Substrates for the Enzyme Trypanothione Disulfide Reductase

Total Page:16

File Type:pdf, Size:1020Kb

Substrates for the Enzyme Trypanothione Disulfide Reductase Proc. Nati. Acad. Sci. USA Vol. 85, pp. 5374-5378, August 1988 Biochemistry "Subversive" substrates for the enzyme trypanothione disulfide reductase: Alternative approach to chemotherapy of Chagas disease (Trypanosoma cruzi/leishmaniasis/naphthoquinone/nitrofuran) GRAEME B. HENDERSON*t, PETER ULRICH*, ALAN H. FAIRLAMBt, IAN ROSENBERG§, MIERCIO PEREIRA§, MICHAEL SELA¶1, AND ANTHONY CERAMI* *Laboratory of Medical Biochemistry, The Rockefeller University, New York, NY 10021; *Department of Medical Protozoology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; §Department of Medicine, New England Medical Center Hospitals, Boston, MA 02111; and $Weizmann Institute of Science, Rehovot, Israel 76100 Contributed by Michael Sela, March 2, 1988 ABSTRACT The trypanosomatid flavoprotein disulfide unusual NADPH-dependent flavoprotein disulfide reductase reductase, trypanothione reductase, is shown to catalyze one- (trypanothione reductase) (8), which maintains trypanothione electron reduction of suitably substituted naphthoquinone and in the dithiol form [Try(SH)2] within the cell. In addition, nitrofuran derivatives. A number of such compounds have trypanosomatids also possess trypanothione-dependent per- been chemically synthesized, and a structure-activity relation- oxidase activity (9, 10). Given that the antioxidant defenses of ship has been established; the enzyme is most active with trypanosomatids are based upon trypanothione, inhibition of compounds that contain basic functional groups in side-chain trypanothione reductase or subversion of its antioxidant role residues. The reduced products are readily reoxidized by within the cell represents an attractive target for the design of molecular oxygen and thus undergo classical enzyme-catalyzed drugs to treat trypanosomatid infections. redox cycling. In addition to their ability to act as substrates for Trypanothione disulfide reductase has been purified from trypanothione reductase, the compounds are also shown to Crithidia fasciculata and T. cruzi (8, 11) and found to have effectively inhibit enzymatic reduction of the enzyme's physi- similar physical and chemical properties to human gluta- ological substrate, trypanothione disulfide. Under aerobic thione reductase [NAD(P)H:oxidized-glutathione oxidore- conditions, trypanothione reductase is not inactivated by these redox-cycling substrates, whereas under anaerobic conditions ductase, EC 1.6.4.2]. In fact, trypanothione and glutathione the nitrofuran compounds cause irreversible inactivation ofthe reductases appear to reduce their respective physiological enzyme. When tested for biological activity against Trypano- disulfide substrates by the same catalytic mechanism. The soma cruzi trypomastigotes, many of the test compounds were parasite and human enzymes do, however, differ in their trypanocidal, and this activity correlated with their relative respective substrate specificities; glutathione disulfide is not ability to act as substrates for trypanothione reductase. The a substrate or inhibitor of trypanothione reductase, and, activity of the enzyme with these redox-cycling derivatives conversely, trypanothione disulfide [Try(S)2] is not a sub- constitutes a subversion of its normal antioxidant role within strate for glutathione reductase. This mutually exclusive the cell. For this reason these compounds may be termed substrate specificity is of key importance in any approach "subversive" substrates for trypanothione reductase. toward the selective inhibition oftrypanothione reductase. In a study on the substrate specificity of trypanothione reduc- There is great need for new and less toxic treatments for tase (12), the enzyme reduced various analogues ofTry(S)2 in human tropical diseases by parasitic trypanosomes [African which the spermidine moiety had been replaced by an sleeping sickness and Chagas disease (South American try- aliphatic side chain that contained at least one amine func- panosomiasis)] and leishmanias (oriental sore and kala-azar). tion. The activity of the enzyme with these analogues most In the case of Chagas disease, which is caused by Trypano- closely reflected the relative ability ofthe compounds to bind soma cruzi, no generally effective chemotherapy currently in