Is Glutathione Peroxidase-1 (GPX1) the Relevant Gene?

Total Page:16

File Type:pdf, Size:1020Kb

Is Glutathione Peroxidase-1 (GPX1) the Relevant Gene? Genes and Immunity (2015) 16, 571–575 © 2015 Macmillan Publishers Limited All rights reserved 1466-4879/15 www.nature.com/gene SHORT COMMUNICATION Inflammatory bowel disease (IBD) locus 12: is glutathione peroxidase-1 (GPX1) the relevant gene? F Häuser1, H Rossmann1, D Laubert-Reh2, PS Wild2,3,4, T Zeller5,6, C Müller5, S Neuwirth1, S Blankenberg5,6 and KJ Lackner1 Genome-wide association studies have identified and repeatedly confirmed the association of rs3197999 in MST1 with inflammatory bowel disease (IBD). However, the underlying pathophysiology remains unclear. rs3197999 is a non-synonymous single-nucleotide polymorphism which modifies the function of macrophage stimulating protein-1 (MST1). We show by haplotyping that rs3197999 is in linkage disequilibrium with rs1050450 in GPX1, with almost complete cosegregation of the minor alleles. As shown by immunoassay, rs3197999 influences the MST-1 level in serum. But also rs1050450 causes an amino acid exchange in glutathione peroxidase 1 (GPx-1) and reduced activity of this antioxidant enzyme. The association of GPx deficiency and IBD in mice was already shown. We propose that GPx-1 is a better candidate than MST1 for the pathophysiologic link between IBD locus 12 and IBD. Genes and Immunity (2015) 16, 571–575; doi:10.1038/gene.2015.35; published online 10 September 2015 INTRODUCTION the true causative variant has also been discussed by the authors Today more than 160 genetic susceptibility loci are known for of the numerous genome-wide association studies (GWAS) and inflammatory bowel diseases (Crohn´s disease and ulcerative meta-analyses describing the association of rs3197999 with IBD 1,3,9,10 colitis, IBD). The association of some single-nucleotide polymorph- and/or PSC. But the question was not answered. The isms (SNP) with IBD was replicated convincingly several times, for currently available studies are purely descriptive (that is, several example rs3197999 (MST1) and rs9858542 (BSN).1–4 Both variants or all potential candidate genes within IBD locus 12 are listed, are located in IBD locus 12 a 10.7 Mb spanning region located on among them in several cases: BSN, MST1 and GPX1) with a clear chromosome 3 (3p21; Figure 1), show similar minor allele focus on MST1 due to the fact that rs3197999 represents a frequencies (MAF) (for example, rs9858542: 0.1953, rs3197999: missense mutation affecting protein function. 0.1919 [dbSNP]), and cosegregate in the same haplotype (http:// In this situation, we set out to search for further functionally hapmap.ncbi.nlm.nih.gov). Notably a large number of further SNPs relevant SNPs in the region 3p21 (Table 1). Among other SNPs we with comparable MAF are located in IBD locus 12 (Table 1) and are identified rs1050450 (c. 599C4T), a polymorphism in the presumably linked to rs3197999, but for the majority linkage has glutathione peroxidase-1 (GPX1) gene as a promising candidate. not yet been formally established. rs3197999, one of the best replicated SNPs in IBD and primary sclerosing cholangitis, is a variant in the macrophage stimulating RESULTS AND DISCUSSION protein (MST1/MSP/HGFL) gene. The MST1 which is the ligand of GPX1 SNP rs1050450 has not been reported to be associated with the receptor tyrosine kinase RON (recepteur d´origine nantais) was IBD or to cosegregate with the MST1 SNP rs3197999 to date. It found to induce a variety of cellular responses, for example, results in an amino acid substitution (p. Pro200Leu); the Leu migration, proliferation and adhesion.5,6 rs3197999 (c.2107C4T) is variant shows a reduced peroxidase activity in erythrocytes and a common SNP in MST1, resulting in the substitution of an the activity is less responsive to increasing selenium