20 October 2018 A.R.I. DX Bulletin No 1433
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title the Intertidal Biota of Volcanic Yankich Island (Middle
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository The Intertidal Biota of Volcanic Yankich Island (Middle Kuril Title Islands) Author(s) Kussakin, Oleg G.; Kostina, Elena E. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 201-225 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176267 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 201-225, 1996 201 The Intertidal Biota of Volcanic Y ankich Island (Middle Kuril Islands) 0LEG G. KUSSAKIN and ELENA E. KOSTINA Institute of Marine Biology, Academy of Sciences of Russia, Vladivostok 690041, Russia Abstract A description of the intertidal biota of volcanic Yankich Island (Ushishir Islands, Kuril Islands) is given. The species composition and vertical distribution pattern of the intertidal communities at various localities are described in relation to environmental factors, such as nature of the substrate, surf conditions and volcanic vent water. The macrobenthos is poor in the areas directly influenced by high tempera ture (20-40°C) and high sulphur content. There are no marked changes in the intertidal communities in the areas of volcanic springs that are characterised by temperature below 10°C and by the absence of sulphur compounds. In general, the species composi tion and distribution of the intertidal biota are ordinary for the intertidal zone of the middle Kuril Islands. But there are departures from the typical zonation of the intertidal biota. Also, mass populations of Balanus crenatus appear. -
Status and Occurrence of Parakeet Auklet (Aethia Psittacula) in British Columbia
Status and Occurrence of Parakeet Auklet (Aethia psittacula) in British Columbia. By Rick Toochin and Louis Haviland. Introduction and Distribution The Parakeet Auklet (Aethia psittacula) is a small species of auklet found breeding in the Beringia region of Alaska and Russia (Gaston and Jones 1998). This species has an Alaskan population estimated at 1 million birds (Gaston and Jones 1998). There is also a Russian population, but the exact population total is not known, due to a lack of population inventory work, but it is estimated to number about 400,000 birds with the vast majority, about 300,000 birds, found in the Sea of Okhotsk (Gaston and Jones 1998). The Parakeet Auklet has breeding colonies that are found on rocky mainland points and islands in the Gulf of Alaska (Jones et al. 2001). These sites include: Shumagin Island, Semidi Isand, Chirikof Island near Kodiak, locally in Kenai Peninsula and southeastern Alaska with small numbers south to St. Lazaria, Hazy and Forrester Island; and in the Aleutian Islands west to Buldir and Agattu Island; and in the Bering Sea at Little Diomede, St. Lawrence Island, King Island, St. Matthew Island, Pribilof Island and Nunivak Island (Sowls et al. 1978). The Parakeet Auklet also breeds in Russia in the Kurile Island chain with colonies on Chirinkontan, Lovushki, Raikoke, Matua, Yankicha, Simushir, Brat Chirpoev, Urup, and Iturup Island (Jones et al. 2001, Brazil 2009). They are also breeding on islands in the Sea of Okhotsk with colonies on Sakhalin, Tyuleniy, Iona, Talan, and Yamskyie Island (Jones et al. 2001, Brazil 2009). The Parakeet Auklet is also found breeding on Commander Island, and northwards locally along coast of the Kamchatka Peninsula, on Karaginski Island, Cape Navarin, and on Chukotka Peninsula (Konyukhov 1989, Kondratyev et al. -
Number 237: 1-12 ISSN 1026-051X December 2011 NEW RECORDS of the CHALCID WASPS of the FAMILY PTEROMALIDAE (HYMENOPTERA
