FMI Internationally Peer-Reviewed Publications

Total Page:16

File Type:pdf, Size:1020Kb

FMI Internationally Peer-Reviewed Publications 3.6.2020 Finnish Meteorological Institute's internationally peer-reviewed publications 2005-2020 The publications are sorted firstly by year (backwards from year 2020) and secondly by author name. 1. APATENKOV S, PILIPENKO V, GORDEEV E, VILJANEN ARI, JUUSOLA LIISA, BELAKHOVSKY V, SAKHAROV Y, SELIVANOV V. 2020. Auroral omega bands are a significant cause of large geomagnetically induced currents. Geophys. Res. Lett. 47, e2019GL086677, https://doi.org/10.1029/2019GL086677. 2. BATHMANN U, SCHUBERT H, ANDRÉN E, TUOMI LAURA, RADZIEJEWSKA T, KULINSKI K, CHUBARENKO I. 2020. Editorial: Living Along Gradients: Past, Present, Future. Frontiers in Marine Science, 6, 801, https://doi.org/10.3389/fmars.2019.00801. 3. BELU?I? D, DE VRIES H, DOBLER A, LANDGREN O, LIND P, LINDSTEDT D, PEDERSEN RA, SÁNCHEZ-PERRINO JC, TOIVONEN ERIKA, VAN ULFT B, WANG F, ANDRAE U, BATRAK Y, KJELLSTRÖM E, LENDERINK G, NIKULIN G, PIETIKÄINEN JONI-PEKKA, RODRÍGUEZ-CAMINO E, SAMUELSSON P, VAN MEIJGAARD E, WU M. 2020. HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales. Geosci. Model Dev. 13, 1311?1333, 2020. 4. BOISVERT L, VIHMA TIMO, SHIE C-L. 2020. Evaporation from the Southern Ocean estimated on the basis of AIRS satellite data. Journal of Geophysical Research: Atmospheres, 125, e2019JD030845. https://doi.org/10.1029/2019JD030845. 5. CIMINI D. HAEFFELIN M. KOTTHAUS S. LÖHNHERT U. MARTINET P. O'CONNOR EWAN, WALDEN C. COLLAUD COEN M. PREISSLER J. 2020. Towards the profiling of the atmospheric boundary layer at European scale - introducing the COST Action PROBE. Bull. of Atmos. Sci. Technol. (2020). https://doi.org/10.1007/s42865-020-00003-8. 6. CLILVERD M. A. RODGER C. J. VAN DE KAMP MAXIMILIANUS, VERRONEN PEKKA. 2020. Electron Precipitation From the Outer Radiation Belt During the St. Patrick's Day Storm 2015: Observations, Modeling, and Validation. Journal of Geophysical Research: Space Physics,125, e2019JA027725. https://doi.org/10.1029/2019JA027725. 7. DAGSSON-WALDHAUSEROVA P, MEINANDER OUTI. 2020. Atmosphere - Cryosphere Interaction in the Arctic, at High Latitudes and Mountains With Focus on Transport, Deposition and Effects of Dust, Black Carbon, and Other Aerosols. Citation: Dagsson-Waldhauserova, P. Meinander, O. eds. Atmosphere - Cryosphere Interaction in the Arctic, at High Latitudes and Mountains With Focus on Transport, Deposition and Effects of Dust, Black Carbon, and Other Aerosols. Lausanne: Frontiers Media SA. https://doi.org/10.3389/978-2-88963- 504-7, e-book, 2020. 8. HÄMÄLÄINEN KAROLIINA, SALTIKOFF ELENA, HYVÄRINEN OTTO, VAKKARI V, NIEMELÄ SAMI. 2020. Assessment of Probabilistic Wind Forecasts at 100 m Above Ground Level Using Doppler Lidar and Weather Radar Wind Profiles. American Meteorological Society - Monthly Weather Review Page: 1321-1334 Volume: 148 Num: 3 https://doi.org/10.1175/MWR-D-19-0184.1. 