2019 EMC Final Program (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolomic Assessment of Dietary Interventions in Obesity by Capillary Electrophoresis Mass Spectrometry
Metabolomic Assessment of Dietary Interventions in Obesity by Capillary Electrophoresis Mass Spectrometry Metabolomic Assessment of Dietary Interventions in Obesity by Capillary Electrophoresis Mass Spectrometry By Karen Phoebe Lam, H.B.Sc., M.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Karen Phoebe Lam, July 2018 Doctor of Philosophy (2018) McMaster University (Department of Chemisty & Chemical Biology) Hamilton, Ontario TITLE: Metabolomic Assessment of Dietary Interventions in Obesity by Capillary Electrophoresis Mass Spectrometry AUTHOR: Karen Phoebe Lam, H.B.Sc. (University of Toronto), M.Sc. (McMaster University) SUPERVISOR: Professor Philip Britz-McKibbin NUMBER OF PAGES: xxix, 347 ii Abstract Capillary electrophoresis mass spectrometry (CE-MS) is a versatile instrumental method for metabolomics, which allows for comprehensive metabolite profiling of volume-limited biological specimens in order to better understand the molecular mechanisms associated with chronic diseases, including an alarming epidemic of obesity worldwide. Multiplexed CE separations enable high-throughput metabolite screening with quality assurance to prevent false discoveries when combined with rigorous method validation, robust experimental designs, complementary statistical methods, and high-resolution tandem mass spectrometry (MS/MS) for unknown metabolite identification. In this thesis, multiplexed CE-MS technology is applied for both targeted and untargeted metabolite profiling of various biological fluids, including covalently bound thiol-protein conjugates, as well as free circulating metabolites in serum and plasma, and excreted/bio-transformed compounds in urine due to complex host-gut microflora co-metabolism. This work was applied to characterize aberrant metabolic responses of obese subjects in response to dietary challenges, and measure the benefits of dietary interventions that reduce adiposity without deleterious muscle loss. -
Crystallography News British Crystallographic Association
Crystallography News British Crystallographic Association Issue No. 100 March 2007 ISSN 1467-2790 BCA Spring Meeting 2007 - Canterbury p8-17 Patrick Tollin (1938 - 2006) p7 The Z’ > 1 Phenomenon p18-19 History p21-23 Meetings of Interest p32 March 2007 Crystallography News Contents 2 . From the President 3 . Council Members 4 . BCA Letters to the Editor 5 Administrative Office, . Elaine Fulton, From the Editor 6 Northern Networking Events Ltd. 7 1 Tennant Avenue, Puzzle Corner College Milton South, . East Kilbride, Glasgow G74 5NA Scotland, UK Patrick Tollin (1938 - 2006) 8-17 Tel: + 44 1355 244966 Fax: + 44 1355 249959 . e-mail: [email protected] BCA 2007 Spring Meeting 16-17 . CRYSTALLOGRAPHY NEWS is published quarterly (March, June, BCA 2007 Meeting Timetable 18-19 September and December) by the British Crystallographic Association, . and printed by William Anderson and Sons Ltd, Glasgow. Text should The Z’ > 1 Phenomenon 20 preferably be sent electronically as MSword documents (any version - . .doc, .rtf or .txt files) or else on a PC disk. Diagrams and figures are most IUCr Computing Commission 21-23 welcome, but please send them separately from text as .jpg, .gif, .tif, or .bmp files. Items may include technical articles, news about people (e.g. History . 24-27 awards, honours, retirements etc.), reports on past meetings of interest to crystallographers, notices of future meetings, historical reminiscences, Groups .......................................................... 28-31 letters to the editor, book, hardware or software reviews. Please ensure that items for inclusion in the June 2007 issue are sent to the Editor to arrive Meetings . 32 before 25th April 2007. -
Direct Experimental Visualization of Waves and Band Structure in 2D Photonic Crystal Slabs
