2021-Isabella-Da-Firenze-Indigo-Blues

Total Page:16

File Type:pdf, Size:1020Kb

2021-Isabella-Da-Firenze-Indigo-Blues Isabella da Firenze Barony of Seagirt [email protected] The Indigo Blues: A Comparison of Dyebaths Isabella da Firenze Barony of Seagirt [email protected] Table of Contents Introduction 2 A Brief History of Dyeing 2 Indigo Varieties 5 Indigofera Tinctoria (True Indigo) 5 Persicaria Tinctoria (Japanese Indigo) 5 Isatis Tinctoria (Woad) 6 Other Varieties 6 Indigo Dyeing Methods 7 The Basics 7 Fermentation Vats 7 Urine Vats 7 Modern Substitutions 8 Dye Vat One 8 Materials 8 Method 9 Challenges 10 Results 11 Dye Vat Two 13 Materials 13 Method 13 Challenges 16 Results 16 Conclusion 18 Bibliography 19 Appendix A: The Chemistry of Indigo 21 1 Isabella da Firenze Barony of Seagirt [email protected] Introduction Indigo blue is one of the most challenging and, in my opinion, rewarding, colours to dye. Not only is the historical method of making this dye difficult, but the chemistry behind the indigo plant is a fascinating look into the mystery of nature and the creativity of humanity. It is for these reasons, as well as the personal challenge to myself, that I decided to submit a process piece looking into the production of indigo dye for Tir Righ Arts and Sciences A.S. 53. While my original vision was to complete several dye vats using both indigo powder and indigo plant matter, due to some hiccoughs with growing my own plants I was forced to scale back the project and focus on comparing a modern chemical vat with a historical fermentation vat. This still provided a worthy challenge and plenty of opportunity for experimentation with different fiber types. The final product of this project was the dyeing of Egyptian linen in two different shades of blue to be used in my second project: a process piece on the re-creation of a knitted Egyptian sock motif. A Brief History of Dyeing Humankind has been adding colour to their lives for centuries. Whether trying to accurately depict the real world in cave paintings, or mimic natural colours in their wardrobes, we have borrowed colour from natural sources from prehistoric times up to, and past, when we discovered the ability to synthesize those colours and dozens of others. There are extant examples of dyes being used as far back in our history as Ancient Egypt (an indigo garment was excavated in Thebes, dating back to 2500 BCE1), as well as literary references to dyed fabrics in the Christian Bible (Exodus 35:252) and in the works of the ancient Greeks and Romans (Herodotus, writing in about 450 BCE3 or Pliny the Elder in his Naturalis Historia around 78 CE4). Over time, sources for different colours were discovered, colours were mixed to learn new ones, and many different types of fibers and fabrics were dyed according to various methods. This was a universal process that occurred over and over across the entire world as humanity’s natural curiosity pushed previously known limits and we continued to learn bigger and better ways of doing things. 1 Anne Mattson, "Indigo in the Early Modern World," University of Minnesota Libraries, accessed September 06, 2018, https://www.lib.umn.edu/bell/tradeproducts/indigo. 2 And all the women that were wise hearted did spin with their hands, and brought that which they had spun, both of blue, and of purple, and of scarlet, and of fine linen. 3 Cynthia Clark Northrup, Encyclopedia of world trade. from ancient times to the present (Abingdon, Oxon: Routledge, 2015), 506. 4 "Pliny the Elder, The Natural History," Book 35, Chapter 27, accessed September 06, 2018, http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.02.0137:book=1. 2 Isabella da Firenze Barony of Seagirt [email protected] While dyeing textiles and the use of colour in cosmetics was common across the globe for centuries, European dyers reached the height of their skill in the thirteenth century, mainly due to the guild systems which maintained a high standard of quality. In some places it was forbidden to possess, let alone use, major dyestuffs unless you were a member of a guild. In Germany, the dyers and woad workers were regulated by the guilds, with each grower having to present his crop to a “sworn dyer” to determine its quality, weight and condition before it could be sold.5 English producers of woad had fewer restrictions: mainly that of a proclamation first made in 1585 (though it was amended later) to ensure that no woad mills were sited within four miles of any market or clothing town, or within eight miles of a royal residence, because of the highly offensive odor they emit.6 In 1377, dyers in Florence, Italy founded the Dyers’ Guild after they refused to work with the Weavers’ Guild and their rulers acknowledged that the “craft of