Fats and Fatty Acids

Total Page:16

File Type:pdf, Size:1020Kb

Fats and Fatty Acids Fats and Fatty Acids GALLIE MAE COONS FATS often have been prized of processed foods, from roasted nuts articles of diet in man's struggle to main dishes. for food. From early times they Our total and proportional con- have denoted prosperity and hospi- sumption of fats and oils has climbed tality, as when the fatted calf was to an alltime peak, and the kind and prepared for merrymaking and the amount of fats we eat have come under widow shared her oil with the prophet. the scrutiny of economists and scientists. Scientific and economic concern Fat makes our meals palatable and about dietary fats goes in cycles. satisfying. It is the most concentrated Sometimes the cycle is geared to dietary source of energy—9 Calories war and famine, when fats tend to be a gram, compared to 4 Calories in scarce and are among the first foods carbohydrate and protein. It promotes to be conserved and rationed. When efficiency in the utilization of protein food surpluses mount, fats float to the and carbohydrate. It facilitates the top and are among the first to be utilization of fat-soluble vitamins. used extravagantly. Some fats and oils are important Pioneers in every civilization have sources of vitamins A, D, E, and K. been ingenious in ways of conserving Fats provide various amounts of and using fats and in bartering them fatty acids known to be essential in in international trade. Still today diets and many other fatty acids, many peoples have a low consumption which may have nutritional functions of fats and oils. that we do not know now. Our food technology in the United The amounts of fat, visible and in- States has made possible improved visible, in food supplies in the United supplies of separated fats and oils States at retail level have been esti- from meats, grains, cottonseed, soy- mated at 32 percent of the Calories in beans, peanuts, olives, and coconut. 1910, 35 percent in. 1930, and 40 per- Agricultural research has led to cent in 1950. They have continued to higher acreage yields of the oilseeds rise more steeply during the 1950's. and grains and meat animals of high The amounts used in households are fatness. The flavors of cooked fats much the same—about 30 to 33 per- have been imparted to many kinds cent of the Calories before 1900, 35 to 74 FATS AND FATTT ACIDS 75 38 in the mid-1930's, and 42 to 44 in after 1900. Their diets contained, re- the mid-1950's. spectively, 26 and 30 percent of the Farm famihes tend to use more fat Calories from fat, 8 and 9 percent from than city famiHcs do, and northern protein, and 66 and 61 percent from families more than southern famihes. carbohydrate. As the proportion of Calories from People in densely populated coun- protein has remained about the same— tries are said to subsist on such food an average of 11 to 12 percent at the patterns, often with even less than 30 household level—the shift to larger percent from fats at any time. People proportions of Calories from fat has in some countries who have fat intakes been at the expense of carbohydrate. that are one-third to one-half that in Thus, in the North Central States, the United States get less than 20 per- farm families in 1955 had 44 to 46 per- cent of the dietary fat from all animal cent of their Calories from fat and sources, as much as 40 percent from about the same proportion from carbo- cereal grains, and 25 percent from hydrate; 40 years earlier, Calories from peanuts and other oilseeds. fat ran 33 to 35 percent and from car- bohydrate 53 to 55 percent. THE SOURCES of fats consumed in the Families with high incomes tend to United States follow changing food have even more Calories from fat patterns. The proportions of Calories than from carbohydrate. Low-income from dairy and meat products and groups select more Calories from car- from separated fats and oils have in- bohydrate. creased steadily since 1900. The few reports of individual food The average household diet in 1955 intake—the amounts people actually had about 25 percent of its fats from ingest—by adults since 1900 indicate dairy products; 24 percent from pork 38 to 42 percent of Calories from fat, products; 14 percent from beef, veal, 45 to 55 percent from carbohydrates, and lamb ; 13 percent from margarines and 13 to 15 percent from protein. and shortenings; 6 percent from oils The proportions are about the same and salad dressings; 6 percent from for women as for men and for the few poultry, fish, and eggs; and 12 percent groups of elderly people on whom re- from