Wakisa Kipandula Mphil Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel Treatment of African Trypanosomiasis
From Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institutet, Stockholm, Sweden NOVEL TREATMENT OF AFRICAN TRYPANOSOMIASIS Suman Kumar Vodnala Stockholm 2013 Published and printed by Larserics Digital Print AB, Sundbyberg. © Suman Kumar Vodnala, 2013 ISBN 978-91-7549-030-4 ABSTRACT Human African Trypanosomiasis (HAT) or Sleeping Sickness is fatal if untreated. Current drugs used for the treatment of HAT have difficult treatment regimens and unacceptable toxicity related issues. The effective drugs are few and with no alternatives available, there is an urgent need for the development of new medicines, which are safe, affordable and have no toxic effects. Here we describe different series of lead compounds that can be used for the development of drugs to treat HAT. In vivo imaging provides a fast non-invasive method to evaluate parasite distribution and therapeutic efficacy of drugs in real time. We generated monomorphic and pleomorphic recombinant Trypanosoma brucei parasites expressing the Renilla luciferase. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. Our data indicate that preferential testis tropism must be considered during drug development, since parasites might be protected from many drugs by the blood-testis barrier (Paper I). In contrast to most mammalian cells, trypanosomes cannot synthesize purines de novo. Instead they depend on the host to salvage purines from the body fluids. The inability of trypanosomes to engage in de novo purine synthesis has been exploited as a therapeutic target by using nucleoside analogues. We showed that adenosine analogue, cordycepin in combination with deoxycoformycin cures murine late stage models of African trypanosomiasis (Paper II). -
Short Communication Tandem Affinity Purification of Exosome And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository 1 Short communication 2 3 Tandem affinity purification of exosome and replication factor C 4 complexes from the non-human infectious kinetoplastid parasite 5 Crithidia fasciculata 6 7 Wakisa Kipandula a, b, Terry K. Smith a and Stuart A. MacNeill a, * 8 9 a Biomedical Sciences Research Complex, University of St Andrews, North 10 Haugh, St Andrews, Fife KY16 9ST, UK. 11 b Department of Biomedical Sciences, College of Medicine, University of Malawi, 12 Private Bag 360, Chichiri, Blantyre 3, Malawi. 13 14 * Corresponding author: 15 Email: [email protected] 16 Tel. (+44) 1334 467268 17 18 19 20 1 21 Abstract 22 23 Kinetoplastid parasites are responsible for a range of diseases with significant 24 global impact. Trypanosoma brucei and Trypanosoma cruzi cause human African 25 trypanosomiasis and Chagas disease, respectively, while various Leishmania 26 species are responsible for cutaneous, mucocutaneous and visceral 27 leishmaniasis. Understanding the biology of these organisms is key for effective 28 diagnosis, prophylaxis and treatment. The insect parasite Crithidia fasciculata 29 offers a safe and low-cost alternative for studies of kinetoplastid biology. C. 30 fasciculata does not infect humans, can be cultured to high yields in inexpensive 31 serum-free medium in a standard laboratory, and has a completely sequenced 32 publically available genome. Taking advantage of these features, however, 33 requires the adaptation of existing methods of analysis to C. fasciculata. Tandem 34 affinity purification is a widely used method that allows for the rapid purification of 35 intact protein complexes under native conditions. -
Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil
DISPATCHES Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil Sandra R. Maruyama,1 Alynne K.M. de Santana,1,2 performed whole-genome sequencing of 2 clinical isolates Nayore T. Takamiya, Talita Y. Takahashi, from a patient with a fatal illness with clinical characteris- Luana A. Rogerio, Caio A.B. Oliveira, tics similar to those of VL. Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, The Study Aline S. Barreto, Angela M. da Silva, During 2011–2012, we characterized 2 parasite strains, LVH60 Roque P. Almeida,3 José M. Ribeiro,3 João S. Silva3 and LVH60a, isolated from an HIV-negative man when he was 64 years old and 65 years old (Table; Appendix, https:// Through whole-genome sequencing analysis, we identified wwwnc.cdc.gov/EID/article/25/11/18-1548-App1.pdf). non-Leishmania parasites isolated from a man with a fatal Treatment-refractory VL-like disease developed in the man; visceral leishmaniasis–like illness in Brazil. The parasites signs and symptoms consisted of weight loss, fever, anemia, infected mice and reproduced the patient’s clinical mani- festations. Molecular epidemiologic studies are needed to low leukocyte and platelet counts, and severe liver and spleen ascertain whether a new infectious disease is emerging that enlargements. VL was confirmed by light microscopic exami- can be confused with leishmaniasis. nation of amastigotes in bone marrow aspirates and promas- tigotes in culture upon parasite isolation and by positive rK39 serologic test results. Three courses of liposomal amphotericin eishmaniases are caused by ≈20 Leishmania species B resulted in no response. -
Identification and Characterization of Novel Anti-Leishmanial Compounds
Identification and Characterization of Novel Anti-leishmanial Compounds Bilal Zulfiqar Master of Philosophy, Doctor of Pharmacy Discovery Biology Griffith Institute for Drug Discovery School of Natural Sciences Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy October 2017 ABSTRACT ABSTRACT Leishmaniasis is characterized as a parasitic disease caused by the trypanosomatid protozoan termed Leishmania. Leishmaniasis is endemic in 98 countries around the globe with increased cases of morbidity and mortality emerging each day. The mode of transmission of this disease is via the bite of a sand fly, genus Phlebotomus (Old World) and Lutzomyia (New World). The life cycle of Leishmania parasite exists between the sand fly (promastigote form) and the mammalian host (amastigote form). Leishmaniasis can be characterized as cutaneous, muco-cutaneous or visceral leishmaniasis based on clinical manifestations exhibited in infected individuals. Although leishmaniasis is treatable, it faces challenges largely due to emerging resistance and extensive toxicity for current drugs. Therapeutic efficacy varies depending upon the species, symptoms and geographical regions of the Leishmania parasite. The drug discovery pipeline for neglected trypanosomatid diseases remains sparse. In particular, the field of leishmaniasis drug discovery has had limited success in translating potential drug candidates into viable therapies. Currently there are few compounds that are clinical candidates for leishmaniasis, it is therefore essential that new compounds that are active against Leishmania are identified and evaluated for their potential to progress through the drug discovery pipeline. In order to identify new therapeutics, it is imperative that robust, biologically relevant assays be developed for the screening of anti-leishmanial compounds. -
Ce Document Est Le Fruit D'un Long Travail Approuvé Par Le Jury De Soutenance Et Mis À Disposition De L'ensemble De La Communauté Universitaire Élargie
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UNIVERSITE DE LORRAINE 2018 ___________________________________________________________________________ FACULTE DE PHARMACIE THESE Présentée et soutenue publiquement Le 27 JUIN 2018, sur un sujet dédié à : LA MALADIE DE CHAGAS : DIAGNOSTIC, CLINIQUE ET PERSPECTIVES D’UNE MALADIE NÉGLIGÉE Pour obtenir Le Diplôme d'Etat de Docteur en Pharmacie Par Sébastien KAUFFMANN Né le 07/09/1988 à NANCY Membres du Jury Président : COULON JOEL, Maître de Conférences, faculté de pharmacie à Nancy Juges : BANAS SANDRINE, Maître de Conférences, faculté de pharmacie de Nancy BELLANGER XAVIER, Maître de Conférences, faculté de pharmacie de Nancy DUVAL NICOLE, Pharmacienne officinale UNIVERSITÉ DE LORRAINE FACULTÉ DE PHARMACIE Année universitaire 2017-2018 DOYEN Francine PAULUS Vice-Doyen/Directrice des études Virginie PICHON Conseil de la Pédagogie Présidente, -
