The Pennsylvania State University the Graduate School Department of Biology the ECOLOGY of SEEP COMMUNITIES in the GULF of MEXIC

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School Department of Biology the ECOLOGY of SEEP COMMUNITIES in the GULF of MEXIC The Pennsylvania State University The Graduate School Department of Biology THE ECOLOGY OF SEEP COMMUNITIES IN THE GULF OF MEXICO: BIODIVERSITY AND ROLE OF LAMELLIBRACHIA LUYMESI A Thesis in Biology by Erik E. Cordes Copyright 2004 Erik E. Cordes Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2004 The thesis of Erik E. Cordes was reviewed and approved* by the following: Chuck Fisher Professor of Biology Thesis Advisor Chair of Committee Katriona Shea Assistant Professor of Biology Peter Hudson Willaman Professor of Biology Michael Arthur Professor of Geosciences Doug Cavener Professor of Biology Head of the Department of Biology *Signatures are on file in the Graduate School iii ABSTRACT Cold seeps are common habitats along the continental margin in all the world’s oceans. In the Gulf of Mexico, they occur in the salt dome province of the upper Louisiana slope, and along the base of the continental rise from Florida to Texas. Some of the most common inhabitants of cold seeps are vestimentiferan tubeworms which are entirely reliant on internal sulfide-oxidizing chemoautotrophic symbionts for their nutrition. The most common vestimentiferan tubeworm of the upper Louisiana slope is Lamellibrachia luymesi. This, and other species of tubeworms, form aggregations of hundreds to thousands of individuals which harbor a diverse community. In this study, a total of 40 tubeworm aggregation and mussel bed samples containing at least 171 macrofaunal species were collected at seeps from 520 to 3300 m depth. The upper Louisiana slope communities progress through a predictable sequence of successional stages. The youngest aggregations contain high biomass communities dominated by endemic species, with biomass decreasing over time as the relative abundance of non- endemic fauna in upper trophic levels increases. This process is mainly driven by the abundance of hydrogen sulfide in the epibenthic layer. Models support the hypothesis that L. luymesi alters its environment by releasing the sulfate generated by its internal symbionts into deeper sediment layers. This alters the distribution of sulfide leading to declines in sulfide concentration among the tubeworm tubes. The combination of these lines of evidence support the assertion that L. luymesi is a significant ecosystem engineer at hydrocarbon seeps in the Gulf of Mexico. iv TABLE OF CONTENTS LIST OF FIGURES .....................................................................................................vi LIST OF TABLES.......................................................................................................viii ACKNOWLEDGEMENTS.........................................................................................ix Chapter 1 Introduction and A Review of Gulf of Mexico Cold Seep Ecology ..........1 Introduction...........................................................................................................1 Gulf of Mexico Cold Seep Ecology......................................................................5 Geological Setting ................................................................................................5 Symbiotic Fauna ...................................................................................................14 Tubeworms....................................................................................................15 Mussels..........................................................................................................18 Clams.............................................................................................................20 Iceworms .......................................................................................................22 Community Ecology.............................................................................................23 Upper Slope Communities ............................................................................24 Deep Seep Communities ...............................................................................32 Conclusions...........................................................................................................34 Chapter 2 High Hydrogen Sulfide Demand of Tubeworm Aggregations Modifies the Chemical Environment at Deep-Sea Hydrocarbon Seeps ..............................36 Abstract..........................................................................................................36 Introduction ...................................................................................................37 Methods .........................................................................................................39 Results ...........................................................................................................43 Discussion......................................................................................................50 Chapter 3 Modeling the Mutualistic Interactions Between Tubeworms and Microbial Consortia..............................................................................................58 Abstract..........................................................................................................58 Introduction ...................................................................................................58 Methods .........................................................................................................61 Population growth model .......................................................................62 Geochemical setting ...............................................................................67 Model implementation ...........................................................................73 Results and Discussion..................................................................................79 Chapter 4 Succession of Hydrocarbon Seep Communities Associated with the Long-Lived Foundation Species Lamellibrachia luymesi....................................88 v Abstract..........................................................................................................88 Introduction ...................................................................................................89 Methods .........................................................................................................92 Results ...........................................................................................................98 Discussion......................................................................................................107 