baked goods, nuts, fruit, and ports were made. vegetables. These scattered figures on individual Of the 25 percent from dairy prod- intake do not confirm the time trends ucts, more than half was from milk noted for household diets and retail and cheese; 7 percent was from but- food supplies, but they confirm the ter, separated from the other milk tendency to a high level of intake of fat nutrients; and the rest was from cream in the United States. and ice cream. Figures from chemically analyzed We should bear in mind that natural diets and school lunches support the unseparatecl fats are associated with conclusion that the average diet carries the protein, minerals, and vitamins more than 40 percent of its Calories characteristic of the food, as in milk or from fat and that diets of some individ- pork, and also carry some vitamins, uals carry 50 percent or more. such as A, D, and E, which are useful The fat may drop to 30 percent or in the metabolism of fats. even 20 percent of the Calories in times of war or economic stress. How SHALL we choose fats to eat Often 25 to 30 percent is recom- when we have much and many kinds mended as desirable for any population of them in the store and on the table? at any time. The lowest averages re- Some who want to control v/eight ported from any study in the United may be interested in whether the fat States, however, was for two groups of is visible (as in butter, shortening, families in the southern mountains just salad oils, and other separated fats or 76 YEARBOOK OF AGRICULTURE 1959 in the visible fat on meat). The fat on Much variety in fats comes from the meat can be trimmed away, but that kinds of fatty acids linked to the glyc- means waste. The less readily appar- erol—whether all three are alike or ent fats, those mingled, blended, or all are different, whether all are satu- absorbed into food products, make rated (contain all the hydrogen they good eating, but they cannot be can carry) or of various degrees of un- trimmed away by the consumer. saturation, and whether they are mostly Some fats are solid—more or less short-chain (under 12 carbons), long- firm—at room temperature. Others chain (12 to 18 carbons), or extra long- are plastic. Many come naturally as chain (20 carbons or more) fatty acids. oils. These characteristics are impor- Fatty acids that have 18 carbons in a tant for baking, deep frying, and mak- chain make up about 80 percent and ing salad dressings. those with 16 carbons comprise about Almost any fat can be used for any 10 to 15 percent of the fatty acids in culinary purposes by suitable adapta- average diets. tions in cooking procedures, however. Short-chain fatty acids occur mostly The melting point of a fat can be al- in milk fat and in coconut oil. Extra tered in many ways by the technolo- long chains occur in fish oils. gist, but consistency does not always Fatty acids that are common in food denote properties important in diet. fats and oils fall into three broad classes according to their degree of saturation. ONE WILL do well to understand the The fully saturated fatty acids make composition and structure of fats and up about 40 to 45 percent of those in fatty acids in order to know their com- average diets in this country. They are plicated role in nutrition. The details rather stable chemically and account are technical, however, and some read- for much of the firmness of fats at room ers may wish to skip this section. temperatures. A pure fat is composed of molecules Saturated fatty acids may be of any of glycerol (a trihydroxy alcohol, the chain length, from 4 to 18 or more same as glycerin), to each of which i, carbons. The most common ones and 2, or 3 fatty acids are linked to form their chain lengths are: Stearic (18), monoglycerides, diglycerides, or tri- palmitic (16), myristic (14), and glycérides, respectively. lauric (12). Fatty acids are hydrocarbons con- Beef fat contains 20 percent of stearic sisting of a chain series of carbons, each acid and lard about 12 percent. Other of which is able to carry 2 hydrogens, animal fats run higher. Most animal but with 3 hydrogens (methyl group) fats and cottonseed oil contain about at one end, and an acid (carlDoxyl) 25 to 30 percent of palmitic acid. Palm group at the other end, which con- oil has about 40 percent. nects to the glycerol. The monounsaturated fatty acids Natural fats, as in meats, grains, and (monoenoic) are those with one reac- nuts, are made up mostly of triglycér- tive unsaturated (^'doublebond") link- ides with only trace amounts of the age, which has 2 hydrogens missing.