dyeing was of equal important with other crafts.”7 However, even with that proclamation, the dyers remained under the “strict and often cruel jurisdiction of the weavers and cloth merchants,”8 and the 1377 guild was dissolved in 1382. The Florentine dyers often emigrated to other Italian cities such as Venice, which were more sympathetic and had their own flourishing dyers’ guilds.9 One of the long-lasting products of a Venetian dyers’ guild was the 1540 publication of Giovanni Ventura Rosetti’s Plictho de Larte de Tentori10 which contained the recipes of the Venetian Dyers’ Guild and was a working reference for dyers until the end of the 17th century.11 According to Stuart Robinson, author of History of Dyed Textiles, the dyers were formed into three groups: The first and largest was that of the black or plain dyers who worked from 4 p.m. to 7 p.m., had three years' apprenticeship, five as a workman and three of travel before passing stringent tests to become a master craftsman in a guild system. They specialized in black and all simple colours. The second was reserved for the individual dyers of high colours on expensive materials using rarer dyestuffs. They were the outstanding masters of the craft and relatively few in number. The final group was a specialist one for the dyers of silk, particularly strong in France and Italy; they were regarded as individual artists and not of a guild.12 5 Su Grierson, Dyeing and Dyestuffs (Aylesbury: Shire, 1989), 8-9. 6 Frederic A. Youngs, The Proclamations of the Tudor Queens (Cambridge: Cambridge University Press, 1976), 151. 7 Stuart Robinson, A History of Dyed Textiles: Dyes, Fibres, Painted Bark, Batik, Starch-resist, Discharge, Tie-dye, Further Sources for Research (London: Studio Vista, 1979), 28. 8 Ibid. 9 Ibid. 10 Spelling and date as per Robinson, 28 - other sources write it as Plictho de L’arte de Tentori or Plictho del Arte de Tentori and give a date of publication of 1548. 11 Robinson, 28. 12 Robinson, 28. 3 Isabella da Firenze Barony of Seagirt [email protected] Indigo itself was used in Ancient Egypt circa 2500 BCE, and was common throughout India and Asia. In Europe, the colour was derived from the woad plant (Isatis tinctoria) instead. There are “records written in Sanskrit, describing various methods of preparation, [and] has been known to the people of Asia both as a dye and as a cosmetic, for over 4000 years.”13 However, for centuries, any kind of blue pigment was called indigo. The real characteristics of indigo were not widely known until the 14th century,14 particularly in Europe, and people continued to believe indigo was a mineral, as shown by a British patent granted in 1705 for obtaining indigo from mines.15 Much of this was due to the fact that influential woad growers and distributors lobbied successfully to prohibit indigo importation in Europe for more than a century. In 1577, an English local governing body declared that indigo was “prohibited under the severest penalties”16 and it was described as “the newly invented, harmful, balefully devouring, pernicious, deceitful, eating and corrosive dye known as ‘the devil’s dye,’ for which vitriol and other eating substances are used instead of Woad.”17 The proclamation was renewed in 1594 and again in 1603. Other countries made their own proclamations against indigo, but such measures proved futile and it quickly superseded woad as the preferred source of indigo blue. The art of dyeing was accidentally revolutionized in 1856 by a chemical student named William Henry Perkin, who, while experimenting with aniline,18 made the first artificial dye: mauveine.19 These first synthetic dyes, when compared to the natural dyes that preceded them, were found to be “hard, coarse, crude, and very inartistic.”20This was often remedied by mixing shades to soften them. However, these first dyes were not terribly light fast and did not fade true - a bright red might, after a few days, fade yellow, or white, or become a darker shade.21 By 1868, however, two German chemists manufactured alizarine22 and created a whole new class of dyestuffs that were fast to both light and washing.23 With the advent and development of colour fast synthetic dyestuffs, natural dyeing became less common, and for some colours non-existent, as it was more expensive and difficult to replicate on a large scale. However, it is experiencing a resurgence as people find an interest in it once again. 13 William F. Leggett, Ancient and Medieval Dyes (Brooklyn, NY: Chemical Publishing, 1944), 17. 14 Ibid. 20-21. 15 S. L. Kochhar, Economic Botany a Comprehensive Study (Delhi, India: Cambridge University Press, 2016), 525. 16 Leggett, 27. 17 Ibid. 18 A colourless, oily liquid made, in this case, from distilling indigo (Pellew, 40).