Number 237: 1-12 ISSN 1026-051X December 2011 NEW RECORDS OF THE CHALCID WASPS OF THE FAMILY PTEROMALIDAE (HYMENOPTERA: CHALCIDOIDEA) FROM THE RUSSIAN FAR EAST E. V. Tselikh Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034, Russia. E-mail: [email protected] An annotated list of fifty two species in seven subfamilies of Pteromalidae is given. Twenty eight species are recorded for the first time for the fauna of Russia, and twenty species are new for the fauna of the Russian Far East. A new data on the distribution of four species (Dipara belokobylskii, Diconocara petiolata, Golo- vissima emeljanovi, Paracarotomus cephalotes) in the Russian Far East are given. KEY WORDS: Pteromalidae, Hymenoptera, Chalcidoidea, first record, Russian Far East. Е. В. Целих. Новые находки хальцид семейства Pteromalidae (Hyme- noptera: Chalcidoidea) на Дальнем Востоке России // Дальневосточный энтомолог. 2011. N 237. С. 1-12. Приведен аннотированный список 52 видов хальцид из семи подсемейств семейства Pteromalidae. Для фауны России впервые указываются 28 видов, для Дальнего Востока России – 20 видов. Для четырех видов (Dipara beloko- bylskii, Diconocara petiolata, Golovissima emeljanovi, Paracarotomus cephalotes) приводятся новые сведения об их распространении на Дальнем Востоке России. Зоологический институт РАН, Университетская наб. 1, Санкт-Петербург 199034, Россия. 1 INTRODUCTION Parasitic wasps of the family Pteromalidae are one of the numerous and economically important groups of parasitoids, but our knowledge of this group in the fauna of the Russian Far East is reduced. Hitherto only 42 species of 29 genera belonging to eight subfamilies were recorded from this region (Swederus, 1795; Walker, 1874; Nikolskaya, 1952; Chumakova, 1956; Graham, 1969; Pilipyuk, 1971; Arefin, 1974; Herting, 1976; Kamijo, 1981a, 1981b, 1982a, 1982b, 1983; Dzhanokmen, 1978, 1982, 1984, 1986, 1993; Gibson, Vikberg, 1998; Tselikh, 2010; Noyes, 2011). -
Stratospheric Aerosol Layer Perturbation Caused by the 2019
Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, Mariam Tidiga, Maxim Eremenko, Adriana Bossolasco, Fabrice Jegou, Jean-Baptiste Renard, et al. To cite this version: Corinna Kloss, Gwenaël Berthet, Pasquale Sellitto, Felix Ploeger, Ghassan Taha, et al.. Stratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing. Atmospheric Chemistry and Physics, European Geosciences Union, 2021, 21 (1), pp.535-560. 10.5194/acp-21-535-2021. hal-03142907 HAL Id: hal-03142907 https://hal.archives-ouvertes.fr/hal-03142907 Submitted on 18 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Atmos. Chem. Phys., 21, 535–560, 2021 https://doi.org/10.5194/acp-21-535-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Stratospheric aerosol layer -
Transformation of the Coastline of Raikoke Island After the Explosive Eruption on June 21–25, 2019 (Central Kuril Islands)
Geosystems of Transition Zones, 2020, vol. 4, N 3, p. 351–358 Full text RUS PDF Геосистемы переходных зон, 2020, т. 4, № 3, с. 351–358 https://elibrary.ru/title_about.asp?id=64191 https://doi.org/10.30730/gtrz.2020.4.3.351-358 The Journal’s materials are available under the Creative Commons Attribution 4.0 International License (CC BY 4.0) Transformation of the coastline of Raikoke Island after the explosive eruption on June 21–25, 2019 (Central Kuril Islands) Fedor A. Romanyuk* Institute of Marine Geology and Geophysics, FEB RAS, Artem V. Degterev Yuzhno-Sakhalinsk, Russia *E-mail: [email protected] Abstract Резюме RUS The report based on the analysis of satellite images considers the features of the changes in the configuration of the coastline of Raikoke island volcano (Middle Kuril Islands) caused by a strong explosive eruption on June 21–25, 2019. As a result of the accumulation of a significant amount of material from pyroclastic flows and tephra along the periphery of the volcanic edifice ejected during the active phase of the eruption, the area of Raikoke Island has sharply increased by 0.53 km2 (12.7 % of the original area). Immediately after the end of the eruption, under the influence of wave processes and alongshore currents, the destruction process of newly formed land areas has begun. Such cyclic processes are shown to be typical for the volcanic islands of the region and determine the coastline development and the appearance of the coastal zone as a whole. Keywords Kuril Islands, eruption, Raikoke, volcano, pyroclastic material, coastal zone, coastline For citation: Romanyuk F.A., Degterev A.V. -
Surviving Sudden Environmental Change: Answers from Archaeology