University of Dundee Anti-Trypanosomatid Drug Discovery
University of Dundee Anti-trypanosomatid drug discovery Field, Mark C.; Horn, David; Fairlamb, Alan H.; Ferguson, Michael A. J.; Gray, David W.; Read, Kevin D. Published in: Nature Reviews Microbiology DOI: 10.1038/nrmicro.2016.193 Publication date: 2017 Document Version Peer reviewed version Link to publication in Discovery Research Portal Citation for published version (APA): Field, M. C., Horn, D., Fairlamb, A. H., Ferguson, M. A. J., Gray, D. W., Read, K. D., De Rycker, M., Torrie, L. S., Wyatt, P. G., Wyllie, S., & Gilbert, I. H. (2017). Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Reviews Microbiology, 15(4), 217-231. https://doi.org/10.1038/nrmicro.2016.193 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 Vector-borne diseases series Antitrypanosomatid drug discovery: an ongoing challenge and a continuing need Mark C. -
Trypanosomatids Are Much More Than Just Trypanosomes: Clues from The
Review Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree 1,2, 1,3 1,2 4 1,5 Julius Lukeš, * Anzhelika Butenko, Hassan Hashimi, Dmitri A. Maslov, Jan Votýpka, and 1,3 Vyacheslav Yurchenko Trypanosomes and leishmanias are widely known parasites of humans. How- Highlights ever, they are just two out of several phylogenetic lineages that constitute the Dixenous trypanosomatids, such as the human Trypanosoma parasites, family Trypanosomatidae. Although dixeny – the ability to infect two hosts – is a infect both insects and vertebrates. derived trait of vertebrate-infecting parasites, the majority of trypanosomatids Yet phylogenetic analyses have revealed that these are the exception, are monoxenous. Like their common ancestor, the monoxenous Trypanoso- and that insect-infecting monoxenous matidae are mostly parasites or commensals of insects. This review covers lineages are both abundant and recent advances in the study of insect trypanosomatids, highlighting their diverse. diversity as well as genetic, morphological and biochemical complexity, which, Globally, over 10% of true bugs and until recently, was underappreciated. The investigation of insect trypanoso- flies are infected with monoxenous try- matids is providing an important foundation for understanding the origin and panosomatids, whereas other insect groups are infected much less fre- evolution of parasitism, including colonization of vertebrates and the appear- quently. Some trypanosomatids are ance of human pathogens. confined to a single host species, whereas others parasitize a wide spec- trum of hosts. One Host or Two? Lifestyles of the Trypanosomatidae All members of the family Trypanosomatidae are obligatory parasites and include the iconic Many trypanosomatids are themselves pathogens responsible for African sleeping sickness, Chagas’ disease and leishmaniases. -
Modeled Structure of Trypanothione Reductase of Leishmania Infantum
BMB reports Modeled structure of trypanothione reductase of Leishmania infantum Bishal K. Singh1, Nandini Sarkar1, M.V. Jagannadham2 & Vikash K. Dubey1,* 1Department of Biotechnology, Indian Institute of Technology Guwahati, Assam-781039, India, 2Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India Trypanothione reductase is an important target enzyme for malian GR share approximately 40% sequence identity and structure-based drug design against Leishmania. We used ho- are mutually exclusive with respect to disulfide substrate spe- mology modeling to construct a three-dimensional structure of cificity (1), indicating a difference in substrate binding pocket the trypanothione reductase (TR) of Leishmania infantum. The geometry. structure shows acceptable Ramachandran statistics and a re- The trypanothione system is necessary for protozoan surviv- markably different active site from glutathione reductase(GR). al because the dithiol trypanothione is required for the syn- Thus, a specific inhibitor against TR can be designed without thesis of DNA precursors, the