Recommended publications
  • Natural Colourants with Ancient Concept and Probable Uses
    JOURNAL OF ADVANCED BOTANY AND ZOOLOGY Journal homepage: http://scienceq.org/Journals/JABZ.php Review Open Access Natural Colourants With Ancient Concept and Probable Uses Tabassum Khair1, Sujoy Bhusan2, Koushik Choudhury2, Ratna Choudhury3, Manabendra Debnath4 and Biplab De2* 1 Department of Pharmaceutical Sciences, Assam University, Silchar, Assam, India. 2 Regional Institute of Pharmaceutical Science And Technology, Abhoynagar, Agartala, Tripura, India. 3 Rajnagar H. S. School, Agartala, Tripura, India. 4 Department of Human Physiology, Swami Vivekananda Mahavidyalaya, Mohanpur, Tripura, India. *Corresponding author: Biplab De, E-mail: [email protected] Received: February 20, 2017, Accepted: April 15, 2017, Published: April 15, 2017. ABSTRACT: The majority of natural colourants are of vegetable origin from plant sources –roots, berries, barks, leaves, wood and other organic sources such as fungi and lichens. In the medicinal and food products apart from active constituents there are several other ingredients present which are used for either ethical or technical reasons. Colouring agent is one of them, known as excipients. The discovery of man-made synthetic dye in the mid-19th century triggered a long decline in the large-scale market for natural dyes as practiced by the villagers and tribes. The continuous use of synthetic colours in textile and food industry has been found to be detrimental to human health, also leading to environmental degradation. Biocolours are extracted by the villagers and certain tribes from natural herbs, plants as leaves, fruits (rind or seeds), flowers (petals, stamens), bark or roots, minerals such as prussian blue, red ochre & ultramarine blue and are also of insect origin such as lac, cochineal and kermes.
    [Show full text]
  • The Maiwa Guide to NATURAL DYES W H at T H Ey a R E a N D H Ow to U S E T H E M
    the maiwa guide to NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM WA L NUT NATURA L I ND IG O MADDER TARA SYM PL O C OS SUMA C SE Q UO I A MAR IG O L D SA FFL OWER B U CK THORN LIVI N G B L UE MYRO B A L AN K AMA L A L A C I ND IG O HENNA H I MA L AYAN RHU B AR B G A LL NUT WE L D P OME G RANATE L O G WOOD EASTERN B RA ZIL WOOD C UT C H C HAMOM IL E ( SA PP ANWOOD ) A LK ANET ON I ON S KI NS OSA G E C HESTNUT C O C H I NEA L Q UE B RA C HO EU P ATOR I UM $1.00 603216 NATURAL DYES WHAT THEY ARE AND HOW TO USE THEM Artisans have added colour to cloth for thousands of years. It is only recently (the first artificial dye was invented in 1857) that the textile industry has turned to synthetic dyes. Today, many craftspeople are rediscovering the joy of achieving colour through the use of renewable, non-toxic, natural sources. Natural dyes are inviting and satisfying to use. Most are familiar substances that will spark creative ideas and widen your view of the world. Try experimenting. Colour can be coaxed from many different sources. Once the cloth or fibre is prepared for dyeing it will soak up the colour, yielding a range of results from deep jew- el-like tones to dusky heathers and pastels.
    [Show full text]
  • C10 Beano1senn.Mimosa.Amo-Des
    LEGUMINOSAE PART ONE Caesalpinioideae, Mimosoideae, Papilionoideae, Amorpha to Desmodium Revised 04 May 2015 BEAN FAMILY 1 Amphicarpaea CAESALPINIACEAE Cassia Anthyllis Cercis Apios Chamaecrista Astragalus Gleditsia Baptisia Gymnocladus Caragana Senna Cladrastus MIMOSACEAE Desmanthus Coronilla Mimosa Crotalaria Schrankia Dalea PAPILIONACEAE Amorpha Desmodium un-copyrighted draught --- “No family of the vegetable kingdom possesses a higher claim to the attention of the naturalist than the Leguminosae, wether we regard them as objects of ornament or utility. Of the former, we might mention the splendid varieties of Cercis, with their purple flowers, the Acacias, with their airy foliage and silky stamens, the Pride of India, Colutea, and Cæsalpina, with a host of others, which, like the Sweet Pea, are redolent with perfume. Of the latter, the beans, peas, lentils, clover, and lucerne, are too well known to require recommendation. Among timber trees, the Rosewood (a Brazilian species of Mimosa), the Laburnum, whose wood is durable and of an olive-green color, and the Locust of our own country are preëminent. The following are a few important officinal products of this order. In medicine; liquorice is the product of the root of Glycyrrhiza glabra of S. Europe. The purgative senna consists of leaves of Cassia Senna, C. acutifolia, C. Æthiopica, and other species of Egypt and Arabia. C. Marilandica is also a cathartic, but more mild than the former. The sweet pulp tamarind, is the product of a large and beautiful tree (Tamarindus Indica) of the E. and W. Indies. Resins and Balsams: Gum Senegal is yielded by Acacia Verek of the River Senegal; Gum Arabic, by several species of Acacia of Central Africa; Gum Tragacynth, by Astragalus verus, &c., Persia.