blood arginine by a cysteine at position 703 of MST1. In vitro the SNP levels.11,12 GPx-1 is a selenoprotein with antioxidant and anti- causes a ‘gain of function’; the mutant protein induces migration inflammatory functions. As expected because of their small and proliferation in macrophage-like cells more efficiently than physical distance on chromosome 3 (327 kb) and their similar the wild-type protein without changing the ability of binding its MAF (MAF rs3197999: 0.1919, MAF rs1050450: 0.2175 [dbSNP]), we receptor RON.7,8 observed that rs3197999 (in MST1) and rs1050450 (in GPX1) are Since rs3197999 is at the same time associated to IBD and does closely linked (Figure 1). Our haplotype analysis revealed that modify macrophage function, while rs9858542 (BSN) is a synon- there is almost complete cosegregation of the minor alleles ymous variant, rs3197999 has been regarded as the prime (Table 2). By a systematic genome-wide search for haplotypic cis candidate for a pathophysiologic link between IBD locus 12 and eQTL effects of rs3197999 in monocytes based on 1374 individuals IBD. Nevertheless, the question whether rs3197999 itself is of the population-based Gutenberg Health Study of the University causally related to IBD or PSC or is in linkage disequilibrium with Medical Center Mainz, we found the mRNA expression of five 1Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany; 2Department of Medicine II, Preventive Cardiology and Preventive Medicine, University Medical Center Mainz, Mainz, Germany; 3Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany; 4German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, Mainz, Germany; 5Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany and 6German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany. Correspondence: Dr H Rossmann, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, Mainz 55131, Germany. E-mail: [email protected] Received 9 June 2015; revised 17 July 2015; accepted 27 July 2015; published online 10 September 2015 IBD locus 12: is GPX1 the relevant gene? F Häuser et al 572 Figure 1. Scheme of IBD locus 12 (3p21). Chromosomal localization of the genes, distances between genes and SNPs as given by the UCSC Genome Brower (http://ucscbrowser.genap.ca) and the NCBI dbSNP (http://www.ncbi.nlm.nih.gov/SNP). genes significantly associated with the rs3197999 genotype consequence of the disease.15 (4) GPx-1 activity decreases in Se- (Supplementary Table S1). All of them are located within an deficiency.12 Furthermore GPx-1 activity in carriers of the 800-kb region of 3p21 (Figure 1), and among them is GPX1 (eQTL; rs1050450 minor allele (C/T, T/T) does not increase with rising effect estimate 0.0712, P-valueo0.001, false discovery rate 0.01). Se-concentrations to that extent observed in C/C individuals;16,17 in a cohort of 4900 probands of the Gutenberg Health Study these data suggest us that Se-deficiency is more relevant in (Figure 2a). Median GPx-1 activity in erythrocytes of individuals, carriers of the minor allele. (5) Several case reports and small which are homozygous for the MST1 SNP rs3197999 (T/T), is studies suggest a beneficial effect of Se-supplementation in the significantly lower (59.8 U g− 1 Hb; Po0.001) than in individuals prevention or treatment of IBD, even though randomized with heterozygous (C/T; 62.4 U g − 1 Hb) or homozygous C alleles controlled studies are still lacking. (C/C; 63.9 U g − 1 Hb). Hence the GPx-1 effect of rs3197999 (MST1) Though the association of rs3197999 in MST1 with IBD was first is consistent with the effect of rs1050450 (GPX1) published published in 2008,1 replicated and included in several meta- previously (C/C vs C/T minus 3.3%, C/C vs T/T minus 7.7%).11 For analyses, it is still unclear, which variant in IBD locus 12 causes this MST1 serum concentration, the effect is even more pronounced