homeostasis of ascorbate, the interfering with host (human) GR activity. [BMB reports 2008; detoxification of hydroperoxides, and the sequestration/export 41(6): 444-447] of thiol conjugates. Moreover, the majority of peroxidases that eliminate the reactive oxygen species (ROS) generated in the aerobic metabolism are trypanothione dependent (5). In addi- INTRODUCTION tion, the absence of this pathway from the mammalian host and the sensitivity of trypanosomatids to oxidative stress make Trypanothione reductase (E.C. 1.6.4.8) is a member of the di- it an attractive target for structure-based drug design. sulfide oxidoreductase family of enzymes (1) that presents an The leishmaniasis are caused by 20 species pathogenic for attractive target for the development of new drugs by rational humans belonging to the genus Leishmania, a protozoa trans- inhibitor design. -
Aads. See Aminoacetonitrile Derivatives
363 Index a anaerobic NADH-fumarate reductase AADs. See aminoacetonitrile derivatives system 275 (AADs) anthelmintic discovery ABZ-nitazoxanide 266 medicinal chemistry approaches ABZ-sulfone 260, 265, 266 CODP 242–245 ABZ-sulfoxide 260, 265, 266, 272 intervet multicyclics 235, 238 Acid fast bacilli (AFB) 329, 330 VAChT inhibitors 238, 240, 241 acoziborole 129, 130 new molecules, from patent literature acute fascioliasis 294 232–235 adult flukes 295, 300 anti-bacterial approach 169, 171 adult worms 164, 166, 170–172, 175, antibacterial therapy vs. host directed 180, 190–192, 194–198, 200, 201, therapy 354 206, 207, 254, 290, 293–296, 304 antibody-based therapeutics 67–69 African animal trypanosomiasis (AAT) anticancer drugs 194 118, 119 anti-microbial properties 271 albendazole 2, 3, 9, 169, 171, 227–229, metallo-organic ruthenium 257, 272, 275, 303 complexes 271 Alpha-1-acid glycoprotein (AGP) proteasome inhibitor 271, 273 203, 212 anti-foodborne trematode drugs 304, α-difluoromethylornithine 265 311 17-α-ethynylestradiol 298 anti-fungal agent 260 Alpinia nigra 307, 311 anti-fungal compound amphotericin B Alveolar echinococcosis (AE) 253 desoxycholate (cAMB) 267 benzimidazole treatments 257, anti-infective agents 259–261 anti-echinococcal activities 267 clinical presentation 255, 257 anti-malarial drugs 268 Aminoacetonitrile derivatives (AADs) extracellular protozoan parasites 233, 234, 238 267 patents 233 intracellular protozoan parasites amino-acetonitrile linker 234 267 amino-malononitrile linker 234 anti-infective thiazolide 260 amino ozonids 267 anti-malarial compounds 267 amino-pyrazole 147, 148 anti-malarial drugs 268 amphotericin B 2, 3, 7, 140, 143, 144, antimalarials dihydroartemisinin 267 148, 260, 267, 272, 275 anti-metacestodal activity 271 Neglected Tropical Diseases: Drug Discovery and Development, First Edition. -
The Proteasome As a Target: How Not Tidying up Can Have Toxic Consequences for Parasitic Protozoa Elizabeth A
COMMENTARY COMMENTARY The proteasome as a target: How not tidying up can have toxic consequences for parasitic protozoa Elizabeth A. Winzelera,1 and Sabine Ottiliea With modern drug discovery technologies, there are good pharmacokinetics, and is now being progressed opportunities to discover drugs that are uniquely toward human clinical trials. suited for treatment of specific parasitic diseases and In addition to its potential to radically improve the have few of the liabilities of older, historical medicines. treatment options for VL, another noteworthy feature In PNAS, Wyllie et al. (1) used state-of-the-art methods of the work is the elegant and thorough approach that to identify a clinical candidate for leishmaniasis and to was used to determine the mechanism of action of discover its mechanism of action. GSK3494245 in parasites. Suspecting that the mech- Leishmaniasis is a neglected parasitic infectious anism of action might be shared across closely related disease that can have different clinical manifestations parasites, Wyllie et al. (1) first tested a compound depending on the parasite species. Visceral leishman- from the series (compound 7) against a genome- iasis (VL) (also known as kala-azar or black fever), which wide Trypanosoma brucei RNA interference (RNAi) li- is caused by Leishmania donovani and Leishmania brary (5). This RNAi library consists of ∼750,000 clones, infantum, is the most severe form and marked by a each transformed with one RNAi construct under the swollen spleen. It is a significant cause of morbidity control of a tetracycline-inducible promoter and cov- in areas where the insect vector, the sandfly, is present ers >99% of the ∼7,500 nonredundant T. -
