picomole to 100 nanomole concentration range (r = 0.999) 8.0e6 6.5e6 5.0e6 Area, counts Area, 3.5e6 2.0e6 5.0e5 0 10 20 30 40 50 60 70 80 90 100 Concentration, nM J. Prasain 01/19/11 Can MS/MS analysis help distinguish isoflavone glucosides? The Kudzu as a OH source of isoflavones HO CH2OH CH2OH HO O O OH OH O O HO O OH O OH O OH Puerarin; mol. wt. 416 Daidzin; mol. wt. 416 J. Prasain 01/19/11 11 O- and C-glucosides fragment differently in ESI-MS/MS CH2OH O OH O [A] + OH O Yo OH 100 255.050 O OH -162 Da Daidzin m/z 415 % 256.057 [B] 0 100 297.043 HO -120 Da CH OH OH 2 267.037 HO O % HO O 321.046 307.065 268.041 351.044 281.051 335.061 381.055 363.046 OH O 0 220 240 260 280 300 320 340 360 380 m/z Puerarin J. Prasain 01/19/11 m/z 415 Prasain et al. J. Agric. Food Chem. 2003 Possible product ions of puerarin in ESI-MS/MS in negative ion mode OH Prasain et al. J Agric Food Chem. 51, 4213, 2003. HO CH2OH HO O OH HO O -120 Da HO O O O- O- m/z 415 O m/z 295 -90 Da HO -28 Da HO HO O HO O O O- O O- m/z 325 m/z 267 J. Prasain 01/19/11 12 Neutral losses (162 and 180) is useful in deciding whether sugar is attached to an aromatic ring or not OH 100 HO 253 Hexose attached CH2OH HO O To the ring B HO O Possible 50 O structure 180 Da O- O 433 0 HO HO CH2OH 253 100 162 loss is an indicative Rel.