the active site and suggested that trypanothione reductase exists for the millions of infected people (1). might possess a binding site for the spermidine moiety of Comparative studies on the metabolism of trypanosoma- Try(S)2. This work led us to propose that suitably substituted tids and their mammalian hosts have pointed to a number of analogues of Try(S)2 might take advantage of this aspect of biochemical differences that might be exploited as targets for the enzyme-substrate interaction to access the catalytic chemotherapy. We have been investigating the biochemical center of trypanothione reductase. basis for the well-documented (2, 3) sensitivity of parasitic Having identified trypanothione reductase as a potential protozoa towards reagents that promote free radical damage target for chemotherapeutic intervention, we developed a in cells. This work has led to the discovery that trypanoso- strategy in which compounds are designed, which effectively matids possess highly unusual antioxidant defense mecha- subvert the physiological function of this enzyme. These nisms (4) based upon the glutathione-spermidine conjugate compounds take advantage of the ability of trypanothione N1,N8-bis(glutathionyl)spermidine, which has been given reductase to catalyze reduction of substances that can un- the trivial name trypanothione (5). dergo redox-cycling processes to produce toxic metabolites In most aerobic organisms, the tripeptide glutathione and of oxygen that can kill T. cruzi trypomastigotes. the glutathione reductase/glutathione peroxidase enzyme In this communication we report the preparation of several couple have key roles in the antioxidant defense process (6). model compounds that appear to be trypanocidal by their In contrast, all species of trypanosomatids examined to date ability to act as redox-cycling or "subversive" substrates for lack classical glutathione reductase and glutathione-dependent trypanothione reductase. peroxidase activities (7). Trypanosomatids possess instead an Abbreviations: Try(SH)2 and Try(S)2, the dithiol and disulfide forms The publication costs of this article were defrayed in part by page charge of trypanothione, respectively; HSVSM, human saphenous vein payment. This article must therefore be hereby marked "advertisement" smooth muscle. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 5374 Downloaded by guest on October 1, 2021 Biochemistry: Henderson et al. Proc. Natl. Acad. Sci. USA 85 (1988) 5375 MATERIALS AND METHODS tions used in the assays were treated in this manner. Addi- tions to the cuvette were made with a microsyringe piercing Materials. All reagents and chemicals were of the highest the septum. grade commercially available. Try(S)2 was chemically synthe- Interaction of Trypanothione Reductase with Nitrofuran sized (5), and trypanothione disulfide reductase was purified VIII Under Aerobic and Anaerobic Conditions. Assays were from C. fasciculata as described previously (8). Nifurtimox done in 0.1 M Hepes (pH 7.8) containing 1 mM EDTA, 0.15 and nitrofurazone were obtained from Bayer (Leverkusen, mM NADPH, trypanothione reductase at 500 pmol/ml, and F.R.G.) and Aldrich, respectively. Other compounds (Fig. 1) 10 ,uM nitrofuran VIII. Reactions were started by addition of were chemically synthesized. Details of chemical synthesis enzyme (80 ,1 to a 2-ml assay). Sequential spectra (200-800 (too lengthy for inclusion) are available from the authors on nm) were collected at 20-sec intervals using a Hewlett- request. Packard HP8450A UV/Vis spectrophotometer. At the end of Enzyme Assays and Kinetic Analysis. Trypanothione disul- the experiment, the assay mixtures were dialyzed, and fide reductase activity was assayed spectrophotometrically trypanothione reductase was assayed using 250 gM Try(S)2. by monitoring substrate-dependent oxidation of NADPH at Parasite Cell Culture. Human saphenous vein smooth 340 nm. Alternatively, enzyme activity was monitored by muscle (HSVSM) cells were isolated from outgrowths of to cytochrome c reduction and coupling radical formation explants of unused portions of veins harvested for coronary measuring absorbance changes (E550 = 21 mM-1). Absorb- artery bypass surgery as described (13). The cells were ance changes were monitored on a Varian Cary 219 spectro- Cam- photometer with a thermostated cuvette chamber. Enzyme maintained in 24-well tissue culture plates (Costar, concentration