Chapter 5 Impact of an Ecosystem Engineering Tubeworm on the Habitat Characteristics and Community Structure of Gulf of Mexico Hydrocarbon Seeps.....................................................................................................................119 Abstract..........................................................................................................119 Introduction ...................................................................................................120 Methods .........................................................................................................123 Results ...........................................................................................................128 Discussion......................................................................................................134 Chapter 6 Community Structure of Gulf of Mexico Cold Seeps: Do General Theories of Deep-sea Ecology Pertain to Chemosynthetic Ecosystems?.............141 Abstract..........................................................................................................141 Introduction ...................................................................................................142 Materials and Methods ..................................................................................146 Results ...........................................................................................................152 Discussion......................................................................................................159 Bibliography ................................................................................................................169 Appendix......................................................................................................................192 vi LIST OF FIGURES Figure 2-1: Population growth characteristics of Lamellibrachia luymesi: Mortality rate ........................................................................................................44 Figure 2-2: Population growth characteristics of Lamellibrachia luymesi: Recruitment rate of aggregation BH7...................................................................45 Figure 2-3: Model output for Lamellibrachia luymesi aggregation BH7....................46 Figure 2-4: Size-frequency of Lamellibrachia luymesi in aggregation BH7...............49 Figure 2-5: Hydrogen sulfide uptake rate for whole Lamellibrachia luymesi aggregations..........................................................................................................50 Figure 3-1: Model construction ...................................................................................62 Figure 3-2: Growth model for L. luymesi. ...................................................................65 Figure 3-3:Concentration profiles of sulfate, sulfide, and dissolved organic carbon (DOC) ...................................................................................................................69
Recommended publications
  • BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine
    BIBLIOGRAPHICAL SKETCH Kevin J. Eckelbarger Professor of Marine Biology School of Marine Sciences University of Maine (Orono) and Director, Darling Marine Center Walpole, ME 04573 Education: B.Sc. Marine Science, California State University, Long Beach, 1967 M.S. Marine Science, California State University, Long Beach, 1969 Ph.D. Marine Zoology, Northeastern University, 1974 Professional Experience: Director, Darling Marine Center, The University of Maine, 1991- Prof. of Marine Biology, School of Marine Sciences, Univ. of Maine, Orono 1991- Director, Division of Marine Sciences, Harbor Branch Oceanographic Inst. (HBOI), Ft. Pierce, Florida, 1985-1987; 1990-91 Senior Scientist (1981-90), Associate Scientist (1979-81), Assistant Scientist (1973- 79), Harbor Branch Oceanographic Inst. Director, Postdoctoral Fellowship Program, Harbor Branch Oceanographic Inst., 1982-89 Currently Member of Editorial Boards of: Invertebrate Biology Journal of Experimental Marine Biology & Ecology Invertebrate Reproduction & Development For the past 30 years, much of his research has concentrated on the reproductive ecology of deep-sea invertebrates inhabiting Pacific hydrothermal vents, the Bahamas Islands, and methane seeps in the Gulf of Mexico. The research has been funded largely by NSF (Biological Oceanography Program) and NOAA and involved the use of research vessels, manned submersibles, and ROV’s. Some Recent Publications: Eckelbarger, K.J & N. W. Riser. 2013. Derived sperm morphology in the interstitial sea cucumber Rhabdomolgus ruber with observations on oogenesis and spawning behavior. Invertebrate Biology. 132: 270-281. Hodgson, A.N., K.J. Eckelbarger, V. Hodgson, and C.M. Young. 2013. Spermatozoon structure of Acesta oophaga (Limidae), a cold-seep bivalve. Invertertebrate Reproduction & Development. 57: 70-73. Hodgson, A.N., V.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • The Zinc-Mediated Sulfide-Binding Mechanism of Hydrothermal Vent Tubeworm 400-Kda Hemoglobin
    Cah. Biol. Mar. (2006) 47 : 371-377 The zinc-mediated sulfide-binding mechanism of hydrothermal vent tubeworm 400-kDa hemoglobin Jason F. FLORES1* and Stéphane M. HOURDEZ2 (1) Department of Biology, The Pennsylvania State University *Corresponding author: The University of North Carolina at Charlotte, Department of Biology, 9201 University City Boulevard, Charlotte, NC 28223, USA, FAX: 704-687-3128, E-mail: [email protected] (2) Université Pierre & Marie Curie-Paris 6, CNRS-UMR 7144 AD2M, Equipe Ecophysiologie Adaptation et Evolution Moleculaires, Station Biologique de Roscoff, 29680 Roscoff, France Abstract: Hydrothermal vent and cold seep tubeworms possess two hemoglobin (Hb) types, a 3600-kDa hexagonal bilayer Hb as well as a 400-kDa spherical Hb. Both Hbs can reversibly and simultaneously bind and transport oxygen and hydrogen sulfide used by the worm’s endosymbiotic bacteria to fix carbon. The vestimentiferan 400-kDa Hb has been shown to consist of 24 polypeptide chains and 12 zinc ions that are bound to specific amino acids within the six A2 globin chains of the molecule. Flores et al. (2005) determined that the ligated zinc ions were directly involved in the sulfide binding mechanism of this Hb. This discovery contradicted previous work suggesting that free-cysteine residues were the sole sulfide binding mechanism of the 400-kDa Hb. In the present study, we investigated the effects of acidic pH pretreatment and zinc chelator concentrations on the binding of sulfide by the Hb. We show that acidic pH pretreatment, as well as NEM capping of free-cysteines, does not affect sulfide binding by the purified Hb.