9. HUUKI H, KARHINEN S, BÖÖK HERMAN, LINDFORS ANDERS, KOPSAKANGAS-SAVOLAINEN M, SVENTO R. 2020. Utilizing the flexibility of distributed thermal storage in solar power forecast error cost minimization. Journal of Energy Storage Vol. 28. https://doi.org/10.1016/j.est.2020.101202. 10. IKONEN V.P. KILPELÄINEN A, STRANDMAN H, ASIKAINEN A, VENÄLÄINEN ARI, PELTOLA H. 2020. Effects of using certain tree species in forest regeneration on regional wind damage risks in Finnish boreal forests under different CMIP5 projections. Eur J Forest Res (2020). https://doi.org/10.1007/s10342-020-01276-6. 11. JACOB D. PIETIKÄINEN JONI-PEKKA, ET AL. 2020. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg Environ Change 20, 51 (2020). 12. JONASSEN M, CHECHIN D, KARPECHKO ALEXEY, LUPKES C, SPENGLER T, TEPSTRA A, VIHMA TIMO, ZHANG X. 2020. Dynamical Processes in the Arctic Atmosphere. In: A. A. Kokhanovsky, and C. Tomasi (Eds.): Physics and chemistry of Arctic atmosphere, p. 1-52, Springer Polar Sciences, https://doi.org/10.1007/978- 3-030-33566-3. 13. JÄRVINEN RIKU, ALHO M, KALLIO ESA, PULKKINEN T.I. 2020. Ultra-low frequency waves in the ion foreshock of Mercury: A global hybrid modeling study. Monthly Notices of the Royal Astronomical Society, 491, 3, 4147-4161, https://doi.org/10.1093/mnras/stz3257. 14. KALLIO-MYERS VIIVI, RIIHELÄ AKU, LAHTINEN PANU, LINDFORS ANDERS. 2020. Global horizontal irradiance forecast for Finland based on geostationary weather satellite data. Solar Energy Vol. 198 p. 68-80. https://doi.org/10.1016/j.solener.2020.01.008. 15. KOENIGK T, KEY J, VIHMA TIMO. 2020. Climate Change in the Arctic. In: A. A. Kokhanovsky, and C. Tomasi (Eds.): Physics and chemistry of Arctic atmosphere, p. 673-705, Springer Polar Sciences, https://doi.org/10.1007/978-3-030-33566-3. 16. KÄRNÄ TUOMAS. 2020. Discontinuous Galerkin discretization for two-equation turbulence closure model. Ocean Modelling, Vol.150, 101619. https://doi.org/10.1016/j.ocemod.2020.101619. 17. KUKKONEN JAAKKO, LÓPEZ-APARICIO S. SEGERSSON D. GEELS C. KANGAS LEENA, KAUHANIEMI MARI, MARAGKIDOU A. JENSEN A. ASSMUTH T. KARPPINEN ARI, SOFIEV MIKHAIL, HELLEN HEIDI, RIIKONEN KARI, NIKMO JUHA, KOUSA A. NIEMI J.V. KARVOSENOJA N. SOUSA SANTOS G. SUNDVOR I. IM U. CHRISTENSEN J.H. NIELSEN O.-K. PLEJDRUP M.S. NØJGAARD J.K. OMSTEDT G. ANDERSSON C. FORSBERG B. BRANDT J. 2020. The influence of residential wood combustion on the concentrations of PM2. in four Nordic cities. Atmos. Chem. Phys. 20, pp. 4333-4365, https://doi.org/10.5194/acp-20-4333-2020. 18. LAKKALA KAISA, AUN M, SANCHEZ R, BERNHARD G, ASMI EIJA, MEINANDER OUTI, NOLLAS F, HÜLSEN G, AALTONEN VEIJO, AROLA ANTTI, DE LEEUW GERARDUS. 2020. New continuous total ozone, UV, VIS and PAR measurements at Marambio 64°?S, Antarctica,. Citation: Lakkala, K. Aun, M. Sanchez, R. Bernhard, G. Asmi, E. Meinander, O. Nollas, F. Hülsen, G. Aaltonen, V. Arola, A. and de Leeuw, G. New continuous total ozone, UV, VIS and PAR measurements at Marambio 64°?S, Antarctica, Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2019-227, in review, 2019. 