A Genomewide Linkage Scan for Abdominal Subcutaneous and Visceral Fat in Black and White Families the HERITAGE Family Study Treva Rice,1 Yvon C

Total Page:16

File Type:pdf, Size:1020Kb

A Genomewide Linkage Scan for Abdominal Subcutaneous and Visceral Fat in Black and White Families the HERITAGE Family Study Treva Rice,1 Yvon C A Genomewide Linkage Scan for Abdominal Subcutaneous and Visceral Fat in Black and White Families The HERITAGE Family Study Treva Rice,1 Yvon C. Chagnon,4 Louis Pe´russe,5 Ingrid B. Borecki,1,2 Olavi Ukkola,7,8 Tuomo Rankinen,8 Jacques Gagnon,6 Arthur S. Leon,9 James S. Skinner,10 Jack H. Wilmore,11 Claude Bouchard,8 and D.C. Rao1,2,3 Abdominal visceral fat (AVF), abdominal subcutaneous accumulation in the abdominal depot. Additional work fat (ASF), and abdominal total fat (ATF) were mea- in an independent sample is needed to verify the link- sured using a computed tomography scan, both before ages for baseline AVF as well as the response measures. (baseline) and after (post) a 20-week endurance exer- Diabetes 51:848–855, 2002 cise training protocol in the HERITAGE Family Study. Each of the baseline and response (post minus baseline) measures was adjusted for several covariates, including total fat mass, and responses to training were further xcess upper-body adipose tissue is strongly as- adjusted for baseline levels. Multipoint variance com- sociated with insulin resistance (1,2) and clini- ponents linkage analysis using a genomewide scan of cal conditions associated with cardiovascular 344 markers was conducted separately by race using race-specific allele frequencies. Several promising re- Erisk, such as hypertension and dyslipidemia sults (P < 0.0023) were obtained. For baseline AVF, the (3–5). Sex and growth hormones, glucocorticosteroids, best evidence was on 2q22.1 and 2q33.2-q36.3 (includ- and catecholamines all contribute to abdominal fat accu- ing the IRS1 locus) in whites, with suggestive findings mulation within this context (6,7). The relative importance on 7q22.2-q31.3 (including the LEP locus) in blacks. of abdominal visceral fat (AVF) and abdominal subcu- Although several regions were indicated for baseline taneous fat (ASF) in insulin resistance is under debate, ASF, only 4q31.22-q32.2 and 11p15.4-p11.2 replicated with some studies reporting better insulin and glucose the results of another study. For responses to training, homeostasis with AVF (8) and others favoring ASF promising results were limited to ASF and ATF primar- (9,10). ily on 7q36.2 (including NOS3) in blacks, with sugges- tive regions (P < 0.01) on 1q21.2-q24.1 (S100A, Based on results from the Que´bec Family Study (QFS) ATP1A2, and ATP1B1), 10q25.2 (ADRA2A), and 11p15.5 and the HERITAGE Family Study (11,12), it is clear that (IGF2). In summary, the 4q and 11p regions have now abdominal fat depots are strongly influenced by genetic been implicated in two independent studies for ASF; factors, with maximal heritabilities Ͼ55% for AVF and further research is warranted to identify the genes and abdominal total fat (ATF) and Ͼ40% for ASF. Segregation mutations in these regions that are responsible for fat analyses further suggest that the familial effect is primarily attributable to major recessive genes for AVF (13,14). Candidate gene studies have identified regions that may From the 1Division of Biostatistics, Washington University School of Medi- contribute to this variability (15). For example, there are cine, St. Louis, Missouri; 2Department of Genetics, Washington University reports of associations or linkages between AVF and the School of Medicine, St. Louis, Missouri; 3Department of Psychiatry, Washing- ton University School of Medicine, St. Louis, Missouri; 4Physical Activity glucocorticoid receptor gene (16), the ␤-3-adrenergic re- Sciences Laboratory, Laval University, Que´bec, Canada; 5Division of Kinesi- ceptor gene (17,18), and the fatty acid binding proteinϪ2 ology and Department of Preventive Medicine, Laval University, Que´bec, Canada; 6Molecular Endocrinology Laboratory, Laval University, Que´bec, gene (19). The first genomewide scan for abdominal Canada; 7Department of Internal Medicine and Biocenter Oulu, University of adiposity was from the QFS (20), in which linkage was Oulu, Oulu, Finland; 8Pennington Biomedical Research Center, Baton Rouge, found primarily for ASF. As expected for complex traits, LA; 9School of Kinesiology and Leisure Studies, University of Minnesota, Minneapolis, Minnesota; 10Division of