association. Of course there are more genetic variants in IBD locus (Figure 2b): Median serum MST1 levels of individuals with 12 and though most of them are for several reasons not likely to homozygous minor alleles (rs3197999: T/T) are significantly lower be involved in pathophysiological processes (for example, (129.82 ng ml − 1, Po0.001) than levels of those with heterozygous synonymous SNPs, far intronic SNPs, gene function without (C/T: 193.64 ng ml − 1, Po0.001) or homozygous C alleles (C/C: obvious link to IBD), there still remain several SNPs with possible − 266.36 ng ml 1). Our mRNA expression and protein data suggest a significance for IBD (Table 1). For example, a variable number of common regulation of MST1 and GPX1. However, we cannot alanine repeats (Ala7/6/5; Ala6: rs139760138, Ala5 rs17838762) in completely rule out that the two SNPs have independent effects the GPx-1 amino terminus has been shown to interact with on their genes and gene products. rs1050450 and affect the protein's cellular localization and There are different reasons why association studies were not function.18 One could speculate that stratifying our data by this focused on rs1050450: first of all this SNP were not analyzed. additional variation might even result in a more pronounced Genome-wide association studies results were largely generated effect of the rs1050450 genotype. by arrays, which detect a defined panel of SNPs. rs1050450 was In summary, we show by linkage and functional analysis that not part of these panels (the Illumina Exome Chip is the first available genome-wide association studies data showing an platform analyzing rs3197999 and rs1050450 in one array; increased risk of IBD in carriers of the minor allele of rs3197999 Illumina, Inc; San Diego, CA, USA). More importantly, no linkage of MST1 apply as well to the minor allele of rs1050450 of GPX1. data for rs1050450 with rs3197999 is available in the HapMap Since a wealth of experimental and clinical data support a role for project’s database.
Recommended publications
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Methods Mouse Strains and Housing Male Wild-Type Mice
    Methods Mouse strains and housing Male wild-type mice (C57BL/6J background) and B6.Cg-Tg (APPSwFlLon, PSEN1*M146L*L286V) 6799Vas/Mmjax (5xFAD, JAX 008730) were purchased from the Jackson Laboratory. μMT-/- mice which are deficient in B cells were purchased from Shanghai Model Organisms Center, Inc. Both B6.Cg-Tg and μMT-/- mice were bred on a C57BL/6J background. 5xFAD mice and μMT-/- mice were crossed to generate μMT-/-/5xFAD mice. The mice were used at different ages that are indicated throughout the manuscript. Mice of all strains were specific pathogen free environment with controlled temperature and humidity, on 12 h light: dark cycles (lights on at 7:00), and fed with regular rodent’s chow and sterilized tap water ad libitum. All experiments were approved by the Institutional Animal Care and Use Committee of the Nanjing Medical University. Human samples Frontal cortex tissues were obtained from 4 cases within 4-6 h of death, via informed donation for the Medical Education and Research of Nanjing Medical University, with corresponding written consents prepared by the donors and their families. Cases that were died from brain associated diseases were excluded from this study. The utilization of human tissues was approved by the Ethics Committee of Nanjing Medical University. All obtained samples were fixed in a 4% formalin solution and kept in paraffin blocks until further sectioning. Animal surgery DcLN ligation: The procedure of surgical ligation of the lymphatics afferent to the dcLNs was according to published literature (3, 30). In brief, mice were anaesthetized by i.p. injection with ketamine and xylazine in saline, and fixed on a stereotaxic apparatus in a supine position.