Recommended publications
  • Thermal Stability of Oleic Acid and Ethyl Linoleate
    Chapter 3.1 ____________________________________________________________________ Thermal Stability of Oleic Acid and Ethyl Linoleate The first part of this work consisted of studying the thermal stability of oleic acid, which was initially a candidate as a starting material for the dehydrogenation of fatty acids using heterogeneous catalysis. The results induced us to search another starting material and to study its properties. 3.1.1 Introduction Oil-derived products can be subjected to conditions that promote oxidation of their unsaturated components during storage and use. The materials arising during oxidation and subsequent degradation can seriously impair the quality and performance of such products [1, 2]. Thus, oxidative stability is an important issue to face before studying their catalytic reactivity. The fatty acid alkyl chain is susceptible to oxidation both at double bonds and adjacent allylic carbons. Free-radical and photooxidation at allylic carbons are responsible for deterioration of unsaturated oils and fats [2-6]. Both autoxidation and photooxidation produce hydroperoxides in allylic bonds. During this process, the position and geometry of the double bond may change. The hydroperoxide mixtures produced by autoxidation and photooxidation are not identical, indicating that different mechanisms are involved [4-6]. The autoxidation reaction occurs in the presence of oxygen. Autoxidation is a free-radical chain reaction, which involves the series of reactions that initiate, propagate and terminate the chain [3]. • initiation RH → R • + → • propagation R O2 ROO fast • • ROO + RH → ROOH + R rate determining • • termination R , ROO → stable products The initiator is a free radical, most probably produced by decomposition of hydroperoxides already present or produced by photooxidation.
    [Show full text]
  • The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis
    OPEN International Journal of Obesity (2015) 39, 1331–1338 © 2015 Macmillan Publishers Limited All rights reserved 0307-0565/15 www.nature.com/ijo REVIEW The role of short chain fatty acids in appetite regulation and energy homeostasis CS Byrne1, ES Chambers1, DJ Morrison2 and G Frost1 Over the last 20 years there has been an increasing interest in the influence of the gastrointestinal tract on appetite regulation. Much of the focus has been on the neuronal and hormonal relationship between the gastrointestinal tract and the brain. There is now mounting evidence that the colonic microbiota and their metabolic activity have a significant role in energy homeostasis. The supply of substrate to the colonic microbiota has a major impact on the microbial population and the metabolites they produce, particularly short chain fatty acids (SCFAs). SCFAs are produced when non-digestible carbohydrates, namely dietary fibres and resistant starch, undergo fermentation by the colonic microbiota. Both the consumption of fermentable carbohydrates and the administration of SCFAs have been reported to result in a wide range of health benefits including improvements in body composition, glucose homeostasis, blood lipid profiles and reduced body weight and colon cancer risk. However, published studies tend to report the effects that fermentable carbohydrates and SCFAs have on specific tissues and metabolic processes, and fail to explain how these local effects translate into systemic effects and the mitigation of disease risk. Moreover, studies tend to investigate SCFAs collectively and neglect to report the effects associated with individual SCFAs. Here, we bring together the recent evidence and suggest an overarching model for the effects of SCFAs on one of their beneficial aspects: appetite regulation and energy homeostasis.
    [Show full text]
  • Chinese Express Ingredients and Allergen Information
    Asian Ingredient and Allergen Information Item Name Ingredient Statement Allergen Statement Appetizers Chicken Egg Roll (Cabbage, Enriched Bleached Flour [{Wheat Flour, Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid}, Calcium Propionate, Malted Barley Flour], Water, White Meat Chicken, Carrots, Onion, Textured Soy Flour, Celery, Enriched Durum Flour [Wheat Flour, Niacin, Ferrous Sulfate, Thiamine Mononitrate, Riboflavin, Folic Acid], Contains 2% or less of: Vegetable Oil [Soybean, Cottonseed, Corn, and/or Canola Oil], Salt, Autolyzed Yeast Extract, Modified Food Starch, Sugar, Garlic, Dried Whole Egg, Soy Sauce Powder [Soy Sauce {Wheat, Soybeans, Salt}, Maltodextrin, Salt], Wheat Gluten, Spice, Cornstarch. Fried in Vegetable Oil [Soybean, Cottonseed, Corn, and/or Canola Oil]), Soybean Oil (Hydrogenated Soybean Oil Chicken Egg Roll with TBHQ and Citric Acid added as preservatives, and Dimethylpolysiloxane added as an anti-foaming agent). Contains Egg, Soy, Wheat. Vegetable Egg Roll (Cabbage, Enriched Flour [{Bleached Wheat Flour, Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid}, Calcium Propionate, Malted Barley Flour], Water, Carrots, Broccoli, Water Chestnuts, Enriched Durum Flour [Wheat Flour, Niacin, Ferrous Sulfate, Thiamine Mononitrate, Riboflavin, Folic Acid], Brown Rice, Celery, Bamboo Shoots, Contains 2% or Less of: Salt, Modified Food Starch, Onion, Yeast Extract [Yeast Extract, Sunflower Oil], Toasted Sesame Oil, Flavoring [Yeast Extract, Salt, Maltodextrin, Natural and Artificial Flavor], Vegetable Oil [Cottonseed and/or Canola Oil], Dried Garlic, Wheat Gluten, Sugar, Spice, Eggs, Cornstarch. Fried in Vegetable Oil (Cottonseed and/or Canola Oil), Soybean Oil (Hydrogenated Veggie Egg Roll Soybean Oil with TBHQ and Citric Acid added as preservatives, and Dimethylpolysiloxane added as an anti-foaming agent). Contains Egg, Wheat.