Kinesiology, Indiana University, Bloom- multiple linked regions were found, the magnitude of the ington, Indiana; and 11Department of Health and Kinesiology, TexasA&M results was moderate, and replication was needed to University, College Station, Texas. strengthen the credibility of the findings. Address correspondence and reprint requests to Treva Rice, Ph.D., Division of Biostatistics, Washington University School of Medicine, 660 S. Euclid Ave., Other lines of investigation have suggested that adipos- Box 8067, St. Louis, MO 63110. E-mail: [email protected]. ity changes in response to intervention are attributable in Received for publication 26 September 2001 and accepted in revised form 5 December 2001. part to genetic factors (21). For example, a segregation AVF, abdominal visceral fat; ASF, abdominal subcutaneous fat; ATF, analysis of the AVF response to 20 weeks of exercise abdominal total fat; CT, computed axial tomography; FM, total body fat mass; 2 2 training in the HERITAGE Family Study suggested a h g, locus-specific heritability; h r, residual heritability; LOD, logarithm of odds; LRT, likelihood ratio test; QFS, Que´bec Family Study; QTL, quantitative heritability of nearly 20%, which was primarily due to a trait locus. putative recessive locus (22). To date, candidate gene 848 DIABETES, VOL. 51, MARCH 2002 T. RICE AND ASSOCIATES studies of the abdominal fat response phenotypes have form, skewness (Ϫ0.26) and kurtosis (Ϫ0.30) were reduced. All remaining been primarily negative (23), although other dimensions of measures (baseline ASF and ATF, as well as responses to training) approxi- mated a normal distribution without any transforming. Stepwise regression body composition training responses (fat and fat-free analysis was used to remove the effects of several covariates; baseline mass, BMI, and sum of skinfolds) have been linked to measures were adjusted for FM and a polynomial in age (age, age2, and age3), several genomic regions (24). and responses were further adjusted for baseline measures. Adjustments were The objective of the current investigation was to con- performed within sex, generation, and race groups, retaining only those terms that were significant at the 5% level. duct a genomewide search for linkage regions influencing PCR conditions and genotyping methods have been fully outlined by AVF, ASF, and ATF, both in a sedentary state (baseline) Chagnon et al. (30). Automatic DNA sequencers from LICOR (Lincoln, NB) and in response to endurance exercise training, using data were used to detect the PCR products, and genotypes were scored automat- on black and white families participating in the HERI- ically using the software SAGA (R. McIndoe, R. Bumgarner, R. Welti, Univer- TAGE Family Study. A total of 344 markers spanning 22 sity of Washington at Seattle; LICOR). Microsatellite markers and candidate genes were selected mainly from the Marshfield panel version 8a. Map autosomes were typed, including microsatellites as well as locations (Kosambi distance in centimorgans) were taken primarily from the some candidates for adiposity and related cardiovascular location database of Southampton, U.K. (http://cedar.genetics.soton.ac.uk) risk factors. Baseline and response measures were ad- and the Marshfield map (http://www.marshmed.org/genetics). justed for several covariates, including total fat mass, and Linkage analysis was performed using a multipoint variance component model as implemented in SEGPATH (31,32). The additive effects of a trait analyses were conducted separately by race. locus, residual pseudo-polygenic familial background, and residual nonfamil- ial component influence the phenotype. The proportion of phenotypic vari- ance accounted for by the trait locus and pseudo-polygenic component RESEARCH DESIGN AND METHODS 2 2 represents the heritabilities h g (locus specific) and h r (residual). Allele The HERITAGE Family Study was designed to investigate the role of familial sharing probabilities (at each marker location for each sibling pair) were used factors underlying the cardiovascular, metabolic, and hormonal responses to as observed input data and were computed using the program MAPMAKER/ a standardized aerobic exerciseϪtraining program. Several criteria were used SIBS (33). Other parameters included a spouse correlation, additional sibling to screen participants (25). In general, the goal was to obtain sedentary resemblance, and offspring means and variances. families consisting of two parents and at least