was measured spectrophotometrically using bridge, MA) in a solution of Dulbecco's modified Eagle's medium (DMEM) containing 5.5 mM glucose, 25 mM Hepes, the extinction coefficient E4M = 11.3 mM- (8). Kinetic runs were done at 27°C in 0.1 M 4-(2-hydroxyethyl)-1-piper- and 10% fetal bovine serum (HyClone, Logan, UT). T. cruzi azineethane-sulfonic acid (Hepes) buffer (pH 7.8) containing strain Y trypomastigotes were propagated as described (14), 0.1 mM EDTA and 0.25 mM NADPH. Anaerobic measure- except that HSVSM cells were used in place of bovine aortic ments were performed in rubber-stoppered cuvettes that smooth muscle cells. were flushed repeatedly with helium. All buffers and solu- Trypanocidal Assays. Test compounds were dissolved in 0.3 ml of dimethyl sulfoxide and brought to volume by o 0 dilution
Recommended publications
  • Novel Treatment of African Trypanosomiasis
    From Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institutet, Stockholm, Sweden NOVEL TREATMENT OF AFRICAN TRYPANOSOMIASIS Suman Kumar Vodnala Stockholm 2013 Published and printed by Larserics Digital Print AB, Sundbyberg. © Suman Kumar Vodnala, 2013 ISBN 978-91-7549-030-4 ABSTRACT Human African Trypanosomiasis (HAT) or Sleeping Sickness is fatal if untreated. Current drugs used for the treatment of HAT have difficult treatment regimens and unacceptable toxicity related issues. The effective drugs are few and with no alternatives available, there is an urgent need for the development of new medicines, which are safe, affordable and have no toxic effects. Here we describe different series of lead compounds that can be used for the development of drugs to treat HAT. In vivo imaging provides a fast non-invasive method to evaluate parasite distribution and therapeutic efficacy of drugs in real time. We generated monomorphic and pleomorphic recombinant Trypanosoma brucei parasites expressing the Renilla luciferase. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. Our data indicate that preferential testis tropism must be considered during drug development, since parasites might be protected from many drugs by the blood-testis barrier (Paper I). In contrast to most mammalian cells, trypanosomes cannot synthesize purines de novo. Instead they depend on the host to salvage purines from the body fluids. The inability of trypanosomes to engage in de novo purine synthesis has been exploited as a therapeutic target by using nucleoside analogues. We showed that adenosine analogue, cordycepin in combination with deoxycoformycin cures murine late stage models of African trypanosomiasis (Paper II).
    [Show full text]
  • Short Communication Tandem Affinity Purification of Exosome And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St Andrews Research Repository 1 Short communication 2 3 Tandem affinity purification of exosome and replication factor C 4 complexes from the non-human infectious kinetoplastid parasite 5 Crithidia fasciculata 6 7 Wakisa Kipandula a, b, Terry K. Smith a and Stuart A. MacNeill a, * 8 9 a Biomedical Sciences Research Complex, University of St Andrews, North 10 Haugh, St Andrews, Fife KY16 9ST, UK. 11 b Department of Biomedical Sciences, College of Medicine, University of Malawi, 12 Private Bag 360, Chichiri, Blantyre 3, Malawi. 13 14 * Corresponding author: 15 Email: [email protected] 16 Tel. (+44) 1334 467268 17 18 19 20 1 21 Abstract 22 23 Kinetoplastid parasites are responsible for a range of diseases with significant 24 global impact. Trypanosoma brucei and Trypanosoma cruzi cause human African 25 trypanosomiasis and Chagas disease, respectively, while various Leishmania 26 species are responsible for cutaneous, mucocutaneous and visceral 27 leishmaniasis. Understanding the biology of these organisms is key for effective 28 diagnosis, prophylaxis and treatment. The insect parasite Crithidia fasciculata 29 offers a safe and low-cost alternative for studies of kinetoplastid biology. C. 30 fasciculata does not infect humans, can be cultured to high yields in inexpensive 31 serum-free medium in a standard laboratory, and has a completely sequenced 32 publically available genome. Taking advantage of these features, however, 33 requires the adaptation of existing methods of analysis to C. fasciculata. Tandem 34 affinity purification is a widely used method that allows for the rapid purification of 35 intact protein complexes under native conditions.