Home Search Collections Journals About Contact us My IOPscience Direct experimental visualization of waves and band structure in 2D photonic crystal slabs This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 New J. Phys. 16 053003 (http://iopscience.iop.org/1367-2630/16/5/053003) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 18.51.1.88 This content was downloaded on 16/06/2014 at 14:34 Please note that terms and conditions apply. Direct experimental visualization of waves and band structure in 2D photonic crystal slabs Benjamin K Ofori-Okai1, Prasahnt Sivarajah1, Christopher A Werley1,2, Stephanie M Teo1 and Keith A Nelson1 1 Department of Chemistry, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA E-mail: [email protected] Received 15 October 2013, revised 8 March 2014 Accepted for publication 21 March 2014 Published 1 May 2014 New Journal of Physics 16 (2014) 053003 doi:10.1088/1367-2630/16/5/053003 Abstract We demonstrate for the first time the ability to perform time resolved imaging of terahertz (THz) waves propagating within a photonic crystal (PhC) slab. For photonic lattices with different orientations and symmetries, we used the electro- optic effect to record the full spatiotemporal evolution of THz fields across a broad spectral range spanning the photonic band gap. In addition to revealing real-space behavior, the data let us directly map the band diagrams of the PhCs. -
Growth of Graded Quantum Wells for Thz Polaritonics
Growth of graded quantum wells for THz polaritonics by Chris Deimert A thesis presented to the University of Waterloo in fulllment of the thesis requirement for the degree of Doctor of Philosophy in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2021 © Chris Deimert 2021 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Commit- tee is by majority vote. External Examiner: Gottfried Strasser, Professor, Electrical Engineering and Information Technology, Vienna University of Technology (TU Wien) Supervisor: Zbigniew R. Wasilewski, Professor, Electrical and Computer Engineering, University of Waterloo Internal Member: Dayan Ban, Professor, Electrical and Computer Engineering, University of Waterloo Internal Member: Na Young Kim, Associate Professor, Electrical and Computer Engineering, University of Waterloo Internal-External Robert Hill, Associate Professor, Member: Dept. of Physics and Astronomy, University of Waterloo ii Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required nal revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Rectangular quantum wells have long dominated the landscape of layered nanostructures. They exhibit a rich variety of physics and can be reliably grown with techniques such as molecular beam epitaxy. Rectangular wells represent only a fraction of the possible design space, however: much less explored have been alternative structures with continuously varying potential proles. This is not for want of applications. Parabolic quantum wells (PQWs), wells with a quadratically varying prole, have been recently identied as a potential key ingredient for terahertz (THz) polaritonic devices. -
Quantum Floquet Engineering with an Exactly Solvable Tight-Binding Chain in a Cavity
Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity Christian J. Eckhardt,1, 2, ∗ Giacomo Passetti,1, ∗ Moustafa Othman,3 Christoph Karrasch,3 Fabio Cavaliere,4, 5 Michael A. Sentef,2 and Dante M. Kennes1, 2, y 1Institut f¨urTheorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056 Aachen, Germany 2Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany 3Technische Universit¨atBraunschweig, Institut f¨urMathematische Physik, Mendelssohnstraße 3, 38106 Braunschweig, Germany 4Dipartimento di Fisica, Universit`adi Genova, 16146, Genova, Italy 5SPIN-CNR, 16146, Genova, Italy (Dated: July 27, 2021) arXiv:2107.12236v1 [cond-mat.str-el] 26 Jul 2021 1 Abstract Recent experimental advances enable the manipulation of