    [Show full text]
  • Geo-Biological Coupling of Authigenic Carbonate Formation and Autotrophic Faunal Colonization at Deep-Sea Methane Seeps II. Geo-Biological Landscapes
    Chapter 3 Geo-Biological Coupling of Authigenic Carbonate Formation and Autotrophic Faunal Colonization at Deep-Sea Methane Seeps II. Geo-Biological Landscapes TakeshiTakeshi Naganuma Naganuma Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.78978 Abstract Deep-sea methane seeps are typically shaped with authigenic carbonates and unique biomes depending on methane-driven and methane-derived metabolisms. Authigenic carbonates vary in δ13C values due probably to 13δC variation in the carbon sources (directly carbon dioxide and bicarbonate, and ultimately methane) which is affected by the generation and degradation (oxidation) of methane at respective methane seeps. Anaerobic oxidation of methane (AOM) by specially developed microbial consortia has significant influences on the carbonate13 δ C variation as well as the production of carbon dioxide and hydrogen sulfide for chemoautotrophic biomass production. Authigenesis of carbonates and faunal colonization are thus connected. Authigenic carbonates also vary in Mg contents that seem correlated again to faunal colonization. Among the colonizers, mussels tend to colonize low δ13C carbonates, while gutless tubeworms colonize high- Mg carbonates. The types and varieties of such geo-biological landscapes of methane seeps are overviewed in this chapter. A unique feature of a high-Mg content of the rock- tubeworm conglomerates is also discussed. Keywords: lithotrophy, chemoautotrophy, thiotrophy, methanotrophy, stable carbon isotope, δ13C, isotope fractionation, Δ13C, calcite, dolomite, anaerobic oxidation of methane (AOM), sulfate-methane transition zone (SMTZ), Lamellibrachia tubeworm, Bathymodiolus mussel, Calyptogena clam 1. Introduction Aristotle separated the world into two realms, nature and living things (originally animals), the latter having structures, processes, and functions of spontaneous formation and voluntary © 2016 The Author(s).