19. LAURILA TERHI, GREGOW HILPPA, SINCLAIR V A. 2020. The Extratropical Transition of Hurricane Debby (1982) and the Subsequent Development of an Intense Windstorm over Finland. Monthly Weather Review, https://doi.org/10.1175/MWR-D-19-0035.1. 20. LEINSS S, LÖWE H, PROKSCH M, KONTU ANNA. 2020. Modeling the evolution of the structural anisotropy of snow. The Cryosphere, 14, 51?75, 2020 https://doi.org/10.5194/tc-14-51-2020. 21. LI Z, ZHAO J, SU J, LI C, CHENG BIN, HUI F, YANG Q, SHI L. 2020. Spatial and Temporal Variations in the Extent and Thickness of Arctic Landfast Ice. Remote Sensing. 2020; 12(1):64. 22. MAHRT L, NILSSON E, RUTGERSSON A, PETTERSSON HEIDI. 2020. Sea-Surface Stress Driven by Small- Scale Non-stationary Winds. Boundary-Layer Meteorology, 176:13-33. https://doi.org/10.1007/s10546-020- 00518-9. 23. MÄKELÄ JARMO, MINUNNO F, AALTO TUULA, MÄKELÄ A, MARKKANEN TIINA, PELTONIEMI M. 2020. Sensitivity of 21st century simulated ecosystem indicators to model parameters, prescribed climate drivers, RCP scenarios and forest management actions for two Finnish boreal forest sites. Biogeosciences, 17, 2681?2700, 2020 https://doi.org/10.5194/bg-17-2681-2020. 24. NEZAMI S. KHORAMSHAHI E. NEVALAINEN OLLI, PÖLÖNEN I. HONKAVAARA E. 2020. Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks. Remote Sensing, 2020, 12(7), 1070, https://doi.org/10.3390/rs12071070. 25. PALMROTH MINNA, GRANDIN M, HELIN M, KOSKI P, OKSANEN A, GLAD M, VALONEN R, SAARI K, BRUUS E, NORBERG JOHANNES, VILJANEN ARI, KAURISTIE KIRSTI, VERRONEN PEKKA. 2020. Citizen scientists discover a new auroral form: Dunes provide insight into the upper atmosphere. AGU Advances, 1, e2019AV000133, https://doi.org/10.1029/2019AV000133. 26. PAN W, KRAMER S, KÄRNÄ TUOMAS, PIGGOTT M. 2020. Comparing non-hydrostatic extensions to a discontinuous finite element coastal ocean model. Ocean modelling, 101634. https://doi.org/10.1016/j.ocemod.2020.101634. 27. PARDING K, DOBLER A, MCSWEENEY T, LANDGREN O, BENESTAD R, ERLANDSEN H, MEZGHANI A, GREGOW HILPPA, RÄTY OLLE, VIKTOR E, EL ZOHBI J, CHRISTENSEN O B, LOUKOS H. 2020. GCMeval ? An interactive tool for evaluation and selection of climate model ensembles. Climate Services, Volume 18, 100167, ISSN 2405-8807, https://doi.org/10.1016/j.cliser.2020.100167. 28. PELLIKKA HILKKA, SÄRKKÄ JANI, JOHANSSON MILLA, PETTERSSON HEIDI. 2020. Probability distributions for mean sea level and storm contribution up to 2100 AD at Forsmark. SKB Technical Report TR- 19-23, 55pp. https://www.skb.se/publikation/2494748/. 29. QUESADA-RUIZ S, ATTIÉ J, LAHOZ W.A, ABIDA R, RICAUD P, AMRAOUI L.E, ZBINDEN R, PIACENTINI A, JOLY M, ESKES H, SEGERS A, CURIER L, HAAN J.D, KUJANPÄÄ JUKKA, NIJHUIS A.C, TAMMINEN JOHANNA, TIMMERMANS R, VEEFKIND P. 2020. Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition. Atmospheric Measurement Techniques Vol. 13 p. 131-152. https://www.atmos-meas-tech.net/13/131/2020/ https://doi.org/10.5194/amt-13-131-2020. 30. RAI N, O?HARA A, FARKAS D, SAFRONOV O, RATANASOPA K, WANG F, LINDFORS ANDERS, JENKINS G.I, LEHTO T, SALOJÄRVI J, BROSCHE M, STRID Å, APHALO P.J, MORALES L.O. 2020. The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant, Cell & Environment. https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13752 https://doi.org/10.1111/pce.13752. 31. REUTER M, BUCHWITZ M, SCHNEISING O, NOËL S, BOVENSMANN H, BURROWS J.P, BOESCH H, NOIA A.D, ANAND J, PARKER R.J, SOMKUTI P, WU L, HASEKAMP O.P, ABEN I, KUZE A, SUTO H, SHIOMI K, YOSHIDA Y, MORINO I, CRISP D, O?DELL C.W, NOTHOLT J, PETRI C, WARNEKE T, VELAZCO V.A, DEUTSCHER N.M, GRIFFITH D.W, KIVI RIGEL, POLLARD D.F, HASE F, SUSSMANN R, TÉ Y.V, STRONG K, ROCHE S, SHA M.K, MAZIÈRE M.D, FEIST D.G, IRACI L.T, ROEHL C.M, RETSCHER C, SCHEPERS D.
Recommended publications
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait
    Polarforschung 74 (1-3), 129 – 160, 2004 (erschienen 2006) In Search of the Wegener Fault: Re-Evaluation of Strike-Slip Displacements Along and Bordering Nares Strait by J. Christopher Harrison1 Abstract: A total of 28 geological-geophysical markers are identified that lich der Bache Peninsula und Linksseitenverschiebungen am Judge-Daly- relate to the question of strike slip motions along and bordering Nares Strait. Störungssystem (70 km) und schließlich die S-, später SW-gerichtete Eight of the twelve markers, located within the Phanerozoic orogen of Kompression des Sverdrup-Beckens (100 + 35 km). Die spätere Deformation Kennedy Channel – Robeson Channel region, permit between 65 and 75 km wird auf die Rotation (entgegen dem Uhrzeigersinn) und ausweichende West- of sinistral offset on the Judge Daly Fault System (JDFS). In contrast, eight of drift eines semi-rigiden nördlichen Ellesmere-Blocks während der Kollision nine markers located in Kane Basin, Smith Sound and northern Baffin Bay mit der Grönlandplatte zurückgeführt. indicate no lateral displacement at all. Especially convincing is evidence, presented by DAMASKE & OAKEY (2006), that at least one basic dyke of Neoproterozoic age extends across Smith Sound from Inglefield Land to inshore eastern Ellesmere Island without any recognizable strike slip offset. INTRODUCTION These results confirm that no major sinistral fault exists in southern Nares Strait. It is apparent to both earth scientists and the general public To account for the absence of a Wegener Fault in most parts of Nares Strait, that the shape of both coastlines and continental margins of the present paper would locate the late Paleocene-Eocene Greenland plate boundary on an interconnected system of faults that are 1) traced through western Greenland and eastern Arctic Canada provide for a Jones Sound in the south, 2) lie between the Eurekan Orogen and the Precam- satisfactory restoration of the opposing lands.