    [Show full text]
  • Glutathione Reductase (Ec 1.6.4.2)
    Enzymatic Assay of GLUTATHIONE REDUCTASE (EC 1.6.4.2) PRINCIPLE: ß-NADPH + GSSG Glutathione Reductase> ß-NADP + 2 GSH Abbreviations used: ß-NADPH = ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form ß-NADP = ß-Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form GSSG = Glutathione, Oxidized Form GSH = Glutathione, Reduced Form CONDITIONS: T = 25°C, pH = 7.6, A340nm, Light Path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 100 mM Potassium Phosphate Buffer with 3.4 mM Ethylenediaminetetraacetic Acid (EDTA), pH 7.6 at 25°C (Prepare 200 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379 and Ethylenediaminetetraacetic Acid, Dipotassium Salt, Sigma Stock No. ED2P. Adjust to pH 7.6 at 25°C with 1 M KOH.) B. 30 mM Glutathione Substrate Solution (GSSG) (Prepare 5 ml in deionized water using Glutathione, Oxidized Form, Disodium Salt, Sigma Prod. No. G-4626.) C. 0.8 mM ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form Solution (ß-NADPH) (Prepare 5 ml in cold Reagent A using ß-Nicotinamide Adenine Dinucleotide Phosphate, Tetrasodium Salt, Sigma Prod. No. N-1630.) D. 1.0% (w/v) Bovine Serum Albumin (BSA) (Prepare 100 ml in Reagent A using Albumin, Bovine, Sigma Prod. No. A-4503. This solution should be kept cold.) SPGLUT01 Page 1 of 3 Revised: 08/03/95 Enzymatic Assay of GLUTATHIONE REDUCTASE (EC 1.6.4.2) REAGENTS: (continued) E. Glutathione Reductase Enzyme Solution (Immediately before use, prepare a solution containing 0.30 - 0.60 unit/ml of Glutathione Reductase in cold Reagent D.) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Deionized Water 0.65 0.65 Reagent A (Buffer) 1.50 1.50 Reagent B (GSSG) 0.10 0.10 Reagent C (ß-NADPH) 0.35 0.35 Reagent D (BSA) 0.30 0.40 Mix by inversion and equilibrate to 25°C.
    [Show full text]
  • Glutathione Reductase Human, Recombinant Expressed in Escherichia Coli
    Glutathione Reductase human, recombinant expressed in Escherichia coli Catalog Number G9297 Storage Temperature –20 °C CAS RN 9001-48-3 Precautions and Disclaimer EC 1.8.1.7 (formerly 1.6.4.2) This product is for R&D use only, not for drug, Synonyms: GR, NADPH:oxidized glutathione household, or other uses. Please consult the Material oxidoreductase, glutathione-disulfide reductase Safety Data Sheet for information regarding hazards and safe handling practices. Product Description Glutathione reductase (GR) is an ubiquitous Storage/Stability flavoenzyme involved in protecting cells from stress. The product ships on wet ice and storage at –20 °C is GR catalyzes the reduction of oxidized glutathione recommended. The product is stable at –20 °C for at (GSSG) to glutathione (GSH). It is an essential least 2 years. component of the glutathione redox cycle, which maintains adequate levels of reduced cellular GSH. References GSH serves as an antioxidant, reacting with free 1. Lopez-Mirabal, H.R., and Winther, J.R., Redox radicals and organic peroxides. Glutathione is also an characteristics of the eukaryotic cytosol. Biochim. electron donor for glutathione peroxidases and a Biophys. Acta, 1783, 629-640 (2008). substrate for glutathione S-transferases contributing to 2. Qiao, M., et al., Increased expression of glutathione the detoxification and elimination of toxic electrophilic reductase in macrophages decreases 1,2 metabolites and xenobiotics. artherosclerotic lesion formation on low-density lipoproetin receptor-deficient mice. Arterioscler. Glutathione reductase is a homodimeric enzyme Thromb. Vasc. Biol., 27, 1375-1382 (2007). containing 1 FAD molecule and 1 NADPH binding 3. Worthington, D.J., and Rosemeyer, M.A., 3 domain per subunit.