    [Show full text]
  • Evaluation of Soft Spreadable Margarine Properties Produced by Lipase-Catalysed Interesterification of Chicken Fat and Corn Oil
    International Food Research Journal 19 (3): 801-806 (2012) Evaluation of soft spreadable margarine properties produced by lipase-catalysed interesterification of chicken fat and corn oil 1*Afida, T. and2 Mamot, S. 1Department of Chemistry , Jalan Sultan 46661, Petaling Jaya, Selangor 2Food Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor Malaysia Abstract: Chicken fat is a potential bioresource that can be developed into a commercial product. In this study, chicken fat, which is rich in unsaturated fatty acids, including oleic acid (C18:1) and linoleic acid (C18:2), was enzymatically interesterified with corn oil to produce a soft spread. Two interesterified products, sample 16 (4% enzyme, 4:1 mole ratio of chicken fat to corn oil, 50°C and 42 h of the interesterification process) and sample 17 (4% enzyme, 2:1 mole ratio of chicken fat to corn oil, 30°C and 42 h of the interesterification process), were selected based on the highest SFC at 30oC which were close to SFC values ​​of commercial product. A morphological study showed that the final products had smaller and less dense fat particles, which explained the lower melting temperatures and solid fat content (3.2 and 3.5% for samples 16 and 17, respectively, at 20°C) compared to the commercial products (9.7, 6.8 and 7.7% for products A, B and C, respectively, at 20°C). However, both sample 16 and 17 had similar thermal properties to a vegetable-oil-based commercial product, with melting enthalpies (ΔH) of 58.45 J/g and 71.40 J/g, and were fully melted at 31.40°C and 35.41°C, respectively.
    [Show full text]
  • Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis
    International Journal of Molecular Sciences Review Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis David Johane Machate 1, Priscila Silva Figueiredo 2 , Gabriela Marcelino 2 , Rita de Cássia Avellaneda Guimarães 2,*, Priscila Aiko Hiane 2 , Danielle Bogo 2, Verônica Assalin Zorgetto Pinheiro 2, Lincoln Carlos Silva de Oliveira 3 and Arnildo Pott 1 1 Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] (D.J.M.); [email protected] (A.P.) 2 Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; pri.fi[email protected] (P.S.F.); [email protected] (G.M.); [email protected] (P.A.H.); [email protected] (D.B.); [email protected] (V.A.Z.P.) 3 Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-67-3345-7416 Received: 9 March 2020; Accepted: 27 March 2020; Published: 8 June 2020 Abstract: Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis.