    [Show full text]
  • Impact Cratering
    6 Impact cratering The dominant surface features of the Moon are approximately circular depressions, which may be designated by the general term craters … Solution of the origin of the lunar craters is fundamental to the unravel- ing of the history of the Moon and may shed much light on the history of the terrestrial planets as well. E. M. Shoemaker (1962) Impact craters are the dominant landform on the surface of the Moon, Mercury, and many satellites of the giant planets in the outer Solar System. The southern hemisphere of Mars is heavily affected by impact cratering. From a planetary perspective, the rarity or absence of impact craters on a planet’s surface is the exceptional state, one that needs further explanation, such as on the Earth, Io, or Europa. The process of impact cratering has touched every aspect of planetary evolution, from planetary accretion out of dust or planetesimals, to the course of biological evolution. The importance of impact cratering has been recognized only recently. E. M. Shoemaker (1928–1997), a geologist, was one of the irst to recognize the importance of this process and a major contributor to its elucidation. A few older geologists still resist the notion that important changes in the Earth’s structure and history are the consequences of extraterres- trial impact events. The decades of lunar and planetary exploration since 1970 have, how- ever, brought a new perspective into view, one in which it is clear that high-velocity impacts have, at one time or another, affected nearly every atom that is part of our planetary system.
    [Show full text]
  • All Clubs Missing Officers 2014-15.Pdf
    Run Date: 12/17/2015 8:40:39AM Lions Clubs International Clubs Missing Club Officer for 2014-2015(Only President, Secretary or Treasurer) Undistricted Club Club Name Title (Missing) 27947 MALTA HOST Treasurer 27952 MONACO DOYEN Membershi 30809 NEW CALEDONIA NORTH Membershi 34968 SAN ESTEVAN Membershi 35917 BAHRAIN LC Membershi 35918 PORT VILA Membershi 35918 PORT VILA President 35918 PORT VILA Secretary 35918 PORT VILA Treasurer 41793 MANILA NEW SOCIETY Membershi 43038 MANILA MAYNILA LINGKOD BAYAN Membershi 43193 ST PAULS BAY Membershi 44697 ANDORRA DE VELLA Membershi 44697 ANDORRA DE VELLA President 44697 ANDORRA DE VELLA Secretary 44697 ANDORRA DE VELLA Treasurer 47478 DUMBEA Membershi 53760 LIEPAJA Membershi 54276 BOURAIL LES ORCHIDEES Membershi 54276 BOURAIL LES ORCHIDEES President 54276 BOURAIL LES ORCHIDEES Secretary 54276 BOURAIL LES ORCHIDEES Treasurer 54912 ULAANBAATAR CENTRAL Membershi 55216 MDINA Membershi 55216 MDINA President 55216 MDINA Secretary 55216 MDINA Treasurer 56581 RIFFA Secretary OFF0021 © Copyright 2015, Lions Clubs International, All Rights Reserved. Page 1 of 1290 Run Date: 12/17/2015 8:40:39AM Lions Clubs International Clubs Missing Club Officer for 2014-2015(Only President, Secretary or Treasurer) Undistricted Club Club Name Title (Missing) 57293 RIGA RIGAS LIEPA Membershi 57293 RIGA RIGAS LIEPA President 57293 RIGA RIGAS LIEPA Secretary 57293 RIGA RIGAS LIEPA Treasurer 57378 MINSK CENTRAL Membershi 57378 MINSK CENTRAL President 57378 MINSK CENTRAL Secretary 57378 MINSK CENTRAL Treasurer 59850 DONETSK UNIVERSAL
    [Show full text]
  • Arctic Ocean Outflow and Glacier-Ocean Interaction Modify Water Over the Wandel Sea Shelf
    Ocean Sci. Discuss., doi:10.5194/os-2017-28, 2017 Manuscript under review for journal Ocean Sci. Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. Arctic Ocean outflow and glacier-ocean interaction modify water over the Wandel Sea shelf, northeast Greenland Igor A. Dmitrenko1*, Sergei A. Kirillov1, Bert Rudels2, David G. Babb1, Leif Toudal Pedersen3, Søren 5 Rysgaard1,4,5, Yngve Kristoffersen6,7 and David G. Barber1 1Centre for Earth Observation Science, University of Manitoba, Winnipeg, Canada 2Finnish Meteorological Institute, Helsinki, Finland 3Danish Meteorological Institute, Copenhagen, Denmark 10 4Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland 5Arctic Research Centre, Aarhus University, Aarhus, Denmark 6Department of Earth Science, University of Bergen, Bergen, Norway 7 Nansen Environmental and Remote Sensing Centre, Bergen, Norway 15 *Corresponding author, e-mail: [email protected] Abstract: The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in North Eastern Greenland were collected in April-May 2015. They were complemented by CTD profiles taken along the continental slope during the Norwegian FRAM 2014-15 drift. The CTD profiles 1 Ocean Sci. Discuss., doi:10.5194/os-2017-28, 2017 Manuscript under review for journal Ocean Sci. Discussion started: 20 April 2017 c Author(s) 2017. CC-BY 3.0 License. 20 are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the outlet glaciers. The subsurface water is associated with the Pacific Water outflow from the Arctic Ocean. The underlying Halocline separates the Pacific Water from a deeper layer of Polar Water that has interacted with the warm Atlantic water outflow through Fram Strait recorded below 140 m.