quantum matter by exploiting the quantum nature of light. However, paradigmatic exactly solvable models, such as the Dicke, Rabi or Jaynes-Cummings models for quantum-optical systems, are scarce in the corresponding solid-state, quantum materials context. Focusing on the long-wavelength limit for the light, here, we provide such an exactly solvable model given by a tight-binding chain coupled to a single cavity mode via a quantized version of the Peierls substitution. We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase. Furthermore, we provide an analytical expression for the groundstate in the thermodynamic limit, in which the cavity photons are squeezed by the light-matter coupling. In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity. -
2. Anthraphane Monomer 23
Research Collection Doctoral Thesis Anthraphanes: a New Class of Potential Monomers for the Synthesis of Two-Dimensional Polymers Author(s): Servalli, Marco Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010832536 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23866 Anthraphanes: a New Class of Potential Monomers for the Synthesis of Two-Dimensional Polymers A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MARCO SERVALLI MSc, ETH Zurich Chemistry born on 10.07.1986 citizen of Bioggio (TI), Switzerland accepted on the recommendation of Prof. Dr. A. Dieter Schlüter, examiner Prof. Dr. Joost VandeVondele, co-examiner Prof. Dr. Peter Walde, co-examiner Dr. Michael Wörle, co-examiner 2016 ACKNOWLEDGEMENTS Acknowledgements Doing a PhD and writing a thesis is not a stand-alone matter and involves the collaboration of many people. I would like to start my acknowledgements from the scientific and work-related point of view: At first, I would like to thank Prof. A. Dieter Schlüter, for offering me the chance to work on the stimulating, fascinating and challenging topic of two-dimensional polymers. Challenging projects deal specially with a lot of frustration and I therefore appreciate the continuous support I received from him during my PhD, in terms of scientific and non-scientific discussion, as well as the essential ongoing motivation to not give up and to keep pursuing my objectives. -
Infrared Polaritonic Biosensors Based on Two-Dimensional Materials
molecules Review Infrared Polaritonic Biosensors Based on Two-Dimensional Materials Guangyu Du 1,2, Xiaozhi Bao 3, Shenghuang Lin 2 , Huan Pang 1, Shivananju Bannur Nanjunda 4,* and Qiaoliang Bao 5,* 1 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; [email protected] (G.D.); [email protected] (H.P.) 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; [email protected] 3 Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China; [email protected] 4 Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging Technologies (Cen-Bio-SIM), Indian Institute of Technology Madras, Chennai 600036, India 5 Shenzhen Exciton Science and Technology Ltd., Shenzhen 518052, China * Correspondence: [email protected] (S.B.N.); [email protected] (Q.B.) Abstract: In recent years, polaritons in two-dimensional (2D) materials have gained intensive research interests and significant progress due to their extraordinary properties of light-confinement, tunable carrier concentrations by gating and low loss absorption that leads to long polariton lifetimes. With additional advantages of biocompatibility, label-free, chemical identification of biomolecules through their vibrational fingerprints, graphene and related 2D materials can be adapted as excellent platforms for future polaritonic biosensor applications. Extreme spatial light confinement in 2D materials based polaritons supports atto-molar concentration or single molecule detection. In this article, we will review the state-of-the-art infrared polaritonic-based biosensors. We first discuss the concept of Citation: Du, G.; Bao, X.; Lin, S.; polaritons, then the biosensing properties of polaritons on various 2D materials, then lastly the Pang, H.; Bannur Nanjunda, S.; Bao, impending applications and future opportunities of infrared polaritonic biosensors for medical and Q. -