    [Show full text]
  • II. Phosphoglyceride Fatty Acids
    Pediat. Res. 8: 93-102 (1974) Arachidonic acid ethanolamine phosphoglycerides brain lipids choline phosphoglycerides Some Chemical Aspects of Human Brain Development. II. Phosphoglyceride Fatty Acids MANUELAMARTINEZ, CARMEN CONDE, AND ANGELBALLABRIGA[~~~ Autonomous University, School of Medicine, Children's Hospital of the "Seguridad Social," Barcelona, Spain Extract The fatty acids of total phosphoglycerides (TPG), ethanolamine phosphoglycerides (EPG), and choline phosphoglycerides (CPG) were obtained by mild alkaline trans- methylation from lipid extracts of whole cerebrum and then analyzed by gas chroma- tography. A complete brain hemisphere from each of the 34 newborn infants reported previously was homogenized and its lipids extracted according to the procedure speci- fied in that report. As the gestational age of the children went up, a statistically significant increase of the n-3/n-6 ratio and, especially, of the 22:4(n-6)/22:5(n-6) index was observed. Other ratios, such as the n-6/n-9 and the 18:0/18: 1(n-9), were also studied in the fatty acid patterns of EPG and CPG. Both of them showed sig- nificant increases with the gestational age of the infants. The [22 :4(n-6) + 22 :5(n-6)]/ 20:4(n-6) index, an indicator of the elongation process of arachidonic acid, on the other hand, did not show appreciable changes with maturation in TPG during this period of life. When ethanolamine and choline phosphoglycerides were analyzed separately, however, the elongation of arachidonic acid did rise with the gestational age in the former whereas it decreased in the latter. As intrauterine maturation of the human brain progresses, changes in the polyun- saturated fatty acid patterns, contrary to those observed in undernourished animals, take place.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Sea Duck Curriculum Revised
    Sea Ducks of Alaska Activity Guide Acknowledgments Contact Information: Project Coordinator: Marilyn Sigman, Center for Alaskan Coastal Studies Education: Written By: Sea Duck Activity Guide, Teaching Kit and Display: Elizabeth Trowbridge, Center for Alaskan Coastal Marilyn Sigman Center for Alaskan Coastal Studies Studies P.O. Box 2225 Homer, AK 99603 Illustrations by: (907) 235-6667 Bill Kitzmiller, Conrad Field and Fineline Graphics [email protected] (Alaska Wildlife Curriculum Illustrations), Elizabeth Alaska Wildlife Curricula Trowbridge Robin Dublin Wildlife Education Coordinator Reviewers: Alaska Dept. of Fish & Game Marilyn Sigman, Bree Murphy, Lisa Ellington, Tim Division of Wildlife Conservation Bowman, Tom Rothe 333 Raspberry Rd. Anchorage, AK 99518-1599 (907)267-2168 Funded By: [email protected] U.S. Fish and Wildlife Service, Alaska Coastal Program and Scientific/technical Information: The Alaska Department of Fish and Game, State Duck Tim Bowman Stamp Program Sea Duck Joint Venture Coordinator (Pacific) The Center for Alaskan Coastal Studies would like to thank U.S. Fish & Wildlife Service the following people for their time and commitment to sea 1011 E. Tudor Rd. duck education: Tim Bowman, U.S. Fish and Wildlife Anchorage, AK 99503 Service, Sea Duck Joint Venture Project, for providing (907) 786-3569 background technical information, photographs and [email protected] support for this activity guide and the sea duck traveling SEADUCKJV.ORG display; Tom Rothe and Dan Rosenberg of the Alaska Department of Fish and Game for technical information, Tom Rothe presentations and photographs for both the sea duck Waterfowl Coordinator traveling display and the activity guide species identifica- Alaska Dept. of Fish & Game tion cards; John DeLapp, U.S.
    [Show full text]
  • Chapter 11: Lipids
    ChapterChapter 11:11: LipidsLipids VoetVoet && Voet:Voet: PagesPages 380-394380-394 Lecture 11 Biochemistry 2000 Slide 1 LipidsLipids Lipids are distinguished by their high solubility in non polar solvents and low solubility in H2O ● Diverse group of compounds including Fats, Oils, Waxes, some vitamins and hormones and most non-protein components of membranes Lipids are (another) amphipathic molecules that can be: (A) Major components of biological membranes ● membranes define the basic unit of life (cell) and subcellular compartments (eucaryotes) ● includes cholesterol (B) Major form of stored energy in biological systems Adipocytes: ● lipids are largely reduced compounds; complete oxidation of lipids Fat storage cells generates lots of energy (ie. more than from sugars) (C) Hormones ● signal transduction (communication) between cells Lecture 11 Biochemistry 2000 Slide 2 OverviewOverview ofof BiologicalBiological LipidsLipids Fatty acids: principal building blocks of complex lipids Waxes: esters of fatty acids (heat sensitive) Triacylglycerols: membrane precursors, energy storage Glycerophospholipids: membrane components Sphingolipids: brain lipids, membrane components Steroids: cholesterol, bile salts, steroid hormones Terpenes: like turpentine Lecture 11 Biochemistry 2000 Slide 3 FattyFatty AcidsAcids BuildingBuilding blocksblocks ofof lipidslipids Composed of a carboxylic acid “head group” and a long hydrocarbon “tail” – tail generally contains an even number of carbon atoms Hydrocarbon tail can be saturated or unsaturated – unsaturated