Drug Discovery for Kinetoplastid Diseases: Future Directions † ‡ § ∥ Srinivasa P
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Viewpoint Cite This: ACS Infect. Dis. XXXX, XXX, XXX−XXX pubs.acs.org/journal/aidcbc Drug Discovery for Kinetoplastid Diseases: Future Directions † ‡ § ∥ Srinivasa P. S. Rao,*, Michael P. Barrett, Glenn Dranoff, Christopher J. Faraday, ⊥ # † ∇ ° Claudio R. Gimpelewicz, Asrat Hailu, Catherine L. Jones, John M. Kelly, Janis K. Lazdins-Helds, • ¶ × Pascal Maser,̈ Jose Mengel,$,@ Jeremy C. Mottram,+ Charles E. Mowbray, David L. Sacks, ∼ † † Phillip Scott,& Gerald F. Spath,̈ ^ Rick L. Tarleton, Jonathan M. Spector, and Thierry T. Diagana*, † Novartis Institute for Tropical Diseases (NITD), 5300 Chiron Way, Emeryville, California 94608, United States ‡ University of Glasgow, University Place, Glasgow G12 8TA, United Kingdom § Immuno-oncology, Novartis Institutes for Biomedical Research (NIBR), 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States ∥ Autoimmunity, Transplantation and Inflammation, NIBR, Fabrikstrasse 2, CH-4056 Basel, Switzerland ⊥ Global Drug Development, Novartis Pharma, Forum 1, CH-4056 Basel, Switzerland # School of Medicine, Addis Ababa University, P.O. Box 28017 code 1000, Addis Ababa, Ethiopia ∇ London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom ° Independent Consultant, Chemic Des Tulipiers 9, 1208 Geneva, Switzerland • Swiss Tropical and Public Health Institute, Socinstrasse 57, 4501 -
Pathogenomics of Trypanosomatid Parasites
White Paper 8/12/07 Pathogenomics of Trypanosomatid parasites Greg Buck (Virginia Commonwealth University) Matt Berriman (Wellcome Trust Sanger Institute) John Donelson (University of Iowa) Najib El-Sayed (University of Maryland) Jessica Kissinger (University of Georgia) Larry Simpson (University of California, Los Angeles) Andy Tait (University of Glasgow) Marta Teixeira (University of Sao Paulo, Brasil) Stephen Beverley (Washington University, St. Louis) Executive Summary. The family Trypanosomatidae of the protistan order Kinetoplastida includes three major lineages of human pathogens – the Leishmania and the African and American trypanosomes – that each rank within the top 10 in terms of global impact. The combined impact measured by DALY of these three parasites approaches 5 million. There are currently five ‘completed’ genomes of kinetoplastids: one African trypanosome, three Leishmania, and one American trypanosome, the latter being effectively a preliminary draft sequence due to assembly problems caused by its hybrid nature and extensive repetitive sequences. Perhaps unlike the situation found in other groups of eukaryotic pathogens, trypanosomatids present two unique challenges. First is the fact that within each of the three major lineages, a wide range of disease pathologies is found. Thus, we are probing multiple diseases. Second is the fact that the trypanosomatids are relatively ancient, with divergences amongst the major lineages ranging from 200-500 million years ago. Thus, there is a wide range of evolutionary and pathological ‘space’ yet to be explored by genomic methods, accompanied by great opportunities for new insights and discovery. The goals of this sequencing effort include improvement of: 1) our understanding of the mechanisms by which these pathogens cause disease; 2) our ability to influence the severity of these diseases through chemo- or immuno- prophylaxis and treatment; and, 3) our understanding of the biology that led these organisms to evolve into such successful pathogens.