three biological offspring, Linkage was tested by restricting the locus-specific heritability to zero. A 2 ϭ although family structure/size requirements were relaxed for black families. likelihood ratio test (LRT) contrasting the null hypothesis (h g 0) with the 2 Sedentary was defined as not participating in any regular strenuous exercise, alternative (h g estimated) was used. The LRT was asymptotically distributed Ն ␹2 characterized as exercise lasting 30 min and involving energy expenditure of as a 50:50 mixture of a 1 and a point mass at zero (34), and the correct P Ն Ͻ ␹2 7 (age 50 years) or 8 METS (age 50 years) for more than once a week for value associated with the linkage test was 0.5 of that corresponding to the 1. ␹2 ⅐ Ͻ the previous 6 months. Nonsedentary members in otherwise qualifying The logarithm of odds (LOD) score was computed as /(2 loge10). P families discontinued exercise for at least 6 months before the family was 0.0023 or a LOD score Ն1.75 represents a rate of one false positive result per reconsidered for enrollment in the study. All parents were required to be age scan (on average) for experiments involving ϳ400 markers (35). In the current Յ65 years and offspring to be ages 17–49 years. With a few exceptions study, 12 experiments were conducted (three traits by two dimensions by two approved by a physician, subjects had a BMI Ͻ40 kg/m2 and a resting blood races) using race-specific allele frequencies. pressure Յ159/99 mmHg.
Recommended publications
  • A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
    A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 .​ Though we are reasonably sure the genes here are well annotated, we want to note that not every ​ protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. ​ ​ In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study.
    [Show full text]
  • Transcriptomic Uniqueness and Commonality of the Ion Channels and Transporters in the Four Heart Chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A
    www.nature.com/scientificreports OPEN Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A. Iacobas3,4* Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profled with Agilent microarrays to identify the diferences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantifed 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited diferential expression between the atrium and the ventricle, while 5.8% of genes were diferently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber diferences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantifed binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side. Starting with crocodilians, the heart pumps the blood through the pulmonary circulation and the systemic cir- culation by the coordinated rhythmic contractions of its upper lef and right atria (LA, RA) and lower lef and right ventricles (LV, RV).
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Clinical Significance of P‑Class Pumps in Cancer (Review)
    ONCOLOGY LETTERS 22: 658, 2021 Clinical significance of P‑class pumps in cancer (Review) SOPHIA C. THEMISTOCLEOUS1*, ANDREAS YIALLOURIS1*, CONSTANTINOS TSIOUTIS1, APOSTOLOS ZARAVINOS2,3, ELIZABETH O. JOHNSON1 and IOANNIS PATRIKIOS1 1Department of Medicine, School of Medicine; 2Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus; 3College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar Received January 25, 2021; Accepted Apri 12, 2021 DOI: 10.3892/ol.2021.12919 Abstract. P‑class pumps are specific ion transporters involved Contents in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all 1. Introduction eukaryotic cells. The present review aimed to evaluate the 2. Methodology role of P‑type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase 3. NKA (HKA) and Ca2+‑ATPase] in cancer cells across three fronts, 4. SERCA pump namely structure, function and genetic expression. It has 5. HKA been shown that administration of specific P‑class pumps 6. Clinical studies of P‑class pump modulators inhibitors can have different effects by: i) Altering pump func‑ 7. Concluding remarks and future perspectives tion; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, 1. Introduction the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarco‑ The movement of ions across a biological membrane is a endoplasmic reticulum calcium ATPase can be inhibited by crucial physiological process necessary for maintaining thapsigargin resulting in decreased prostate tumor volume, cellular homeostasis.