    [Show full text]
  • Pharmacogenomic Characterization in Bipolar Spectrum Disorders
    pharmaceutics Review Pharmacogenomic Characterization in Bipolar Spectrum Disorders Stefano Fortinguerra 1,2 , Vincenzo Sorrenti 1,2,3 , Pietro Giusti 2, Morena Zusso 2 and Alessandro Buriani 1,2,* 1 Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35131 Padova, Italy; [email protected] (S.F.); [email protected] (V.S.) 2 Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy; [email protected] (P.G.); [email protected] (M.Z.) 3 Bendessere™ Study Center, Solgar Italia Multinutrient S.p.A., 35131 Padova, Italy * Correspondence: [email protected] Received: 25 November 2019; Accepted: 19 December 2019; Published: 21 December 2019 Abstract: The holistic approach of personalized medicine, merging clinical and molecular characteristics to tailor the diagnostic and therapeutic path to each individual, is steadily spreading in clinical practice. Psychiatric disorders represent one of the most difficult diagnostic challenges, given their frequent mixed nature and intrinsic variability, as in bipolar disorders and depression. Patients misdiagnosed as depressed are often initially prescribed serotonergic antidepressants, a treatment that can exacerbate a previously unrecognized bipolar condition. Thanks to the use of the patient’s genomic profile, it is possible to recognize such risk and at the same time characterize specific genetic assets specifically associated with bipolar spectrum disorder, as well as with the individual response to the various therapeutic options. This provides the basis for molecular diagnosis and the definition of pharmacogenomic profiles, thus guiding therapeutic choices and allowing a safer and more effective use of psychotropic drugs. Here, we report the pharmacogenomics state of the art in bipolar disorders and suggest an algorithm for therapeutic regimen choice.
    [Show full text]
  • Deubiquitinase UCHL1 Maintains Protein Homeostasis Through PSMA7-APEH- Proteasome Axis in High-Grade Serous Ovarian Carcinoma
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.316810; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deubiquitinase UCHL1 Maintains Protein Homeostasis through PSMA7-APEH- Proteasome Axis in High-Grade Serous Ovarian Carcinoma Apoorva Tangri1*, Kinzie Lighty1*, Jagadish Loganathan1, Fahmi Mesmar2, Ram Podicheti3, Chi Zhang1, Marcin Iwanicki4, Harikrishna Nakshatri1,5, Sumegha Mitra1,5,# 1 Indiana University School of Medicine, Indianapolis, IN, USA 2 Indiana University, Bloomington, IN, USA 3Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 4Stevens Institute of Technology, Hoboken, NJ, USA 5Indiana University Melvin & Bren Simon Cancer Center, Indianapolis, USA *Equal contribution # corresponding author; to whom correspondence may be addressed. E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.316810; this version posted October 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand, which exacerbate misfolded, unfolded and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. In this study, we report that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions).
    [Show full text]
  • Identification of Conserved Genes Triggering Puberty in European Sea
    Blázquez et al. BMC Genomics (2017) 18:441 DOI 10.1186/s12864-017-3823-2 RESEARCHARTICLE Open Access Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling Mercedes Blázquez1,2* , Paula Medina1,2,3, Berta Crespo1,4, Ana Gómez1 and Silvia Zanuy1* Abstract Background: Spermatogenesisisacomplexprocesscharacterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. Results: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty.
    [Show full text]
  • Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • AGBT-2018-Andy-Pang.Pdf
    Efficient Structural Variation Detection and Annotation Using Bionano Genome Mapping A. W. C. Pang1, J. Lee1, A. Hastie1, E. Lam1, E. Chan2, V. Hayes2, H. Cao1, M. Borodkin1 1) Bionano Genomics, San Diego, California, USA; 2) Garvan Institute of Medical Research, Darlinghurst, Australia Abstract Background Structural variation (SV) detection is fundamental to understanding cancer workflow can compare against a control sample, and examines whether the Generating high-quality finished genomes replete with accurate genomes. While karyotyping and conventional molecular detection approaches cancer mutations are present in low fraction among the control’s molecules. identification of structural variation and high completion (minimal are robust, they can be manually intensive, biased towards targeted loci, and Using this pipeline, whose runtime is only a few hours, we can efficiently focus gaps) remains challenging using short read sequencing cannot determine the copy number of long repeats. on several dozen significant candidates for further analysis. technologies alone. Bionano mapping provides direct visualization of long DNA molecules in their native state, bypassing the statistical inference needed to align Bionano Genomics’ Saphyr System offers a sensitive method for detecting large We ran multiple solid and hematologic cancer samples. First, we generated a paired-end reads with an uncertain insert size distribution. These long labeled SVs. DNA molecules larger than 100 kbp are extracted, labelled at specific highly contiguous genome map assembly on a solid tumor sample. The ultra molecules are de novo assembled into physical maps spanning the whole genome. motifs, and linearized through NanoChannels arrays for subsequent long maps – with lengths encompassing entire chromosomal arms – were able The resulting order and orientation of sequence elements in the map can be used visualization.