    [Show full text]
  • NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo
    NATURAL DYE 101 Indigo NATURAL DYE 101: Indigo •IS THERE ANOTHER NATURAL DYE that holds such deep, almost magical, powers as indigo? One that is called by so many names, such as ai (Japan), landian (China), chàm (Laos and Vietnam), nila (India), gara (Africa), or añil (Central America)? One that beckons the spirits or causes mutinies? In this collection of articles, learn about the natural dye indigo—an overview of its history and science, and places to visit with rich indigo cultural roots. Meet a few artisans who work with indigo and sustain its traditional roots, learn some tips for dyeing and care, and learn more from additional resources. Contents Explore the World of the Natural Dye Indigo and How-To | 3 A Place to Visit: Lao Traditional Culture and Education Center in Vientiane, Laos | 6 Meet Ms. Mai Suxiong, An Artisan of Hmong Batik Indigo Cloth | 8 In Country: Indigo and the El Salvador Story of Grace Guirola | 10 An Ode to Indigo and Dorothy Miller | 12 Natural Fermentation Vat | 14 A Care Tip: Washing Excess Indigo Dye Particles | 15 Contemporary Artisan Cloth and Indigo Projects | 16 Additional Resources | 16 Further Reading | 17 ClothRoads | NATURAL DYEING 101: INDIGO | 2 Explore the World of the Natural Dye Indigo •by Judy Newland OUR JOURNEY through the ancient and mysterious world of the natural dye indigo begins with an overview of this dye deeply embedded in cultures around the world--one that is both art and science and touches the disciplines of botany, chemistry, economics, fashion, medicine, politics, as well as textile and social history.
    [Show full text]
  • Introduction to Indigo and Shibori
    ICHF Show Guide NEC Birmingham 30th March – 2nd April 2006 ­ 1 ­ Darkly, Deeply, Beautifully Blue Jane Callender explains the history behind the indigo­dyeing and shibori techniques which she uses to create fabulous fabrics. The Magic of Indigo dilemma, as a means of safe disposal Both natural and manufactured Know to man in ancient times, had yet to be found. It was coal tar. indigo are available to us today and indigo was harvested from plants In 1830, Berlin chemist Ferdinand astonishingly the process of dyeing flourishing in the hot climates of Runge sought recycling possibilities with either has remained the same. Africa, China, Japan, India and the from this substance and by 1834 had Unique and seemingly magical, it is Americas. We can only speculate as isolated the compound aniline oil. It very different to other methods of to how the blue dye yielded by many was known that natural indigo dyeing cloth and the key word in different species, a prolific genus contained aniline through the work understanding the process is oxygen. being Indigofera, was first revealed of Adolf von Bayer. Even though The prepared fabric is dipped, for a to man. Indigo was extracted from Runge made positive advancements minute or two, in the indigo vat, a the plant thorough fermentation, and into the world of synthetic dye stuffs golden/green colour, and then because it was able to be stored, it he was prevented from further allowed to hang in the air. With the was able to be sold. In the 13t h research – his amazing discovery was introduction of oxygen, absent in the century Marco Polo tells us that suppressed by management.
    [Show full text]
  • Isatis Tinctoria L. (Woad): a Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies
    plants Review Isatis tinctoria L. (Woad): A Review of Its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies Jasmine Speranza 1,2, Natalizia Miceli 2,*, Maria Fernanda Taviano 2 , Salvatore Ragusa 3 , Inga Kwiecie ´n 4, Agnieszka Szopa 4 and Halina Ekiert 4 1 Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] 3 Department of Health Sciences, University ‘Magna Graecia’ of Catanzaro, V. Europa, IT-88100 Catanzaro, Italy; [email protected] 4 Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; [email protected] (I.K.); [email protected] (A.S.); [email protected] (H.E.) * Correspondence: [email protected] Received: 10 February 2020; Accepted: 25 February 2020; Published: 1 March 2020 Abstract: Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities.