    [Show full text]
  • Diverse Biosynthetic Pathways and Protective Functions Against Environmental Stress of Antioxidants in Microalgae
    plants Review Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae Shun Tamaki 1,* , Keiichi Mochida 1,2,3,4 and Kengo Suzuki 1,5 1 Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; [email protected] (K.M.); [email protected] (K.S.) 2 RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan 3 Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan 4 School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan 5 euglena Co., Ltd., Tokyo 108-0014, Japan * Correspondence: [email protected]; Tel.: +81-45-503-9576 Abstract: Eukaryotic microalgae have been classified into several biological divisions and have evo- lutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that Citation: Tamaki, S.; Mochida, K.; Suzuki, K. Diverse Biosynthetic AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena Pathways and Protective Functions pathway in Euglenophyta, Heterokontophyta, and Haptophyta.
    [Show full text]
  • Development of Drug Resistance in Trypanosoma Brucei Rhodesiense and Trypanosoma Brucei Gambiense
    411-419 13/9/08 11:56 Page 411 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 411-419, 2008 411 Development of drug resistance in Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Treatment of human African trypanosomiasis with natural products (Review) STEFANIE GEHRIG1 and THOMAS EFFERTH2 1Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Im Neuenheimer Feld 364, 2German Cancer Research Center, Pharmaceutical Biology (C015), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany Received April 10, 2008; Accepted June 12, 2008 DOI: 10.3892/ijmm_00000037 Abstract. Human African trypanosomiasis is an infectious Contents disease which has resulted in the deaths of thousands of people in Sub-Saharan Africa. Two subspecies of the 1. Introduction protozoan parasite Trypanosoma brucei are the causative 2. Disease and clinical manifestation agents of the infection, whereby T. b. gambiense leads to 3. Standard chemotherapy chronic development of the disease and T. b. rhodesiense 4. Development of resistance establishes an acute form, which is fatal within months or 5. Screening of natural products even weeks. Current chemotherapy treatment is complex, 6. Conclusion since special drugs have to be used for the different development stages of the disease, as well as for the parasite concerned. Melarsoprol is the only approved drug for 1. Introduction effectively treating both subspecies of human African trypanosomiasis in its advanced stage, however, the drug's Human African typanosomiasis is a vector-born parasitic potency is constrained due to an unacceptable side effect: disease demonstrating a major public health problem for encephalopathy, which develops in one out of every 20 people in the Sub-Saharan region.
    [Show full text]
  • A Tryparedoxin-Coupled Biosensor Reveals a Mitochondrial Trypanothione Metabolism in Trypanosomes
    1 A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione 2 metabolism in trypanosomes 3 Samantha Ebersoll1, Marta Bogacz1, Lina M. Günter1, Tobias P. Dick2, R. Luise 4 Krauth-Siegel1* 5 1 6 Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany; 2Division of Redox 7 Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, 8 Germany 9 10 11 *For correspondence: [email protected] 12 13 14 15 Competing interests: 16 The authors declare that no competing interests exist. 1 17 Abstract Trypanosomes have a trypanothione redox metabolism that provides the reducing 18 equivalents for numerous essential processes, most being mediated by tryparedoxin (Tpx). 19 While the biosynthesis and reduction of trypanothione are cytosolic, the molecular basis of 20 the thiol redox homeostasis in the single mitochondrion of these parasites has remained 21 largely unknown. Here we expressed Tpx-roGFP2, roGFP2-hGrx1 or roGFP2 in either the 22 cytosol or mitochondrion of Trypanosoma brucei. We show that the novel Tpx-roGFP2 is a 23 superior probe for the trypanothione redox couple and that the mitochondrial matrix harbors a 24 trypanothione system. Inhibition of trypanothione biosynthesis by the anti-trypanosomal drug 25 Eflornithine impairs the ability of the cytosol and mitochondrion to cope with exogenous 26 oxidative stresses, indicating a direct link between both thiol systems. Tpx depletion abolishes 27 the cytosolic, but only partially affects the mitochondrial sensor response to H2O2. This 28 strongly suggests that the mitochondrion harbors some Tpx and, another, as yet unidentified, 29 oxidoreductase. 30 31 Introduction 32 Trypanosomatids are the causative agents of African sleeping sickness (Trypanosoma brucei 33 gambiense and T.