    [Show full text]
  • Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review
    nutrients Review Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review Ewa Sokoła-Wysocza ´nska 1, Tomasz Wysocza ´nski 2, Jolanta Wagner 2,3, Katarzyna Czyz˙ 4,*, Robert Bodkowski 4, Stanisław Lochy ´nski 3,5 and Bozena˙ Patkowska-Sokoła 4 1 The Lumina Cordis Foundation, Szymanowskiego Street 2/a, 51-609 Wroclaw, Poland; [email protected] 2 FLC Pharma Ltd., Wroclaw Technology Park Muchoborska Street 18, 54-424 Wroclaw, Poland; [email protected] (T.W.); jolanta.pekala@flcpharma.com (J.W.) 3 Department of Bioorganic Chemistry, Faculty of Chemistry, University of Technology, Wybrzeze Wyspianskiego Street 27, 50-370 Wroclaw, Poland; [email protected] 4 Institute of Animal Breeding, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Street 38c, 50-001 Wroclaw, Poland; [email protected] (R.B.); [email protected] (B.P.-S.) 5 Institute of Cosmetology, Wroclaw College of Physiotherapy, Kosciuszki 4 Street, 50-038 Wroclaw, Poland * Correspondence: [email protected]; Tel.: +48-71-320-5781 Received: 23 August 2018; Accepted: 19 October 2018; Published: 21 October 2018 Abstract: Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies.
    [Show full text]
  • Fats and Fatty Acid in Human Nutrition
    ISSN 0254-4725 91 FAO Fats and fatty acids FOOD AND NUTRITION PAPER in human nutrition Report of an expert consultation 91 Fats and fatty acids in human nutrition − Report of an expert consultation Knowledge of the role of fatty acids in determining health and nutritional well-being has expanded dramatically in the past 15 years. In November 2008, an international consultation of experts was convened to consider recent scientific developments, particularly with respect to the role of fatty acids in neonatal and infant growth and development, health maintenance, the prevention of cardiovascular disease, diabetes, cancers and age-related functional decline. This report will be a useful reference for nutrition scientists, medical researchers, designers of public health interventions and food producers. ISBN 978-92-5-106733-8 ISSN 0254-4725 9 7 8 9 2 5 1 0 6 7 3 3 8 Food and Agriculture I1953E/1/11.10 Organization of FAO the United Nations FAO Fats and fatty acids FOOD AND NUTRITION in human nutrition PAPER Report of an expert consultation 91 10 − 14 November 2008 Geneva FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2010 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • Sweet Almond Oil Organic
    SWEET ALMOND OIL ORGANIC PRODUCT DATA SHEET SWEET ALMOND OIL ORGANIC is a Vegetable Oil obtained from the dried kernels of the almond tree. Almonds contain folic acid, alpha tocopherol and zinc, which are useful for the treatment of skin disorders. It has been used for centuries both medicinally and cosmetically as a muscle- relaxer, cleanser and moisturizer to name just a few of its applications. SWEET ALMOND OIL is high in mono and polyunsaturated fatty acids, minerals and glycosides. Fatty acids are necessary along with glycerol for the cell to function normally. SWEET ALMOND OIL ORGANIC also contains vitamins A, B1, B2, B6 with small amounts of Vitamin E and D. Due to the presence of Vitamin E the oil has antioxidant capability. Antioxidants protect vital cell structures by neutralizing free radicals. Topical vitamin E has shown to have a wide variety of skin benefits. Many studies have shown that it can help decrease the effects of psoriasis, erythema, and may help in reducing the risk of skin cancer. Vitamin E also helps in the reduction of scaring from wounds and on the appearance of stretch marks on the skin. TECHNICAL DATA Appearance: Pale yellow, oily liquid with minimum odour Acidity index: 1.0 mg KOH/g oil Peroxide value: 20.0 meq O2/Kg oil Specific gravity: 0.90 - 0.93 g/ml Updated: 01/2007 Approved: Dr. Blanca Martínez SWEET ALMOND OIL ORGANIC SWEET ALMOND OIL ORGANIC Fatty acids composition (Fatty Acid Fraction): Oleic acid 62.0 - 86.0 % Linoleic acid ( )7.0-30.0% Palmitic acid 4.0 - 9.0 % Stearic acid Max.
    [Show full text]