    [Show full text]
  • Comprehensive Analysis of the Expression of Sodium/Potassium-Atpase Α Subunits and Prognosis of Ovarian Serous Cystadenocarcinoma
    Comprehensive Analysis of the Expression of Sodium/Potassium-ATPase α Subunits and Prognosis of Ovarian Serous Cystadenocarcinoma Wei Huang Tumor Hospital of Harbin Medical University Yongjian Zhang Tumor Hospital of Harbin Medical University Ye Xu Tumor Hospital of Harbin Medical University Shaoyou Yang Tumor Hospital of Harbin Medical University Bing Li Tumor Hospital of Harbin Medical University Lan Huang Tumor Hospital of Harbin Medical University Ge Lou ( [email protected] ) Tumor Hospital of Harbin Medical University https://orcid.org/0000-0001-6617-4482 Primary research Keywords: Adenosine triphosphate, ovary, cystadenocarcinoma, gynecology, gene expression Posted Date: June 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-23702/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on July 14th, 2020. See the published version at https://doi.org/10.1186/s12935-020-01414-5. Page 1/21 Abstract Background: Ovarian serous cystadenocarcinoma (OSC) is the most common and lethal gynecological cancer in women worldwide; however, biomarkers to diagnose and predict prognosis of OSC remain limited. Therefore, the present study aimed to investigate whether sodium/potassium adenosine triphosphate (Na+/K+-ATP)ase α-subunits (ATP1As) are helpful diagnostic and prognostic markers of OSC. Methods: Gene expression data (RNA-Seq) of 376 patients with OSC were downloaded from The Cancer Genome Atlas (TCGA) program database. Additional databases used in our analysis included the Gene Expression Omnibus, International Cancer Genome Consortium, Genotype–Tissue Expression, the Human Protein Atlas, cBioPortal for Cancer Genomics, and Cancer Cell Line Encyclopedia.
    [Show full text]
  • Figure S1. Targeting of FMR1 Exon 3 Using CRISPR-Cas9 and Verification of Loss of FMRP
    Figure S1. Targeting of FMR1 exon 3 using CRISPR-Cas9 and verification of loss of FMRP. (a) Cas9 nuclease gRNA binding sequences in FMR1 exon 3. (b) Verification of 1 activity of FMR1-targeted CRISPR-Cas9 using the Surveyor assay. (c) Surveyor screening for hESC colonies containing indels in exon 3 of FMR1 using the F1R1 primers. Colonies marked by red asterisks were selected for single cell cloning and further screening. (d) Predicted truncated FMRP peptides in targeted clones. (e) Screening for Cas9 integration in targeted clones by PCR. (+) positive control; (–) negative control. (f) Verification of loss of FMRP by immunoblotting. (g) FMRP peptides detected by MS analysis. Unique peptides in green only detected in control neurons. 2 Figure S2. Characterization of neurons derived from FXS & FMR1KO hESCs. (a) Schematic of neuronal differentiation workflow. (b) Flow cytometry analysis of cellular composition following hPSC neuronal differentiation using cell surface markers of neurons and glia. (c) Immunofluorescence staining of MAP2/TUJ1-positive GABAergic (GABA+) and glutamatergic (TBR1+) neurons differentiated from control, FXS, and FMR1KO1 hESC lines. (d) Quantification of GABAergic and glutamatergic neurons based on anti-GABA and anti- TBR1 immunostaining. 3 Figure S3. Upregulated pathways and validation of select genes from the global transcriptome analysis. (a) Functional annotation (biological processes) of common upregulated genes in FXS and FMR1KO1 neurons. (b) Validation by qRT-PCR of selected downregulated genes identified by RNA-seq. Values shown as mean ± SEM; n = 4 biological replicates per genotype; *p < 0.01, **p < 0.01, and ***p < 0.001 was determined by one-way ANOVA with Tukey’s post-hoc test.