    [Show full text]
  • Helsingin Poikittaislinjaston Kehittämissuunnitelma Luonnos 16.4.2019
    Helsingin poikittaislinjaston kehittämissuunnitelma luonnos 16.4.2019 HSL Helsingin seudun liikenne HSL Helsingin seudun liikenne Opastinsilta 6 A PL 100, 00077 HSL00520 Helsinki puhelin (09) 4766 4444 www.hsl.fi Lisätietoja: Harri Vuorinen [email protected] Copyright: Kartat, graafit, ja muut kuvat Kansikuva: HSL / kuvaajan nimi Helsinki 2019 Esipuhe Työ on käynnistynyt syyskuussa 2018 ja ensimmäinen linjastosuunnitelmaluonnos on valmistunut marraskuussa 2018. Lopullisesti työ on valmistunut huhtikuussa 2019. Työtä on ohjannut ohjausryhmä, johon ovat kuuluneet: Jonne Virtanen, pj. HSL Harri Vuorinen HSL Markku Granholm Helsingin kaupunki Suunnittelutyön aikana on ollut avoinna blogi, joka on toiminut asukasvuorovaikutuksen pääkana- vana ja jossa on kerrottu suunnittelutyön etenemisestä. Blogissa asukkaat ovat voineet esittää näkemyksiään suunnittelutyöstä ja antaa palautetta linjastoluonnoksista. Työn yhteydessä on tee- tetty liikkumiskysely, jolla kartoitettiin asukkaiden ja suunnittelualueella liikkuvien liikkumistottumuk- sia ja mielipiteitä joukkoliikenteestä. Lisäksi työn aikana järjestettiin kolme asukastilaisuutta suunni- telmien esittelemiseksi ja palautteen saamiseksi. Työn tekemisestä HSL:ssä ovat vastanneet Harri Vuorinen projektipäällikkönä, Miska Peura, Riikka Sorsa ja Petteri Kantokari. Vaikutusarvioinnit on tehnyt WSP Finland Oy, jossa työstä ovat vastan- neet Samuli Kyytsönen ja Atte Supponen. Tiivistelmäsivu Julkaisija: HSL Helsingin seudun liikenne Tekijät: Harri Vuorinen, Miska Peura, Riikka Sorsa, Petteri Kantokari
    [Show full text]
  • First International Conference on Mars Polar Science and Exploration
    FIRST INTERNATIONAL CONFERENCE ON MARS POLAR SCIENCE AND EXPLORATION Held at The Episcopal Conference Center at Carnp Allen, Texas Sponsored by Geological Survey of Canada International Glaciological Society Lunar and Planetary Institute National Aeronautics and Space Administration Organizers Stephen Clifford, Lunar and Planetary Institute David Fisher, Geological Survey of Canada James Rice, NASA Ames Research Center LPI Contribution No. 953 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract. In First International Conference on Mars Polar Science and Exploration, p. xx. LPI Contribution No. 953, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 953 iii Preface This volume contains abstracts that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration, October 18-22? 1998. The Scientific Organizing Committee consisted of Terrestrial Members E. Blake (Icefield Instruments), G. Clow (U.S. Geologi- cal Survey, Denver), D. Dahl-Jensen (University of Copenhagen), K. Kuivinen (University of Nebraska), J.