ONE Hazards, Impacts, and Resilience among Hunter-Gatherers of the Kuril Islands Ben Fitzhugh ARCHAEOLOGICAL APPROACHES TO CATASTROPHIC EvEnts in thE huntEr-GathErEr ContExt This chapter explores hunter-gatherer vulnerability in the context of relative isolation and a highly dynamic natural environment. The setting is the Kuril Islands of the Northwest Pacific, and the data set is a 4,000-year record of human settlement and environmental history generated by the Kuril Biocomplexity Project, a large, interdisciplinary, and international research effort fielded from 2006 to 2008. The presupposition entering this project was that this relatively isolated, volcanic, earthquake- and tsunami-prone subarctic region should be among the more difficult habitats for hunter-gatherer populations to occupy consistently and, as a result, that the archaeological record should reflect peri- odic abandonments, at least in the most isolated (and smallest) central islands. The results of this study speak less to this heuristic presupposition than to the idea of resilience in the face of ecological impoverishment, catastrophic events, and climate changes. The history we are uncovering highlights the importance of linked social, economic, and demographic processes in conditioning vulner- ability and shaping people’s resilience in the environment. Hazards and disasters are the focus of increasing interest in natural and social science, stimulated by growing media attention to disasters around the world. Calls for improved prediction of catastrophic events have generated 19 BEN FITZHUGH enhanced support for retrospective studies of historical pattern and periodicity in earthquakes, tsunamis, volcanic eruptions, floods, drought, climate change, and other natural hazards. Social science has entered this arena to better under- stand human responses to hazardous events and environmental change, most recently calling for more integrated research into the socio-natural dynamics of disasters (Blaikie et al. -
THE 2017 ACTIVITY of the KURILE ISLAND VOLCANOES A.V. Rybin
BULLETIN OF KAMCHATKA REGIONAL ASSOCIATION «EDUCATIONAL-SCIENTIFIC CENTER». EARTH SCIENCES, Vol. 38, No 2 (2018) Original Russian Text © A.V. Rybin, M.V. Chibisova, A.V. Degteryov, 2018, published in Vestnik KRAUNTS. Nauki o Zemle, Vol. 38, No 2 (2018), pp. 102-109. Original text is available at http://www.kscnet.ru/journal/kraesc/article/view/203. THE 2017 ACTIVITY OF THE KURILE ISLAND VOLCANOES A.V. Rybin, M.V. Chibisova, A.V. Degteryov Institute of Marine Geology and Geophysics FEB RAS (Yuzhno-Sakhalinsk), 693022; e-mail: [email protected] The paper provides data characterizing the volcanic activity in the Kurile Islands in 2017. The authors studied eruptions of Ebeko Volcano (Paramushir Island), Chirinkotan (Chirinkotan Island) and intensification of activity of Sarychev Peak (Matua Island) and Kudryavy (Iturup Island) volcanoes. Keywords: Kurile Islands, volcanoes, volcanic activity, eruptions, satellite images, SVERT. INTRODUCTION (SRC «Planeta») (Gordeev et al., 2016; Efremov et al., 2012). The Sakhalin Volcanic Response Team (SVERT) Since 2016 SVERT has been using data from on the basis of the Laboratory of Volcanology the Japan satellite Himawari-8 that are uploaded and Volcanic Hazards at the Institute of Marine onto VolSatView and updated every 10 minutes Geology and Geophysics (IMGG) FEB RAS over being very helpful in volcanic activity monitoring. the past 15 years has been monitoring routinely the This gives an opportunity for estimation of certain volcanic activity within the Kurile Islands using important parametres, i.e. the onset of eruptions, the satellite imagery. The SVERT is aimed at collecting height of eruptive columns, rate of ash spread etc. -
20. Russo-Japanese Relations and the Security of North-East Asia in the 21St Century