    [Show full text]
  • The C718T Polymorphism in the 3″-Untranslated
    Hypertension Research (2012) 35, 507–512 & 2012 The Japanese Society of Hypertension All rights reserved 0916-9636/12 www.nature.com/hr ORIGINAL ARTICLE The C718T polymorphism in the 3¢-untranslated region of glutathione peroxidase-4 gene is a predictor of cerebral stroke in patients with essential hypertension Alexey V Polonikov1, Ekaterina K Vialykh2, Mikhail I Churnosov3, Thomas Illig4, Maxim B Freidin5, Oksana V Vasil¢eva1, Olga Yu Bushueva1, Valentina N Ryzhaeva1, Irina V Bulgakova1 and Maria A Solodilova1 In the present study we have investigated the association of three single nucleotide polymorphisms in glutathione peroxidase (GPx) genes GPX1 rs1050450 (P198L), GPX3 rs2070593 (G930A) and GPX4 rs713041 (T718C) with the risk of cerebral stroke (CS) in patients with essential hypertension (EH). A total of 667 unrelated EH patients of Russian origin, including 306 hypertensives (the EH–CS group) who suffered from CS and 361 people (the EH–CS group) who did not have cerebrovascular accidents, were enrolled in the study. The variant allele 718C of the GPX4 gene was found to be significantly associated with an increased risk of CS in hypertensive patients (odds ratio (OR) 1.53, 95% confidence interval (CI) 1.23–1.90, Padj¼0.0003). The prevalence of the 718TC and 718CC genotypes of the GPX4 gene was higher in the EH–CS group than the EH-alone group (OR¼2.12, 95%CI 1.42–3.16, Padj¼0.0018). The association of the variant GPX4 genotypes with the increased risk of CS in hypertensives remained statistically significant after adjusting for confounding variables such as sex, body mass index (BMI), blood pressure and antihypertensive medication use (OR¼2.18, 95%CI 1.46–3.27, P¼0.0015).
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer.
    [Show full text]
  • Supplemental Figure and Table Legends
    Supplemental figure and table legends Supplementary Figure 1: KIAA1841 is well conserved among vertebrates. NCBI HomoloGene pairwise alignment scores of human KIAA1841 sequence compared to other vertebrate orthologs. Supplementary Figure 2: µ-germline transcripts (GLT) and AID mRNA expression are not affected by overexpression of KIAA1841. Splenic B cells were isolated from wild-type mice, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841. Levels of µ-GLT and AID mRNA were determined at 72h post-infection by RT-qPCR, and normalized to -actin mRNA and the pMIG control. The mean of three independent experiments +/- SD is shown. NS, p = not significant, p 0.05, two-tailed paired student’s t-test. Supplementary Figure 3: Overexpression of untagged and Xpress-tagged KIAA1841 does not affect cell proliferation. Splenic B cells were isolated from wild-type mice, stimulated with LPS+IL4, and transduced with retroviral vector control (pMIG) or a vector expressing KIAA1841 or Xpress (Xp)-tagged KIAA1841. Cells are labeled with seminaphthorhodafluor (SNARF) cell tracking dye and SNARF intensity was measured at 0h, 24h, and 48h after retroviral infection. Histograms of transduced cells (GFP+) for pMIG control, KIAA1841 and Xp-KIAA1841 were superimposed at each time point. Three independent retroviral infection experiments are shown. Supplementary Figure 4: Sequence alignment of the putative SANT domain of KIAA1841 with the SANT domain of SWI3. Alignment was performed using ClustalOmega; *, conserved residue, :, strongly similar residues, ., weakly similar residues. Numbers indicate amino acid residues in each sequence. Helix 3, which has been reported to be important for the chromatin remodeling function of SWI3 (Boyer et.
    [Show full text]