    [Show full text]
  • Reproductive Ecology of Vestimentifera (Polychaeta: Siboglinidae) from Hydrothermal Vents and Cold Seeps
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Reproductive Ecology of Vestimentifera (Polychaeta: Siboglinidae) from Hydrothermal Vents and Cold Seeps PhD Dissertation submitted by Ana Hil´ario to the Graduate School of the National Oceanography Centre, Southampton in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2005 Graduate School of the National Oceanography Centre, Southampton This PhD dissertation by Ana Hil´ario has been produced under the supervision of the following persons Supervisors Prof. Paul Tyler and Dr Craig Young Chair of Advisory Panel Dr Martin Sheader Member of Advisory Panel Dr Jonathan Copley I hereby declare that no part of this thesis has been submitted for a degree to the University of Southampton, or any other University, at any time previously. The material included is the work of the author, except where expressly stated.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • The First Record of the Genus Lamellibrachia (Siboglinidae
    J. Earth Syst. Sci. (2021) 130:94 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-021-01587-1 (0123456789().,-volV)(0123456789().,-volV) The Brst record of the genus Lamellibrachia (Siboglinidae) tubeworm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: A report from the Cauvery–Mannar Basin 1, 1 1 1 AMAZUMDAR *, P DEWANGAN ,APEKETI ,FIROZ BADESAAB , 1,5 1,6 1 1,6 MOHD SADIQUE ,KALYANI SIVAN ,JITTU MATHAI ,ANKITA GHOSH , 1,6 1,5 2 1,6 1 AZATALE ,SPKPILLUTLA ,CUMA ,CKMISHRA ,WALSH FERNANDES , 3 4 ASTHA TYAGI and TANOJIT PAUL 1Gas Hydrate Research Group, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India. 2Kerala University of Fisheries and Ocean Studies, Kochi, Kerala 682 506, India. 3K.J. Somaiya College of Science and Commerce, University of Mumbai, Mumbai, Maharashtra 400 077, India. 4Manipal Institute of Technology, Manipal, Karnataka 576 104, India. 5School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa 403 001, India. 6Academy of ScientiBc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India. *Corresponding author. e-mail: [email protected] MS received 2 October 2020; revised 23 January 2021; accepted 25 January 2021 Here, we report for the Brst time, the genus Lamellibrachia tubeworm and associated chemosynthetic ecosystem from a cold-seep site in the Indian Ocean. The discovery of cold-seep was made oA the Cauvery–Mannar Basin onboard ORV Sindhu Sadhana (SSD-070; 13th to 22nd February 2020). The chemosymbiont bearing polychaete worm is also associated with squat lobsters (Munidposis sp.) and Gastropoda belonging to the family Buccinidae.
    [Show full text]
  • A Microbiological and Biogeochemical Investigation of the Cold Seep
    Deep Sea Research Part I: Oceanographic Archimer Research Papers http://archimer.ifremer.fr August 2014, Volume 90, Pages 105-114 he publisher Web site Webpublisher he http://dx.doi.org/10.1016/j.dsr.2014.05.006 © 2014 Elsevier Ltd. All rights reserved. A microbiological and biogeochemical investigation of the cold seep is available on t on available is tubeworm Escarpia southwardae (Annelida: Siboglinidae): Symbiosis and trace element composition of the tube Sébastien Duperrona, *, Sylvie M. Gaudrona, Nolwenn Lemaitreb, c, d, Germain Bayonb authenticated version authenticated - a Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UMR7208 Laboratoire Biologie des Organismes Aquatiques et Ecosystèmes, 7 quai St Bernard, 75005 Paris, France b IFREMER, Unité de Recherche Géosciences Marines, F-29280 Plouzané, France c UEB, Université Européenne de Bretagne, F-35000 Rennes, France d IUEM, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, CNRS UMS 3113, IUEM, F-29280 Plouzané, France *: Corresponding author : Sébastien Duperron, t el.: +33 0 1 44 27 39 95 ; fax: +33 0 1 44 27 58 01 ; email address : [email protected] Abstract: Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior „root‟ region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment.
    [Show full text]
  • Chapter 9. State of Deep-Sea Coral and Sponge Ecosystems of the U.S
    State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States Chapter 9 in The State of Deep‐Sea Coral and Sponge Ecosystems of the United States Report Recommended citation: Packer DB, Nizinski MS, Bachman MS, Drohan AF, Poti M, Kinlan BP (2017) State of Deep‐Sea Coral and Sponge Ecosystems of the Northeast United States. In: Hourigan TF, Etnoyer, PJ, Cairns, SD (eds.). The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 62 p. Available online: http://deepseacoraldata.noaa.gov/library. An octopus hides in a rock wall dotted with cup coral and soft coral in Welker Canyon off New England. Courtesy of the NOAA Office of Ocean Exploration and Research. STATE OF DEEP‐SEA CORAL AND SPONGE ECOSYSTEMS OF THE NORTHEAST UNITED STATES STATE OF DEEP-SEA CORAL AND SPONGE David B. Packer1*, ECOSYSTEMS OF THE Martha S. NORTHEAST UNITED Nizinski2, Michelle S. STATES Bachman3, Amy F. Drohan1, I. Introduction Matthew Poti4, The Northeast region extends from Maine to North Carolina ends at and Brian P. the U.S. Exclusive Economic Zone (EEZ). It encompasses the 4 continental shelf and slope of Georges Bank, southern New Kinlan England, and the Mid‐Atlantic Bight to Cape Hatteras as well as four New England Seamounts (Bear, Physalia, Mytilus, and 1 NOAA Habitat Ecology Retriever) located off the continental shelf near Georges Bank (Fig. Branch, Northeast Fisheries Science Center, 1). Of particular interest in the region is the Gulf of Maine, a semi‐ Sandy Hook, NJ enclosed, separate “sea within a sea” bounded by the Scotian Shelf * Corresponding Author: to the north (U.S.