    [Show full text]
  • QKI Suppl Figs Tables Merged.Pdf
    Supplemental Table 1 p<0.05 Human (Hs683) EntrezGene Name shQKI-1/shGFP shQKI-2/shGFP 0 0 26.63 19.00 0 0 11.75 12.75 0 CDNA clone IMAGE:5267346 8.96 4.77 LOC91316: Similar to bK246H3.1 (immunoglobulin lambda-like 91316 polypeptide 1, pre-B-cell specific) 7.94 3.85 RIPK2: receptor-interacting serine- 8767 threonine kinase 2 4.09 3.21 LOC728705: hypothetical protein 728705 LOC728705 3.86 2.44 0 Transcribed locus 3.79 3.95 CCDC57: coiled-coil domain containing 284001 57 3.62 4.73 C1orf101: chromosome 1 open reading 257044 frame 101 3.54 3.33 CDNA FLJ30490 fis, clone 0 BRAWH2000169 3.28 2.76 CHRNE: cholinergic receptor, nicotinic, 1145 epsilon 3.25 2.42 LOC728215: similar to transmembrane 728215 protein 28 3.25 2.86 83849 SYT15: Synaptotagmin XV 3.24 3.30 0 Transcribed locus 3.18 2.64 79838 TMC5: transmembrane channel-like 5 3.16 2.70 144568 A2ML1: alpha-2-macroglobulin-like 1 3.13 2.77 AGGF1: angiogenic factor with G patch 55109 and FHA domains 1 3.09 2.86 91703 ACY3: aspartoacylase (aminocyclase) 3 3.06 2.30 258010 SVIP: small VCP/p97-interacting protein 3.01 2.30 MSR1: macrophage scavenger receptor 4481 1 2.97 2.01 23250 ATP11A: ATPase, class VI, type 11A 2.96 1.71 LOC440934: Hypothetical gene 440934 supported by BC008048 2.89 2.27 0 Transcribed locus 2.87 3.04 Homo sapiens, clone IMAGE:4391558, 0 mRNA 2.85 3.38 C4orf38: chromosome 4 open reading 152641 frame 38 2.79 1.88 54756 IL17RD: interleukin 17 receptor D 2.77 1.98 0 CDNA clone IMAGE:5277449 2.75 2.25 OR51B2: olfactory receptor, family 51, 79345 subfamily B, member 2 2.75 1.89 0
    [Show full text]
  • Increased Expression of ATP12A Proton Pump in Cystic Fibrosis Airways
    Increased expression of ATP12A proton pump in cystic fibrosis airways Paolo Scudieri, … , Gilles Crambert, Luis J.V. Galietta JCI Insight. 2018;3(20):e123616. https://doi.org/10.1172/jci.insight.123616. Research Article Pulmonology Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases. Find the latest version: http://jci.me/123616/pdf RESEARCH ARTICLE Increased expression of ATP12A proton pump in cystic fibrosis airways Paolo Scudieri,1 Ilaria Musante,1 Emanuela Caci,2 Arianna Venturini,1 Patrizia Morelli,3 Christine Walter,4,5 Davide Tosi,6 Alessandro Palleschi,6 Pablo Martin-Vasallo,7 Isabelle Sermet-Gaudelus,8 Gabrielle Planelles,4,5 Gilles Crambert,4,5 and Luis J.V.
    [Show full text]
  • Increased Expression of ATP12A Proton Pump in Cystic Fibrosis Airways
    Increased expression of ATP12A proton pump in cystic fibrosis airways Paolo Scudieri, … , Gilles Crambert, Luis J.V. Galietta JCI Insight. 2018;3(20):e123616. https://doi.org/10.1172/jci.insight.123616. Research Article Pulmonology Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases. Find the latest version: https://jci.me/123616/pdf RESEARCH ARTICLE Increased expression of ATP12A proton pump in cystic fibrosis airways Paolo Scudieri,1 Ilaria Musante,1 Emanuela Caci,2 Arianna Venturini,1 Patrizia Morelli,3 Christine Walter,4,5 Davide Tosi,6 Alessandro Palleschi,6 Pablo Martin-Vasallo,7 Isabelle Sermet-Gaudelus,8 Gabrielle Planelles,4,5 Gilles Crambert,4,5 and Luis J.V.