Influence of the Epitaxial Strain on Magnetic Anisotropy in LSMO Thin Films for Spintronics Applications Sandeep Kumar Chaluvadi
Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Sandeep Kumar Chaluvadi To cite this version: Sandeep Kumar Chaluvadi. Influence of the epitaxial strain on magnetic anisotropy inLSMO thin films for spintronics applications. Electronics. Normandie Université, 2017. English. NNT: 2017NORMC248. tel-01717569 HAL Id: tel-01717569 https://tel.archives-ouvertes.fr/tel-01717569 Submitted on 26 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Spécialité ELECTRONIQUE, MICROELECTRONIQUE, OPTIQUE ET LASERS, OPTOELECTRONIQUE MICROONDES Préparée au sein de l’ENSICAEN et de l’UNICAEN Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Présentée et soutenue par Sandeep Kumar CHALUVADI Thèse soutenue publiquement le 13 décembre 2017 devant le jury composé de M. VIRET Michel Chercheur (HDR), CEA Saclay Rapporteur M. BELMEGUENAI Mohamed Maître de conférences (HDR), Université Paris 13 Rapporteur Mme MOUGIN Alexandra Directrice de recherches CNRS, Université Paris 11 Examinateur M. MAZALEYRAT Frédéric Professeur des universités, ENS Cachan Examinateur M. PERNA Paolo Chercheur, IMDEA Madrid Examinateur Mme MECHIN Laurence Directrice de recherches CNRS, Université Caen Normandie Directeur de thèse Thèse dirigée par Laurence MECHIN, laboratoire GREYC (UMR 6072) iii Contents List of Abbreviations .............................................................................................................. -
Arxiv:1810.06761V1 [Physics.Optics] 16 Oct 2018
Extreme enhancement of spin relaxation mediated by surface magnon polaritons Jamison Sloan1∗†, Nicholas Rivera1∗, John D. Joannopoulos1, Ido Kaminer2, and Marin Soljaciˇ c´1 1 Department of Physics, MIT, Cambridge, MA 02139, USA 2 Department of Electrical Engineering, Technion − Israel Institute of Technology, Haifa 32000, Israel. y Corresponding author e-mail: [email protected] * These authors contributed equally to this work Polaritons in metals, semimetals, semiconductors, and polar insulators, with their extreme confinement of electromagnetic energy, provide many promising opportunities for enhancing typically weak light-matter inter- actions such as multipolar radiation, multiphoton spontaneous emission, Raman scattering, and material non- linearities. These highly confined polaritons are quasi-electrostatic in nature, with most of their energy residing in the electric field. As a result, these “electric” polaritons are far from optimized for enhancing emission of a magnetic nature, such as spin relaxation, which is typically many orders of magnitude slower than corre- sponding electric decays. Here, we propose using surface magnon polaritons in negative magnetic permeability materials such as MnF2 and FeF2 to strongly enhance spin-relaxation in nearby emitters in the THz spectral range. We find that these magnetic polaritons in 100 nm thin-films can be confined to lengths over 10,000 times smaller than the wavelength of a photon at the same frequency, allowing for a surprising twelve orders of magnitude enhancement in magnetic dipole transitions. This takes THz spin-flip transitions, which normally occur at timescales on the order of a year, and forces them to occur at sub-ms timescales. Our results suggest an interesting platform for polaritonics at THz frequencies, and more broadly, a new way to use polaritons to control light-matter interactions. -
(Laalo3)0.3(Sr2taalo6)0.7(001) Richard T