    [Show full text]
  • MOLECULAR PHYLOGENY of the NERITIDAE (GASTROPODA: NERITIMORPHA) BASED on the MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) and 16S Rrna
    ACTA BIOLÓGICA COLOMBIANA Artículo de investigación MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA) BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) AND 16S rRNA Filogenia molecular de la familia Neritidae (Gastropoda: Neritimorpha) con base en los genes mitocondriales citocromo oxidasa I (COI) y 16S rRNA JULIAN QUINTERO-GALVIS 1, Biólogo; LYDA RAQUEL CASTRO 1,2 , Ph. D. 1 Grupo de Investigación en Evolución, Sistemática y Ecología Molecular. INTROPIC. Universidad del Magdalena. Carrera 32# 22 - 08. Santa Marta, Colombia. [email protected]. 2 Programa Biología. Universidad del Magdalena. Laboratorio 2. Carrera 32 # 22 - 08. Sector San Pedro Alejandrino. Santa Marta, Colombia. Tel.: (57 5) 430 12 92, ext. 273. [email protected]. Corresponding author: [email protected]. Presentado el 15 de abril de 2013, aceptado el 18 de junio de 2013, correcciones el 26 de junio de 2013. ABSTRACT The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina , Septaria , Theodoxus , Puperita , and Clithon , while in the Bayesian analyses Theodoxus is separated from the other genera.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter ^ce, while others may t>e from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will t>e noted. Also, if unauthorized copyright material had to t>e removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, t>eginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in ttie original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black arxt white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMI* Phylogeny of Vestimentiferan Tube Worms by Anja Schulze Diplom, University of Bielefeld, 1995 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biology We accept this dissertation as conforming to the required standard Dr.
    [Show full text]
  • Limitations of Cytochrome Oxidase I for the Barcoding of Neritidae (Mollusca: Gastropoda) As Revealed by Bayesian Analysis
    Limitations of cytochrome oxidase I for the barcoding of Neritidae (Mollusca: Gastropoda) as revealed by Bayesian analysis S.Y. Chee Center for Marine and Coastal Studies, Universiti Sains Malaysia, Penang, Malaysia Corresponding author: S.Y. Chee E-mail: [email protected] Genet. Mol. Res. 14 (2): 5677-5684 (2015) Received September 5, 2014 Accepted February 26, 2015 Published May 25, 2015 DOI http://dx.doi.org/10.4238/2015.May.25.20 ABSTRACT. The mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) gene has been universally and successfully utilized as a barcoding gene, mainly because it can be amplified easily, applied across a wide range of taxa, and results can be obtained cheaply and quickly. However, in rare cases, the gene can fail to distinguish between species, particularly when exposed to highly sensitive methods of data analysis, such as the Bayesian method, or when taxa have undergone introgressive hybridization, over-splitting, or incomplete lineage sorting. Such cases require the use of alternative markers, and nuclear DNA markers are commonly used. In this study, a dendrogram produced by Bayesian analysis of an mtDNA COI dataset was compared with that of a nuclear DNA ATPS-α dataset, in order to evaluate the efficiency of COI in barcoding Malaysian nerites (Neritidae). In the COI dendrogram, most of the species were in individual clusters, except for two species: Nerita chamaeleon and N. histrio. These two species were placed in the same subcluster, whereas in the ATPS-α dendrogram they were in their own subclusters. Analysis of the ATPS-α gene also placed the two genera of nerites (Nerita and Neritina) in separate clusters, whereas COI gene Genetics and Molecular Research 14 (4): 5677-5684 (2014) ©FUNPEC-RP www.funpecrp.com.br S.Y.
    [Show full text]