    [Show full text]
  • Indiana Medical History Museum Guide to the Medicinal Plant Garden
    Indiana Medical History Museum Guide to the Medicinal Plant Garden Garden created and maintained by Purdue Master Gardeners of Marion County IMHM Medicinal Plant Garden Plant List – Common Names Trees and Shrubs: Arborvitae, Thuja occidentalis Culver’s root, Veronicastrum virginicum Black haw, Viburnum prunifolium Day lily, Hemerocallis species Catalpa, Catalpa bignonioides Dill, Anethum graveolens Chaste tree, Vitex agnus-castus Elderberry, Sambucus nigra Dogwood, Cornus florida Elecampane, Inula helenium Elderberry, Sambucus nigra European meadowsweet, Queen of the meadow, Ginkgo, Ginkgo biloba Filipendula ulmaria Hawthorn, Crateagus oxycantha Evening primrose, Oenothera biennis Juniper, Juniperus communis False Solomon’s seal, Smilacina racemosa Redbud, Cercis canadensis Fennel, Foeniculum vulgare Sassafras, Sassafras albidum Feverfew, Tanacetum parthenium Spicebush, Lindera benzoin Flax, Linum usitatissimum Witch hazel, Hamamelis virginiana Foxglove, Digitalis species Garlic, Allium sativum Climbing Vines: Golden ragwort, Senecio aureus Grape, Vitis vinifera Goldenrod, Solidago species Hops, Humulus lupulus Horehound, Marrubium vulgare Passion flower, Maypop, Passiflora incarnata Hyssop, Hyssopus officinalis Wild yam, Dioscorea villosa Joe Pye weed, Eupatorium purpureum Ladybells, Adenophora species Herbaceous Plants: Lady’s mantle, Alchemilla vulgaris Alfalfa, Medicago sativa Lavender, Lavendula angustifolia Aloe vera, Aloe barbadensis Lemon balm, Melissa officinalis American skullcap, Scutellaria laterifolia Licorice, Glycyrrhiza
    [Show full text]
  • Red, Blue and Purple Dyes
    Purple, Blue and Red Dyes We have discussed the vibrant colors of flowers, the somber colors of ants, the happy colors of leaves throughout their lifespan, the iridescent colors of butterflies, beetles and birds, the attractive and functional colors of human eyes, skin and hair, the warm colors of candlelight, the inherited colors of Mendel’s peas, the informative colors of stained chromosomes and stained germs, the luminescent colors of fireflies and dragonfish, and the abiotic colors of rainbows, the galaxies, the sun and the sky. The natural world is a wonderful world of color! The infinite number of colors in the solar spectrum was divided into seven colors by Isaac Newton—perhaps for theological reasons. While there is no scientific reason to divide the spectral colors into seven colors, there is a natural reason to divide the spectral colors into three primary colors. Thomas Young (1802), who was belittled as an “Anti-Newtonian” for speaking out about the wave nature of light, predicted that if the human eye had three photoreceptor pigments, we could perceive all the colors of the rainbow. He was right. 751 Thomas Young (1802) wrote “Since, for the reason assigned by NEWTON, it is probable that the motion of the retina is rather of a vibratory [longitudinal] than of an undulatory [transverse] nature, the frequency of the vibrations must be dependent on the constitution of this substance. Now, as it is almost impossible to conceive each sensitive point of the retina to contain an infinite number of particles, each capable of vibrating
    [Show full text]
  • Natural Dyeing Plants As a Source of Compounds Protecting Against UV Radiation
    Natural dyeing plants as a source of compounds protecting against UV radiation Katarzyna SCHMIDT-PRZEWOŹNA*, Małgorzata Zimniewska Institute of Natural Fibres and Medicinal Plants Wojska Polskiego 71b 60-630 Poznań *corresponding author: [email protected] Summary The Institute of Natural Fibres and Medicinal Plants has been carrying out a complex re- search related to application of natural dyes on fabrics. Colors of nature, obtained from various plants, have contributed to creating a collection of clothes produced from linen fabrics. The UV radiation can cause earlier skin ageing, burns and even skin cancer. The increasing hazard posed by UV radiation due to thinning of the ozone layer forces the tex- tile producers to pay attention to providing textile products with barrier properties that would guarantee the protection against harmful UV radiation. The results of the studies proved that many fabrics dyed with dyeing plants using the original method developed at INF&MP are characterized with good or very good protection factors. Fengurek Trigo- nella foenum-graecum, coreopsis Coreopsis tinctoria L., knotgrass Polygonum aviculare L., India madder Rubia cordifolia L. the are represent group of plants with excellent UV properties. Key words: natural dyestuffs, dyeing plants, Uv radiation, ecology, colors INTRODuCTION During last eleven years the research program on natural dyestuffs has been carried out in the Institute of Natural Fibres and Medicinal Plants in Poznań. The research has been based on historical sources and laboratory trials. Approximate- ly 50 dyestuffs of plant origin have been tested in this period for possible applica- tion in natural raw materials. The project is carried out by Laboratory of Natural Dyeing INF&MP with cooperation with herbal companies and botanical gardens.
