Płazy Beznogie - Apoda

Total Page:16

File Type:pdf, Size:1020Kb

Płazy Beznogie - Apoda Biologia i ochrona płazów wypisy z wykładu 3 Płazy beznogie - Apoda Prof. dr hab. Maria Ogielska Zakład Biologii Ewolucyjnej i Ochrony Kręgowców, Instytut Biologii Środowiskowej, Uniwersytet Wrocławski 2013/2014 Systematyka Współcześnie żyjące płazy (Lissamphibia) należą do 3 rzędów: Urodela/Caudata: Salientia/Anura: Apoda/Gymnophiona: 655 gatunków 6342 gatunków (ponad 50% należy 199 gatunków (50% należy do 3 rodzin: do rodziny Plethodontidae) Ranidae, Leptodactylidae i Hylidae) Amphibia Batrachia Urodela Salientia Apoda + + + Triadobatrachus Anura Gymnophiona Caudata Eocaecilia Karaurus Łącznie 7196 gatunków 2013, AmphibiaWeb kopalne płazy beznogie (Apoda)- wczesna Jura, Arizona USA Eocaecilia micropodia Herpetology, F.H. Pough, R.M. Andrews, J.E. Cadle, M.L. Crump, A.H. Savitzky, K.D. Wells, second edition, Prentice Hall, 2001. Apoda - charakterystyka Blisko spokrewnione z najstarszymi płazami sprzed ok. 400 mln lat Pozbawione kończyn i ich obręczy Ciało wydłużone o robakowatym kształcie Większość Apoda żyje w glebie ryjąc korytarze, nieliczne w wodzie (Typhlonectidae) Żyją w tropikach i subtropikach Wielkość: najmniejszy gatunek Grandisonia brevis 1.12 cm, największy Caecilia thomsoni 152 cm (rodzina Caeciliidae – Marszczelcowate) Apoda - charakterystyka Ciało segmentowane: fałdy obejmują ciało częściowo, pierścienie – całkowicie. Pierścienie I-rzędowe odzwierciedlają segmentację ciała, a ich granice przypadają na septy miotomalne. Pierścienie II- i III-rzędowe występują pomiędzy septami. Siphonops annulatus Najbardziej zaawansowane Apoda nie mają pierścieni III-rzędowych. Apoda - narządy zmysłów Ichthyophis kohaoensis Głównym narządem zmysłu są czułki (tentacle) chemoreceptory Apoda - narządy zmysłów Czułki (tentacle): • odbierają bodźce chemiczne do narządu Jacobsona i do dodatkowych opuszek węchowych, • mają funkcje czuciowe, • są narządami unikatowymi wśród kręgowców, • powstały ze zmodyfikowanych mięśni oka i innych struktur związanych z okiem, • posiadają kanał łączący otoczenie z gruczołami Herderiana w oku. Płyn z gruczołów powoduje usztywnienie czułków po zaciśnięciu mięśnia gładkiego wokół gruczołu, • ponieważ oczy są słabo wykształcone, a nozdrza podczas kopania pod ziemią są zamknięte, czułki są głównym narządem zmysłu. Apoda - narządy zmysłów Oczy Oczy małe lub uwstecznione. Mogą być po skórą lub pod kośćmi czaszki. U Scolecomorphidae oczy są umieszczone przy podstawie czułków i mogą być wciągane wraz z nimi. Są to jedyne kręgowce, które mają wysuwane oczy. Apoda - budowa skóry W skórze obecne są łuski wapienne zbudowane z włókien kolagenowych. Jest to pozostałość po pancerzu skórnym wymarłych przodków. W trakcie ewolucji zachodziła redukcja łusek, np. gatunki wodne z rodziny Typhlonectidae nie posiadają ich wcale. W skórze obecne są również gruczoły śluzowe i jadowe. Apoda - budowa skóry – zwapniałe łuski na bazie włókien kolagenowych Hypogeophis sp. - Caeciliidae Ichthyophis sp. - Ichthyophiidae Florida International University www.fiu.edu/ Apoda - systematyka Internetowa baza gatunków płazów: Frost, Darrel R. 2013. Amphibian Species of the World: an Online Reference. Version 5.6 (9 January 2013). Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA. www.amphibiaweb.org Caecilian web site.http:/www.caecilian.org./ Gromada: Płazy (Amphibia) Rząd: Płazy beznogie (Apoda/Gymnophiona) 10 rodzin, 35 rodzajów, 199 gatunków Rodziny (w nawiasach liczba gatunków): Caeciliidae (42) Chikilidae (4) Dermophiidae (14) Herpelidae (9) Ichtyophiidae (54) Indotyphlidae (21) Rhinatrematidae (11) Scolecomorphidae (6) Siphonopidae (25) Typhlonectidae (13) W nowym podziale taksonomicznym wyodrębniono nowe rodziny, dotychczas znajdujące się w obrębie rodziny Caeciliidae Nowa systematyka: Stara systematyka: Caeciliidae (42) Chikilidae (4) Caeciliidae – marszczelcowate (104) Dermophiidae (14) Rhinatrematidae (10) Herpelidae (9) Ichtyophiidae (46) Ichtyophiidae (54) Uraeotyphlidae (7) Indotyphlidae (21) Scolecomorphidae (6) Rhinatrematidae (11) Typhlonectidae (13) Scolecomorphidae (6) Siphonopidae (25) Typhlonectidae (13) Rząd: Płazy beznogie – Apoda (Gymnophiona) Nowa taksonomia: Rodzina: Caecilidae Rodzaje: Caecilia, Oscaecilia, 42 gatunki Costa Rica and Panama throughout northern South America south to Bolivia, southern Brazil, and possibly Paraguay. Rząd: Płazy beznogie – Apoda (Gymnophiona) Nowa taksonomia: Rodzina: Dermophiidae Rodzaje: Dermophis, Geotrypetes, Gymnopis, Schistometopum 14 gatunków Southern Mexico through Central America to northwestern Colombia; tropical West Africa; Tanzania and Kenya. Rząd: Płazy beznogie – Apoda (Gymnophiona) Rodzina: Ichthyophiidae Rodzaje: Ichthyophis, Uraetyphlos 54 gatunki Filipiny, Indie, płd Chiny, Tajlandia, Malaje (do linii Wallace’a) Rząd: Płazy beznogie – Apoda (Gymnophiona) Rodzina: Typhlonectidae Rodzaje: Atretochoana, Chthonerpeton, Nectocaecilia, Potomotyphlus, Typhlonectes 13 gatunków Oczy dość dobrze wykształcone i widoczne pod skórą. Czułki niewielkie, blisko nozdrzy. Największe płazy beznogie, dochodzą do 80 cm długości. Potomotyphlus i Typhlonectes wodne, pozostałe wodno-lądowe. Żyworodne. Apoda - rozród Apoda - rozród • Brak dymorfizmu płciowego i skomplikowanych zachowań godowych. • Zapłodnienie wewnętrzne przy pomocy narządu kopulacyjnego – phallodeum. Jest to przekształcona część kloaki. • Około75% gatunków jest żyworodna. Zarodki rozwijają się w rozszerzonej części jajowodu – pseudomacicy. Apoda - rozród - phallodeum Typhlonectes natans - Geotrypetes seraphini - Typhlonectidae Caeciliidae Apoda - rozród - żyworodność Caecilian web site.http:/www.caecilian.org./ Najlepiej poznany jest Typhlonectes compressicauda z Gujany Francuskiej. Cykl rozrodczy jest zsynchronizowany z porą deszczową. Po opuszczeniu osłon jajowych larwy odżywiają się nabłonkiem i wydzieliną nabłonka ściany jajowodu matki. Zarodki mają charakterystyczne ząbki. Narządami oddechowymi są skrzela, które zajmują dużą powierzchnię. Samica rodzi 4 młode. Po porodzie młode mają ok. 1.3 cm długości. Apoda - rozród - dermatofoagia Boulengerula taitanus U jajorodnego Boulengerula taitanus opisano niezwykły sposób opieki nad potomstwem- dermatofagię. Po porodzie młode odżywiają się zmodyfikowanym naskórkiem samicy, który zeskrobują specjalnymi ząbkami. http://scienceblogs.com/tetrapodzoology/2008/01/surreal_caecilians_part_ii.php Mus Nat Hist London Apoda - rozród - dermatofoagia Ząbki służące młodym larwom (świeżo po wykluciu) do zeskrobywania naskórka matki - dermatofagia Kupfer, A., Müller, H., Antoniazi, M. M., Jared, C., Greven, H., Nussbaum, R. A. & Wilkinson, M. 2006. Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926-929. Boulengerula taitana Apoda - rozród – matrofoagia/matrotrofia Ząbki służące młodym larwom (nienarodzonym) do zeskrobywania nabłonka jajowodów – matrotrofia. Ząbki zanikają wkrótce po urodzeniu. Kupfer, A., Müller, H., Antoniazi, M. M., Jared, C., Greven, H., Nussbaum, R. A. & Wilkinson, M. 2006. Parental investment by skin feeding in a caecilian amphibian. Nature 440, 926-929. Apoda - rozród U jajorodnych (Ichthyophis) samice składają 30 - 40 jaj na lądzie w jamkach i pilnują złoża. Larwy po opuszczeniu osłon jajowych przemieszczają się do potoków i są drapieżnikami. Metamorfoza jest słabo zaznaczona. Apoda - rozród - jajorodność Ichthyophis glutinosus Amphibia and reptiles. Gadow, H. Macmillan and Co. Ltd. 1901, London Apoda – odżywianie i ruch Apoda - odżywianie Odżywiają się bezkręgowcami, głównie dżdżownicami, ale też małymi kręgowcami (żabami, wężami, jaszczurkami). Polują na powierzchni lub pod ziemią. Zęby odgięte ku tyłowi. Język nie jest wysuwany i nie służy do łapania pokarmu. Głównym ich wrogiem są węże. Apoda - sposób poruszania się Specyficzny sposób poruszania. Nie wyginają ciała, lecz przesuwają głowę, kręgosłup i mięśnie osiowe względem luźno połączonej warstwy mięśni powierzchniowych i skóry. Kręgosłup ulega esowatym wygięciom. Czaszka jest bardzo masywna i pełni funkcję tarana. .
Recommended publications
  • REVISION O F the AFRICAN Caeclllan GENUS
    REVISION OFTHE AFRICAN CAEClLlAN GENUS SCHISTOMETOPUM PARKER (AMPH IBIA: CYMNOPHIONA: CAECILI IDAE) BY RONALD A. NU AND MICHAEL E. PFRENDER MISCELLANEC JS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 18Fb; ' Ann Arbor, September 2 7, 1 998 ISSN 076-8405 MIS(:ELIANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, LJNTVERSITY OF MICHIGAN NO. 187 The publicatioils of the M~~sclunof Zoology, The [Jniversity of Michigan, consist PI-irnarilyof two series-the Occasion:~lPapers allti the Miscellaneous Publicatio~ls.Both series were founded by Dc Bryant Walker, Mr. Rradshaw H. Swales, anti Dr. W.W. Newcornb. Occasionally the Museuni publishes contributiorls outside of these series; begirlnirlg in 1990 these are titled Special Publicatio~lsa~ld arc numbered. All submitted ~n;inl~scriptsreceive external review. The Misccllarieous Publications, which include ~l~ollographicstltdies, papers on field and ~II- seuln techniques, and other contributions 11ot within the scope of the Occasio~lalPapers, are pl~b- lishcd separately. It is not intended that they be grouped into volumes. Each 11r11nberhas a title page and, when necessary, a table of co1itelits. Tllc Occasional Papel-s, publication of which was begun in 1913, servc as a medium Sol- original studies based prirlcipally upon the collections in the Museurn. They are issurtl separately. MThen a sufficient number of pages has hcen printed to niakc a volume, a title pagc, table of contenb, and an index are supplied to libraries and individuals on the mailing list for the series. A cornplete list of publications on Birds, Fishes, Insects, Mammals, Moll~~sks,Rcpdles and Amphib- ians, and other topics is available. Address inquiries to the Directt)r, Muse~unof Zoolohy, The lir~ivcr- sity of Michigan, Ann Arbor, Michigarl 48109-1079.