20. Russo-Japanese relations and the security of North-East Asia in the 21st century Tsuyoshi Hasegawa I. Introduction Since the spring of 1996 Russo-Japanese relations have shown remarkable improvement. At the beginning of 1997, the Japanese Ministry of Foreign Affairs initiated a ‘multi-layered’ approach to Russia, expanding cooperation into the economic and security areas and abandoning the policy of ‘balanced expansion’ which linked the level of economic cooperation with progress on the issue of the southern Kuril Islands. In July then Prime Minister Ryutaro Hashimoto delivered a historic speech at the Keizai Doyukai (the Japanese Association of Corporate Executives), proclaiming Japan’s Eurasian foreign policy and enunciating three principles—trust, mutual interest and long-term perspective—as the guiding principles of Japan’s Russia policy.1 This was followed by two ‘no-necktie’ meetings between Hashimoto and Russian Presi- dent Boris Yeltsin, first in November 1997 at Krasnoyarsk and then in April 1998 at Kawana in Japan. At Krasnoyarsk Hashimoto and Yeltsin signed the Hashimoto–Yeltsin Plan for economic cooperation and pledged to conclude a peace treaty by the year 2000, resolving the question of the Kuril Islands on the basis of the 1993 Tokyo Declaration.2 At Kawana, Hashimoto reportedly proposed a solution to the territorial issue by proposing the demarcation of the border.3 Hashimoto was scheduled to make a trip to Moscow in the autumn of 1998, at which point Yeltsin was expected to respond to this proposal. The unprecedented speed with which both sides attempted to repair relations that had long been in stalemate gave rise to expectations in both Japan and Russia that it might indeed be possible to conclude a peace treaty before the next millennium. -
EGU2017-5669-3, 2017 EGU General Assembly 2017 © Author(S) 2017
Geophysical Research Abstracts Vol. 19, EGU2017-5669-3, 2017 EGU General Assembly 2017 © Author(s) 2017. CC Attribution 3.0 License. Hydrothermal fluxes of magmatic chlorine and sulfur from volcano-hydrothermal systems of the Kuril Islands (Russia). Elena Kalacheva (1) and Yuri Taran (1,2) (1) Institute of Volcanology and Seismology, FED RAS, Petropavlovsk-Kamchatsky 683006, Russia ([email protected]), (2) Institute of Geophysics, Universidad Nacional Autónoma de México, México City 04510, México ([email protected]) The hydrothermal flux may be provided by the discharge of fluids formed at depth over the magma body and/or by acid waters, which are formed by the absorption of the ascending volcanic vapor by shallow groundwater. Thus, the anion composition (Cl and SO4) of the discharging thermal waters from a volcano-hydrothermal system in many cases originates from the volcanic vapor and should be taken into account in estimations of the magmatic volatile output and volatile recycling in subduction zones. Here we report the chemical composition of thermal waters and the measured solute fluxes from volcano-hydrothermal systems of Kuril Islands including Paramushir (Ebeko volcanic centre), Shiashkotan (volcanoes Sinarka and Kuntomintar), Ketoy (Pallas volcano), Kunashir (vol- canoes Mendeleev and Golovnin). The fluxes were estimated after measuring flow rates and water composition of streams that drain thermal fields of islands. The maximal hydrothermal flux of Cl and S within the Kuril Chain was measured for Ebeko volcano, Paramushir (drained by Yurieva River) as 82 t/d and 222 t/d of chloride and sulfate, respectively. This is comparable with output by fumaroles of Ebeko. -
UNIVERSITÀ CÀ FOSCARI DI VENEZIA Ri
1 UNIVERSITÀ CÀ FOSCARI DI VENEZIA ri Corso di Laurea magistrale (ordinamento ex D.M. 270/2004) in Relazioni Internazionali Comparate Tesi di Laurea RELAZIONI TRA GIAPPONE E UNIONE SOVIETICA: LA DISPUTA TERRITORIALE DELLE ISOLE CURILI DAGLI INIZI A OGGI Relatore Chiar.ma Prof.ssa Rosa Caroli Correlatore Chiar.ma Prof.ssa Arianna Miorandi Laureando Nicola Costalunga Matricola 826259 Anno Accademico 2011 / 2012 2 3 INDICE DELLA TESI Abstract ...................................................................................... vii Lista delle illustrazioni ...................................................................... xi Avvertenza .................................................................................. xiii Introduzione .................................................................................. 