    [Show full text]
  • Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil
    DISPATCHES Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil Sandra R. Maruyama,1 Alynne K.M. de Santana,1,2 performed whole-genome sequencing of 2 clinical isolates Nayore T. Takamiya, Talita Y. Takahashi, from a patient with a fatal illness with clinical characteris- Luana A. Rogerio, Caio A.B. Oliveira, tics similar to those of VL. Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, The Study Aline S. Barreto, Angela M. da Silva, During 2011–2012, we characterized 2 parasite strains, LVH60 Roque P. Almeida,3 José M. Ribeiro,3 João S. Silva3 and LVH60a, isolated from an HIV-negative man when he was 64 years old and 65 years old (Table; Appendix, https:// Through whole-genome sequencing analysis, we identified wwwnc.cdc.gov/EID/article/25/11/18-1548-App1.pdf). non-Leishmania parasites isolated from a man with a fatal Treatment-refractory VL-like disease developed in the man; visceral leishmaniasis–like illness in Brazil. The parasites signs and symptoms consisted of weight loss, fever, anemia, infected mice and reproduced the patient’s clinical mani- festations. Molecular epidemiologic studies are needed to low leukocyte and platelet counts, and severe liver and spleen ascertain whether a new infectious disease is emerging that enlargements. VL was confirmed by light microscopic exami- can be confused with leishmaniasis. nation of amastigotes in bone marrow aspirates and promas- tigotes in culture upon parasite isolation and by positive rK39 serologic test results. Three courses of liposomal amphotericin eishmaniases are caused by ≈20 Leishmania species B resulted in no response.
    [Show full text]
  • Trypanosomatid Hydrogen Peroxidase Metabolism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 221, number 2, 427-431 FEB 05098 September 1987 Trypanosomatid hydrogen peroxidase metabolism P.G. Penketh, W.P.K. Kennedy*, C.L. Patton and A.C. Sartorelli MacArthur Center for Parasitology and Tropical Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA and * Wolfson Molecular Biology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WCLE 7HT, England Received 7 July 1987 The rate of whole cell HZ02 metabolism in several salivarian and stercorarian trypanosomes and Leishrnania species was measured. These cells metabolized Hz02 at rates between 2.3 and 48.2 nmol/lO* cells per min depending upon the species employed. Hz02 metabolism was largely insensitive to NaN3, implying that typi- cal catalase and peroxidase haemoproteins are not important in Hz02 metabolism. The metabolism of H202, however, was almost completely inhibited by N-ethylmaleimide. In representative species, Hz02 metabolism was shown to occur through a trypanothione-dependent mechanism. Hydrogen peroxide; Trypanothione; Macrophage; (Trypanosoma, Leishmania) 1. INTRODUCTION been reported that L. donovani possesses a surface-membrane acid phosphatase which reduces Many trypanosomatids have been reported to the magnitude of the oxidative burst of lack or to be extremely deficient in enzyme systems neutrophils, inferring a pathophysiological role for necessary for the removal of Hz02 (i.e. catalase, this enzyme [5]. However, defense mechanisms glutathione peroxidase) [l-5]. Defense against endogenously generated Hz02 and the mechanisms against H202, however, appear to be possibly diminished quantity of Hz02 produced a ubiquitous requirement of most aerobic cells [6].
    [Show full text]
  • Glutathione Reductase Assay Kit
    Glutathione Reductase Assay Kit Item No. 703202 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd · Ann Arbor, MI · USA TABLE OF CONTENTS GENERAL INFORMATION GENERAL INFORMATION 3 Materials Supplied Materials Supplied 4 Safety Data 4 Precautions 5 If You Have Problems Item Number Item Quantity 4 Storage and Stability 703210 GR Assay Buffer (10X) 1 vial 4 Materials Needed but Not Supplied INTRODUCTION 5 Background 703212 GR Sample Buffer (10X) 1 vial 5 About This Assay 703214 GR Glutathione Reductase (control) 1 vial PRE-ASSAY PREPARATION 6 Reagent Preparation 7 Sample Preparation 703216 GR GSSG 1 vial ASSAY PROTOCOL 9 Plate Set Up 703218 GR NADPH 3 vials 11 Performing the Assay 400014 96-Well Solid Plate (Colorimetric Assay) 1 plate ANALYSIS 12 Calculations 13 Performance Characteristics 400012 96-Well Cover Sheet 1 cover RESOURCES 14 Interferences If any of the items listed above are damaged or missing, please contact our 16 Troubleshooting Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot 17 References accept any returns without prior authorization. 18 Plate Template 19 Notes WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 19 Warranty and Limitation of Remedy ! GENERAL INFORMATION 3 Safety Data INTRODUCTION This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash Background thoroughly after handling. Before use, the user must review the complete Safety Glutathione (GSH) is a tripeptide widely distributed in both plants and Data Sheet, which has been sent via email to your institution.