    [Show full text]
  • Bibliography
    Bibliography Abella, S. R. 2010. Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. International Journal of Environmental Research and Public Health 7:1248—1284. Abella, S. R., D. J. Craig, L. P. Chiquoine, K. A. Prengaman, S. M. Schmid, and T. M. Embrey. 2011. Relationships of native desert plants with red brome (Bromus rubens): Toward identifying invasion-reducing species. Invasive Plant Science and Management 4:115—124. Abella, S. R., N. A. Fisichelli, S. M. Schmid, T. M. Embrey, D. L. Hughson, and J. Cipra. 2015. Status and management of non-native plant invasion in three of the largest national parks in the United States. Nature Conservation 10:71—94. Available: https://doi.org/10.3897/natureconservation.10.4407 Abella, S. R., A. A. Suazo, C. M. Norman, and A. C. Newton. 2013. Treatment alternatives and timing affect seeds of African mustard (Brassica tournefortii), an invasive forb in American Southwest arid lands. Invasive Plant Science and Management 6:559—567. Available: https://doi.org/10.1614/IPSM-D-13-00022.1 Abrahamson, I. 2014. Arctostaphylos manzanita. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System (Online). plants/shrub/arcman/all.html Ackerman, T. L. 1979. Germination and survival of perennial plant species in the Mojave Desert. The Southwestern Naturalist 24:399—408. Adams, A. W. 1975. A brief history of juniper and shrub populations in southern Oregon. Report No. 6. Oregon State Wildlife Commission, Corvallis, OR. Adams, L. 1962. Planting depths for seeds of three species of Ceanothus.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • User Guide to 1:250,000 Scale Lunar Maps
    CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west.
    [Show full text]
  • Impact Crater Collapse
    P1: SKH/tah P2: KKK/mbg QC: KKK/arun T1: KKK March 12, 1999 17:54 Annual Reviews AR081-12 Annu. Rev. Earth Planet. Sci. 1999. 27:385–415 Copyright c 1999 by Annual Reviews. All rights reserved IMPACT CRATER COLLAPSE H. J. Melosh Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721; e-mail: [email protected] B. A. Ivanov Institute for Dynamics of the Geospheres, Russian Academy of Sciences, Moscow, Russia 117979 KEY WORDS: crater morphology, dynamical weakening, acoustic fluidization, transient crater, central peaks ABSTRACT The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped “transient crater.” The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called “simple” and have a depth- to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called “complex” craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for tem- porary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations.
    [Show full text]
  • EXPLORE MAUNULA Maunula Is a Fine Place to Live - Peacefull, Friendly and with Easy Access to Outdoors
    EXPLORE MAUNULA Maunula is a fine place to live - peacefull, friendly and with easy access to outdoors. The supply for cultural activities is increasing, when the new Maunula House will be finished next year. New residents are already moving in and new shops will open to new locations, when plans unfold. In this special edition “Explore Maunula” we offer you an insight on what goes on in Maunula. Andrei, Irina, Francis, Tasneem and Yifan Lin all have a story to tell about Maunula. You will be pleasantly surprised what you can find in Maunula, when you go on a walk. For this purpose the map of Urban Walk (Kotikaupunkipolku) is provided. The numbers in brackets refer to the accompanying map. Maunula in English is a new webpage, with local information. http://maunula.net/ maunula-in-english And who will help you to use websites? You can go to the Maunula library, Saunabaari or Mediapaja to get help and access the to the internet. All these are Cosy Café Wanha Maunula is near Saunabaari, the landmark of Maunula (11). Picture Sauli Heikkilä, Pieni Huone Oy. introduced as well. Saunabaari Language Café at Maunula Library Asukastalo Saunabaari (11) is a local place to carry out For several years now there has been a discussion group usually a topical subject. Discussion is led by a social activities and different hobbies for the residents of even at Maunula Library. Here people can practice their member of the library staff or some other person. Hille Maunula. Saunabaari is like a living room where you can speaking skills in Finnish and meet new friends.
    [Show full text]