1 Capitolo primo Le origini della contesa territoriale tra Giappone e Unione Sovietica: dalla scoperta dell’arcipelago delle Curili alla loro occupazione nel 1945 1.1 - Le origini della contesa territoriale tra Giappone e Unione Sovietica ................... 5 1.2 - Le prime relazioni tra i due Paesi ....................................................... 14 1.3 - Metà 19° secolo: i confini vengono stabiliti ............................................ 20 1.4 - Il Trattato di Shimoda ................................................................... 25 1.5 - L’ultimo trattato dell’800 e la regolazione dei confini ................................. 27 1.6 – Il Novecento: dalla Guerra Russo-Giapponese all’occupazione dei Territori -
Alaska Interagency Operating Plan for Volcanic Ash Episodes
Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 COVER PHOTO: Ash, gas, and water vapor cloud from Redoubt volcano as seen from Cannery Road in Kenai, Alaska on March 31, 2009. Photograph by Neil Sutton, used with permission. Alaska Interagency Operating Plan for Volcanic Ash Episodes August 1, 2011 Table of Contents 1.0 Introduction ............................................................................................................... 3 1.1 Integrated Response to Volcanic Ash ....................................................................... 3 1.2 Data Collection and Processing ................................................................................ 4 1.3 Information Management and Coordination .............................................................. 4 1.4 Warning Dissemination ............................................................................................. 5 2.0 Responsibilities of the Participating Agencies ........................................................... 5 2.1 DIVISION OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT (DHS&EM) ......................................................................................................... 5 2.2 ALASKA VOLCANO OBSERVATORY (AVO) ........................................................... 6 2.2.1 Organization ...................................................................................................... 7 2.2.2 General Operational Procedures ...................................................................... 8 -
October 22Nd Edition
October 22nd Edition Black Swan ‘18 Wrap-up National News The Handbook Give Away Club Corner DX This Week One Question Questionnaire Final.. Final.. Ohio Simulated Emergency Test “Black Swan 2018” (from Stan, N8BHL – Section Emergency Coordinator) ARES / W8SGT report - October 6-7, 2018 Executive Summary Ohio Auxcomm participated in the ARES “Simulated Emergency Test (SET)” creating a multi-state severe weather event in which many Ohio county ARES organizations tested their ability to activate, react to a winter storm with damage to communication infrastructure and other localized situations created by the county ARES Emergency Coordinator (EC). As the centerpiece of amateur radio assistance to Ohio, the Auxcomm station at Ohio EOC/JDF, W8SGT, was operational from 8 AM – 6 PM Saturday and 8 AM – 2 PM Sunday. W8SGT communicated with over 50 individual stations in at least 27 counties during the period, distributing 25 operational bulletins (OPBUL) throughout the period and handing a large amount of message traffic. The station was fully operational using HF 3.902 MHz sideband voice, HF 3.585 MHz digital messaging, VHF FM voice message handling, and UHF DMR digital voice checkins ( 16 stations in 9 counties). This was an excellent test requiring us to run full resources at the station and produced some quantifiable results. Overall, operationally the station handled the winter blizzard very well. The station was able to connect to SHARES/FEMA stations on 60 meters, an important interoperability test. There are some technical issues which were known prior but which showed up as significant restrictions to the stations operations. These primarily center on antenna problems which should be addressed.