    [Show full text]
  • Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania Infantum, Causing Alterations in Redox Balance And
    ORIGINAL RESEARCH published: 25 March 2021 doi: 10.3389/fcimb.2021.640561 Epigallocathechin-O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Edited by: Leading to Parasite Death Brice Rotureau, Institut Pasteur, France Job D. F. Inacio 1, Myslene S. Fonseca 1, Gabriel Limaverde-Sousa 2, Ana M. Tomas 3,4, Reviewed by: Helena Castro 3 and Elmo E. Almeida-Amaral 1* Wanderley De Souza, Federal University of Rio de Janeiro, 1 Laborato´ rio de Bioqu´ımica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundac¸ão Oswaldo Cruz – FIOCRUZ, Brazil Rio de Janeiro, Brazil, 2 Laborato´ rio de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundac¸ão Oswaldo Cruz – Andrea Ilari, FIOCRUZ, Rio de Janeiro, Brazil, 3 i3S—Instituto de Investigac¸ão e Inovac¸ão em Sau´ de, Universidade do Porto, Porto, Italian National Research Portugal, 4 ICBAS—Instituto de Cieˆ ncias Biome´ dicas Abel Salazar, Universidade do Porto, Porto, Portugal Council, Italy Marina Gramiccia, ISS, Italy Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease *Correspondence: in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. Elmo E. Almeida-Amaral donovani, presently impacts the health of 500,000 people worldwide, and is treated elmo@ioc.fiocruz.br with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side Specialty section: effects, high cost and/or emergence of resistant parasites. In previous works we have This article was submitted to disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a Parasite and Host, flavonoid compound present in green tea leaves.
    [Show full text]
  • Trypanosomatids Are Much More Than Just Trypanosomes: Clues from The
    Review Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree 1,2, 1,3 1,2 4 1,5 Julius Lukeš, * Anzhelika Butenko, Hassan Hashimi, Dmitri A. Maslov, Jan Votýpka, and 1,3 Vyacheslav Yurchenko Trypanosomes and leishmanias are widely known parasites of humans. How- Highlights ever, they are just two out of several phylogenetic lineages that constitute the Dixenous trypanosomatids, such as the human Trypanosoma parasites, family Trypanosomatidae. Although dixeny – the ability to infect two hosts – is a infect both insects and vertebrates. derived trait of vertebrate-infecting parasites, the majority of trypanosomatids Yet phylogenetic analyses have revealed that these are the exception, are monoxenous. Like their common ancestor, the monoxenous Trypanoso- and that insect-infecting monoxenous matidae are mostly parasites or commensals of insects. This review covers lineages are both abundant and recent advances in the study of insect trypanosomatids, highlighting their diverse. diversity as well as genetic, morphological and biochemical complexity, which, Globally, over 10% of true bugs and until recently, was underappreciated. The investigation of insect trypanoso- flies are infected with monoxenous try- matids is providing an important foundation for understanding the origin and panosomatids, whereas other insect groups are infected much less fre- evolution of parasitism, including colonization of vertebrates and the appear- quently. Some trypanosomatids are ance of human pathogens. confined to a single host species, whereas others parasitize a wide spec- trum of hosts. One Host or Two? Lifestyles of the Trypanosomatidae All members of the family Trypanosomatidae are obligatory parasites and include the iconic Many trypanosomatids are themselves pathogens responsible for African sleeping sickness, Chagas’ disease and leishmaniases.
    [Show full text]