Single Crystal Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 4. (LaAlO3)0.3(Sr2TaAlO6)0.7(001) Richard T. Haasch, Eric Breckenfeld, and Lane W. Martin Citation: Surface Science Spectra 21, 112 (2014); doi: 10.1116/11.20140904 View online: http://dx.doi.org/10.1116/11.20140904 View Table of Contents: http://scitation.aip.org/content/avs/journal/sss/21/1?ver=pdfcov Published by the AVS: Science & Technology of Materials, Interfaces, and Processing Articles you may be interested in Single Crystal Rare-earth Scandate Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 3. GdScO3(110) Surf. Sci. Spectra 21, 149 (2014); 10.1116/11.20140908 Single Crystal Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 5. NdGaO3(110) Surf. Sci. Spectra 21, 122 (2014); 10.1116/11.20140905 Single Crystal Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 3. LaAlO3(001) Surf. Sci. Spectra 21, 103 (2014); 10.1116/11.20140903 Single Crystal Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 2. YAlO3(110) Surf. Sci. Spectra 21, 95 (2014); 10.1116/11.20140902 Single Crystal Perovskites Analyzed Using X-ray Photoelectron Spectroscopy: 1. SrTiO3(001) Surf. Sci. Spectra 21, 87 (2014); 10.1116/11.20140901 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. Download to IP: 73.15.5.18 On: Sun, 18 Jan 2015 23:45:09 Single Crystal Perovskites Analyzed Using Accession #: 01313 X-ray Photoelectron Spectroscopy: 4. Technique: XPS (LaAlO ) (Sr TaAlO ) (001) Host Material: Single -
201120 111111
Instituto de Física de São Carlos Universidade de São Paulo Departamento de Física e Ciência dos Materiais RELATÓRIO DE ATIVIDADES 2020201120 111111 CChheeffee::: PPPPPPrrrrrrrrrooooooffffff......... DDDDDDrrrrrrr......... LLLLLLuuuuuuiiiiiiiiizzzzzz AAAAAAggggggoooooossssssttttttiiiiiiiiinnnnnnhhhhhhoooooo FFFFFFeeeeeerrrrrrrrrrrrrrrrrreeeeeeiiiiiiiiirrrrrrrrraaaaaa SSuupplleennttee::: PPPPPPrrrrrrrooooooffffff......... DDDDDDrrrrrrr......... LLLLLLuuuuuuiiiiiiiiissssss GGGGGGuuuuuussssssttttttaaaaaavvvvvvoooooo MMMMMMaaaaaarrrrrrrccccccaaaaaassssssssssssaaaaaa Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação Universidade de São Paulo. Instituto de Física de São Carlos. Relatório de atividades do ano de 2011 do Departamento de Física e Ciências dos Materiais/IFSC/USP./Organizado por Isabel Rosani Constantino...[ et al]. São Carlos: Departamento de Física e Ciência dos Materiais, 2012. 320p. 1.Relatório de atividades. I. Constantino, Isabel Rosani. II. Cagnin, Cristiane A. III. Lopes, Yvone A. B. IV. Monzane, Thaís Fernanda G. S. V. Oliveira, Rosangela M. M. VI. Pereira, Daniel F. VII. Reis, Simone F. VIII. Sertori, Isabel C. De Vitro. IX. Signini, Érica R. F. X.Título. INTRODUÇÃO a) Perfiill do Departamento de Físiica e Ciiênciia dos Materiiaiis ii b) Atiiviidades de Ensiino iiv c) Produção Técniico-Ciientífiica v d) Orientações e Teses Defendiidas iix e) Atiiviidades de Extensão xiiii f) Recursos Fiinanceiiros Obtiidos xiiii g) Resumo Quantiitatiivo da Produção Ciientífiica xv h) Atiiviidades de Ensiino e Pesquiisa -
Strong Coupling of Exciton-Polaritons in a Bulk Gan Planar Waveguide: Quantifying the Coupling Strength Christelle Brimont, Laetitia Doyennette, G
Strong Coupling of Exciton-Polaritons in a Bulk GaN Planar Waveguide: Quantifying the Coupling Strength Christelle Brimont, Laetitia Doyennette, G. Kreyder, F. Reveret, P. Disseix, F. Medard, J. Leymarie, E. Cambril, S. Bouchoule, M. Gromovyi, et al. To cite this version: Christelle Brimont, Laetitia Doyennette, G. Kreyder, F. Reveret, P. Disseix, et al.. Strong Cou- pling of Exciton-Polaritons in a Bulk GaN Planar Waveguide: Quantifying the Coupling Strength. Physical Review Applied, American Physical Society, 2020, 14 (5), pp.4060. 10.1103/physrevap- plied.14.054060. hal-03034132 HAL Id: hal-03034132 https://hal.archives-ouvertes.fr/hal-03034132 Submitted on 1 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PHYSICAL REVIEW APPLIED 14, 054060 (2020) Strong Coupling of Exciton-Polaritons in a Bulk GaN Planar Waveguide: Quantifying the Coupling Strength C. Brimont,1 L. Doyennette,1 G. Kreyder,2 F. Réveret,2 P. Disseix,2 F. Médard ,2 J. Leymarie,2 E. Cambril,3 S. Bouchoule,3 M. Gromovyi,3,4 B. Alloing,4 S. Rennesson,4 F. Semond,4 J. Zúñiga-Pérez,4