    [Show full text]
  • Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
    SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins.
    [Show full text]
  • Freezability Biomarkers in Bull Epididymal Spermatozoa
    www.nature.com/scientificreports OPEN Freezability biomarkers in bull epididymal spermatozoa Do-Yeal Ryu1,2, Won-Hee Song1,2, Won-Ki Pang1,2, Sung-Jae Yoon1,2, Md Saidur Rahman1,2 & Myung-Geol Pang1,2 Received: 8 April 2019 Sperm cryopreservation is an important tool for storing genetic traits and assisted reproduction Accepted: 22 August 2019 techniques. Several studies have developed semen cryopreservation protocols. However, the sperm Published: xx xx xxxx proteome is diferent between ejaculated and epididymal spermatozoa and little is known about cryopreservation efects on epididymal spermatozoa. Therefore, our study aimed to (i) investigate the diferences of sperm parameters based on the freezing tolerance of spermatozoa and (ii) identify potential markers to predict the freezability of bull epididymal spermatozoa. Our preliminary study demonstrated that spermatozoa from individual bulls difer in cryopreservation freezability. We categorized spermatozoa into high freezing-tolerant spermatozoa and low freezing-tolerant spermatozoa group based on sperm motility after freezing/thawing. We evaluated several sperm functional parameters, including sperm motility/motion kinematics, sperm speed parameters, viability, mitochondrial activity, and capacitation status. Our results demonstrated that motility, sperm speed parameters, viability, and mitochondrial membrane potential had signifcant diferences between the two groups but motion kinematics and capacitation status did not. In addition, the concentration of three proteins - glutathione s-transferase mu 5, voltage-dependent anion-selective channel protein 2, and ATP synthase subunit beta, difered between both groups. Thus, our research highlighted diferences in bull epididymal spermatozoa freezability upon cryopreservation and these proteins might be useful markers to select high freezing-tolerant epididymal spermatozoa. For decades, cryopreservation was considered to be a remarkable tool to preserve a variety of cell types for long-term storage1–3.
    [Show full text]
  • SUPPLEMENTARY APPENDIX Exome Sequencing Reveals Heterogeneous Clonal Dynamics in Donor Cell Myeloid Neoplasms After Stem Cell Transplantation
    SUPPLEMENTARY APPENDIX Exome sequencing reveals heterogeneous clonal dynamics in donor cell myeloid neoplasms after stem cell transplantation Julia Suárez-González, 1,2 Juan Carlos Triviño, 3 Guiomar Bautista, 4 José Antonio García-Marco, 4 Ángela Figuera, 5 Antonio Balas, 6 José Luis Vicario, 6 Francisco José Ortuño, 7 Raúl Teruel, 7 José María Álamo, 8 Diego Carbonell, 2,9 Cristina Andrés-Zayas, 1,2 Nieves Dorado, 2,9 Gabriela Rodríguez-Macías, 9 Mi Kwon, 2,9 José Luis Díez-Martín, 2,9,10 Carolina Martínez-Laperche 2,9* and Ismael Buño 1,2,9,11* on behalf of the Spanish Group for Hematopoietic Transplantation (GETH) 1Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid; 2Gregorio Marañón Health Research Institute (IiSGM), Madrid; 3Sistemas Genómicos, Valencia; 4Department of Hematology, Puerta de Hierro General University Hospital, Madrid; 5Department of Hematology, La Princesa University Hospital, Madrid; 6Department of Histocompatibility, Madrid Blood Centre, Madrid; 7Department of Hematology and Medical Oncology Unit, IMIB-Arrixaca, Morales Meseguer General University Hospital, Murcia; 8Centro Inmunológico de Alicante - CIALAB, Alicante; 9Department of Hematology, Gregorio Marañón General University Hospital, Madrid; 10 Department of Medicine, School of Medicine, Com - plutense University of Madrid, Madrid and 11 Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain *CM-L and IB contributed equally as co-senior authors. Correspondence:
    [Show full text]