Technical and Economic Assessment of a 500W Autonomous Photovoltaic System with Lifepo4 Battery Storage Electrical and Computer
Total Page:16
File Type:pdf, Size:1020Kb
Technical and Economic Assessment of a 500W Autonomous Photovoltaic System with LiFePO4 Battery Storage João Filipe Esteves Carriço Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisor: Prof. José Paulo da Costa Branco Examination Committee Chairperson: Prof. Rui Manuel Gameiro de Castro Supervisor: Prof. José Paulo da Costa Branco Member of Committee: Prof. João José Esteves Santana Prof. Carlos Alberto Ferreira Fernandes November 2015 II Acknowledgments I would like to express my gratitude and appreciation to the supervisor of this work, Professor Paulo Branco for giving me this opportunity, his guidance, persistency and encouragement. It would not be possible without his contribute. I would like to thank all my family, specially my mother, father and sister for all the patience and support and a very special thanks to my girlfriend Inês Freire who gave me strength. Finally, to all my colleagues and friends who listened, advised and made their questions mine contributing to a better research. III IV Abstract The access to electricity in some African countries is still very poor. For isolated villages where the distance to the major cities is higher than hundreds of kilometres and the number of populations is very low, it is not economically viable to build a connection to the electrical grid. Autonomous photovoltaic (PV) installations are the key for future full autonomy of the household at a low infrastructure cost. More particularly, this thesis studies and tests the behaviour and efficiency of a low-cost isolated (autonomous, off-grid or stand-alone) photovoltaic (PV) system with the novel Lithium Iron Phosphate (LiFePO4) battery storage, for the rural area near Luena in Angola. The system (solar panel, batteries, controller and inverter) is designed having in mind the required household load and energy available from the sun. These determined the sizing of the PV panels’ nominal power, LiFePO4 battery pack storage capacity, the energy monitoring system as well as the power of the inverter. In this context, the autonomous solar energy production system was developed for a nominal power of 500W. It was configured considering the load diagram of a typical rural house in order to achieve a high lifespan of LiFePO4 batteries with less maintenance as possible. The experimental tests were made under real conditions with the relevant electrical parameters being measured and logged along the day. These tests have shown that, although the system ensures the energy supply effectively between the months of February to November, during the rainy season the system should be complemented with a second source of alternative energy. Keywords Autonomous/Off-grid PV system, Angola, system efficiency, LiFePO4 V VI Resumo O acesso à eletricidade em alguns países africanos é ainda muito precário. Em vilas isoladas onde a distância às grandes metrópoles é superior a algumas centenas de quilómetros e o número de habitantes é pequeno, não é economicamente viável construir uma interligação à rede elétrica. Os sistemas fotovoltaicos autónomos são a chave para pequenas habitações autossuficientes em termos energéticos a um preço de infraestruturas reduzido. Em particular esta tese estuda e testa o comportamento e eficiência de um sistema isolado de custo reduzido com as recentes baterias de Lítio- Ferro-Fosfato (LiFePO4) para a zona rural de Luena em Angola. O sistema (painéis solares, baterias, controlador e inversor) é dimensionado tendo em vista a energia necessária ao abastecimento dos consumidores e a energia solar disponível. Estes irão determinar os valores de potência nominal dos painéis, a capacidade do “pack” de baterias de lítio, do sistema de gestão de energia assim como a potência nominal do inversor. Neste contexto, o sistema de produção elétrica autónomo foi desenvolvido para uma potência nominal de cerca de 500W. O sistema foi configurado tendo em consideração o diagrama de carga típico destas pequenas habitações rurais, de forma alcançar o maior tempo de vida útil das baterias de LiFePO4 com a mínima manutenção possível. Os ensaios experimentais foram realizados em condições reais com todos os sinais elétricos relevantes medidos e gravados ao longo do dia. Estes mostraram que, apesar de o sistema assegurar o abastecimento energético de forma eficaz entre os meses de Fevereiro a Novembro, durante a época das chuvas o sistema deverá ser complementado com uma segunda fonte de energia alternativa. Palavras-chave: Sistema fotovoltaico autónomo, Angola, rendimento, LiFePO4 VII VIII Contents Acknowledgments .................................................................................................................................. III Abstract .................................................................................................................................................... V Resumo ................................................................................................................................................. VII Contents ................................................................................................................................................. IX List of Figures ....................................................................................................................................... XIII List of Tables .........................................................................................................................................XV List of Symbols ................................................................................................................................... XVII List of abbreviations ............................................................................................................................. XIX 1 Introduction ...................................................................................................................................... 1 1.1 Motivation and problem definition ............................................................................................ 1 1.2 Objectives ................................................................................................................................ 2 1.3 Thesis structure ....................................................................................................................... 3 2 Autonomous PV Systems – Actual Panorama ................................................................................ 5 2.1 Photovoltaic Systems Types ................................................................................................... 6 2.1.1 Grid-tied Systems ............................................................................................................ 7 2.1.2 Off-Grid Systems ............................................................................................................. 8 2.1.3 Hybrid Systems ................................................................................................................ 9 2.2 Solar Radiation ...................................................................................................................... 10 2.2.1 Direct and diffuse radiation on a tilted plane ................................................................. 10 2.2.2 GHI, DNI ........................................................................................................................ 11 2.2.3 Angle definition .............................................................................................................. 11 2.2.4 Solar radiation measuring instruments .......................................................................... 15 2.3 Angola Case-Study ................................................................................................................ 16 2.3.1 Introduction .................................................................................................................... 16 2.3.2 General Overview .......................................................................................................... 16 2.3.3 Solar Resource .............................................................................................................. 18 2.3.4 Temperature and sunshine hours .................................................................................. 19 2.3.5 Energy sector scenario .................................................................................................. 20 2.3.6 Energy consumption costs ............................................................................................ 22 2.4 Conclusions ........................................................................................................................... 23 3 Photovoltaic Energy Systems Constitution .................................................................................... 25 3.1 Electrical Loads ..................................................................................................................... 25 3.1.1 Refrigerator .................................................................................................................... 26 3.1.2 Lighting .......................................................................................................................... 27 3.1.3 CRT TV .......................................................................................................................... 28 3.2 PV Panels .............................................................................................................................