    [Show full text]
  • Mountain Gardens Full Plant List 2016
    MOUNTAIN GARDENS BARE ROOT PLANT SALES WWW.MOUNTAINGARDENSHERBS.COM Here is our expanded list of bare root plants. Prices are $4-$5 as indicated. Note that some are only available in spring or summer, as indicated; otherwise they are available all seasons. No price listed = not available this year. We begin responding to requests in April and plants are generally shipped in May and June, though inquiries are welcome throughout the growing season. We ship early in the week by Priority Mail. For most orders, except very large or very small, we use flat rate boxes @$25 per shipment. Some species will sell out – please list substitutes, or we will refund via Paypal or a check. TO ORDER, email name/number of plants wanted & your address to [email protected] Payment: Through Paypal, using [email protected]. If you prefer, you can mail your order with a check (made out to ‘Joe Hollis’) to 546 Shuford Cr. Rd., Burnsville, NC 28714. Or you can pick up your plants at the nursery (please send your order and payment with requested pick-up date in advance). * Shipping & handling: 25$ flat rate on all but very small or very large orders – will verify via email. MOUNTAIN GARDENS PLANT LIST *No price listed = not available this year. LATIN NAME COMMON NAME BARE USE/CATEGORY ROOT Edible, Medicinal, etc. Achillea millefolium Yarrow $4.00 Medicinal Aconitum napellus Monkshood, Chinese, fu zi ChinMed, Ornamental Acorus calamus Calamus, sweet flag Med Acorus gramineus shi chang pu 4 ChinMed Actaea racemosa Black Cohosh 4 Native Med Aegopodium podograria
    [Show full text]
  • EL Art Dyeing with Plants
    Dyeing with Plants Authors: Richard Merrill & Susan Barrett Merrill Subjects: Art, Science (chemistry), Language The primary colors are red, yellow and blue. The primary plant dyes that produce these colors are: 1. Red a. Madder, Rubia tinctorum i. Chemical source in the plant: alizarin, purpurin 2. Yellow a. Goldenrod (Solidago species) i. Chemical source in the plant: b. Onion Skins (Allium cepa) i. Chemical source in the plant: 3. Blue a. Indigo (Indigofera tinctoria) i. Chemical source in the plant: indigotin (not soluble in water) b. Woad (Isatis tinctoria) i. Chemical source in the plant: indigotin, but smaller amounts Most natural dyes need a chemical called a mordant to help them bind to the fibers. These are often poisonous metallic salts, such as copper sulfate and potassium dichromate. We avoid these substances because their toxicity makes them dangerous to work with. Color Mordant Dye material Red Alum, Cream of tartar Madder Root Yellow Alum Goldenrod Yellow NONE Onionskin (yellow and red) Blue Yeast, sugar, ammonia, lye Indigo, woad Madder root and indigo are harder to come by. Goldenrod is seasonal in July through September, depending on your location, and requires alum, an aluminum salt, as a mordant. Onionskins are available to us year-round. Do not use blues for classroom work because of the noxious chemicals (ammonia) and dangerous caustic materials (lye). Alum is also toxic, so it is not recommended for classroom use. But there is one safe, fun way to dye naturally – onion skins! Dyeing with Onion Skins Start preparing the class by asking them to save and bring in onion skins from home (the papery part from yellow onions).
    [Show full text]
  • Economically Important Plants Arranged Systematically James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us.
    [Show full text]