    [Show full text]
  • 2020 Conservation Outlook Assessment
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Vallée de Mai Nature Reserve - 2020 Conservation Outlook Assessment Vallée de Mai Nature Reserve 2020 Conservation Outlook Assessment SITE INFORMATION Country: Seychelles Inscribed in: 1983 Criteria: (vii) (viii) (ix) (x) In the heart of the small island of Praslin, the reserve has the vestiges of a natural palm forest preserved in almost its original state. The famouscoco de mer, from a palm-tree once believed to grow in the depths of the sea, is the largest seed in the plant kingdom. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 GOOD WITH SOME CONCERNS The protection and management of Vallée de Mai Nature Reserve is generally effective and is supported by a national legal framework, although there is a lack of a national protected area system. The management authority is very competent and is effectively implementing science-based programs and outreach and education schemes. However, the future of the site’s key value, the coco de mer palm, is still under threat from illegal collection and over-exploitation for its nuts and kernel. The site's management has reduced both commercial harvesting and illegal collection of nuts based on scientific research, although the conservation impacts of these requires further assessment. The National Government and the managing agency are implementing targeted conservation measures and aim to tighten law and legislation to protect the species, which include an increase in penalty for poaching of coco de mer nuts. Current priorities for the Nature Reserve include continuation and expansion of the outreach and education programme; promoting an increase in the size and connectivity of Vallée de Mai within the Praslin Island landscape, with a legally designated buffer zone; increasing anti-poaching; and continuing to control the harvesting of coco de mer seeds while expanding a program of replanting seedlings.
    [Show full text]
  • The Caecilians of the World: a Taxonomic Review by Edward Harrison Taylor Review By: Marvalee H
    The Caecilians of the World: A Taxonomic Review by Edward Harrison Taylor Review by: Marvalee H. Wake Copeia, Vol. 1969, No. 1 (Mar. 6, 1969), pp. 216-219 Published by: American Society of Ichthyologists and Herpetologists (ASIH) Stable URL: http://www.jstor.org/stable/1441738 . Accessed: 25/03/2014 11:09 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Society of Ichthyologists and Herpetologists (ASIH) is collaborating with JSTOR to digitize, preserve and extend access to Copeia. http://www.jstor.org This content downloaded from 192.188.55.3 on Tue, 25 Mar 2014 11:09:44 AM All use subject to JSTOR Terms and Conditions 216 COPEIA, 1969, NO. 1 three year period, some of the latter per- add-not only the Indo-Pacific, but this Indo- sonally by Munro. The book must be used Australian archipelago, the richest area in in conjunction with the checklist "The the world for marine fish species, badly needs Fishes of the New Guinea Region" (Papua more work of this high calibre.-F. H. TAL- and New Guinea Agr. J. 10:97-339, 1958), BOT, Australian Museum, 6-8 College Street, a sizable work in itself, including a full list Sydney, Australia.
    [Show full text]
  • Development of the Tectum in Gymnophiones, with Comparison to Other Amphibians
    JOURNAL OF MORPHOLOGY 236:233–246 (1998) Development of the Tectum in Gymnophiones, With Comparison to Other Amphibians ANDREA SCHMIDT1 AND MARVALEE H. WAKE2* 1University of Bremen, Brain Research Institute, 28334 Bremen, Germany 2Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720-3140 ABSTRACT Tectal development in a number of caecilian (Gymnophiona: Amphibia) species was examined and compared with that in frogs and salamanders. The caecilian optic tectum develops along the same rostrocau- dal and lateromedial gradients as those of frogs and salamanders. However, differences exist in the time course of development. Our data suggest that, as in salamanders, simplification of morphological complexity in caecilians is due to a retardation or loss of late developmental stages. Differences in the time course of development (heterochrony) among different caecilian species are correlated with phylogenetic history as well as with variation in life histories. The most pronounced differences in development occur between the directly developing Hypogeophis rostratus and all other species examined. In this species, the increase in the degree of morphological complexity is greatly accelerated. J. Morphol. 236:233–246, 1998. ௠ 1998 Wiley-Liss, Inc. KEY WORDS: caecilian species; late developmental stages; morphological complexity The visual system of amphibians is Despite variable reduction of the visual sys- strongly correlated with phylogenetic his- tem among caecilians, the degree of morpho- tory (Roth et al., ’83, ’90; Wake, ’85; Schmidt logical complexity (lamination and number and Wake, ’91). Differences in the visual of migrated cells) in the most developed cae- system are apparent among the three orders cilian tectum is greater than in that in most of amphibians (frogs [Anura], salamanders salamanders (Schmidt and Wake, ’91, ’97), [Urodela], and caecilians [Gymnophiona]), suggesting that internal dynamics might be as well as among species within each order.
    [Show full text]
  • The Herpetological Journal Is Published Quarterly by the British Herpetological Society and Is Issued Free to Members
    Volume5, Number3 July 1995 ISSN 0268-0 130 THE .·.• HERPETOLOGICAL JOURNAL Nm Published by Indexed in THE BRITISH HERPETOLOGICAL SOCIETY Current Contents The Herpetological Journal is published quarterly by the British Herpetological Society and is issued free to members. Articles are listed in Biological Abstracts, Current Awareness in Biological Sciences, Current Contents, Science Citation Index, and Zoological Record. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWl 4RY, UK. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Editor (address below). Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, Kent Research & Development Centre, The University of Kent, Canterbury, Kent CT2 7PD, UK Associate Editors: Siobhan Keeling Leigh Gillett Editorial Board: Pim Arntzen (Bangor) Donald Broadley (Zimbabwe) John Cooper (Rwanda) John Davenport (Millport) Andrew Gardner (Oman) Tim Halliday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Henk Strijbosch (Nijmegen) Richard Tinsley (Bristol) BRITISH HERPETOLOGICAL SOCIETY Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manu­ script, the authors agree that the copyright for their article is transferred to the publisher ifand when the article is accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and photo­ graphic reproductions. Permission fo r any such activities must be sought in advance from the Editor.
    [Show full text]
  • Evolution of Cranial Shape in Caecilians (Amphibia: Gymnophiona)
    Evol Biol (2014) 41:528–545 DOI 10.1007/s11692-014-9287-2 RESEARCH ARTICLE Evolution of Cranial Shape in Caecilians (Amphibia: Gymnophiona) Emma Sherratt • David J. Gower • Christian Peter Klingenberg • Mark Wilkinson Received: 17 December 2013 / Accepted: 10 June 2014 / Published online: 20 June 2014 Ó Springer Science+Business Media New York 2014 Abstract Insights into morphological diversification can separated by unoccupied morphospace. The empty spaces be obtained from the ways the species of a clade occupy in shape space are unlikely to be caused entirely by morphospace. Projecting a phylogeny into morphospace extinction or incomplete sampling. The main caecilian provides estimates of evolutionary trajectories as lineages clades have different amounts of morphological disparity, diversified information that can be used to infer the but neither clade age nor number of species account for this dynamics of evolutionary processes that produced patterns variation. Cranial shape variation is clearly linked to phy- of morphospace occupation. We present here a large-scale letic divergence, but there is also homoplasy, which is investigation into evolution of morphological variation in attributed to extrinsic factors associated with head-first the skull of caecilian amphibians, a major clade of verte- digging: features of caecilian crania that have been previ- brates. Because caecilians are limbless, predominantly ously argued to correlate with differential microhabitat use fossorial animals, diversification of their skull has occurred and burrowing ability, such as subterminal and terminal within a framework imposed by the functional demands of mouths, degree of temporal fenestration (stegokrotaphy/ head-first burrowing. We examined cranial shape in 141 zygokrotaphy), and eyes covered by bone, have evolved species, over half of known species, using X-ray computed and many combinations occur in modern species.
    [Show full text]
  • Phylogenetic Inference and Molecular Evolution in Caecilian Amphibians
    Developmental morphological diversity in caecilian amphibians: systematic and evolutionary implications Müller, H. Citation Müller, H. (2007, November 8). Developmental morphological diversity in caecilian amphibians: systematic and evolutionary implications. Leiden University Press. Retrieved from https://hdl.handle.net/1887/12462 Version: Corrected Publisher’s Version Licence agreement concerning inclusion of License: doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/12462 Note: To cite this publication please use the final published version (if applicable). Introduction CHAPTER 1 – INTRODUCTION Caecilian amphibians (Gymnophiona) – an introduction Caecilian or Gymnophiona, together with frogs (Anura) and salamanders (Caudata), constitute the three living orders of the Amphibia. Caecilians are often thought of as the least known major group of tetrapods, and certainly of the three living orders of amphibians. They are elongated snake-like amphibians completely lacking limbs and girdles and they have a primarily terrestrial, surface-cryptic or burrowing lifestyle as adults, except for the Typhlonectidae, a South America group that are secondarily aquatic or semiaquatic (Taylor, 1968; Wilkinson and Nussbaum, 1999). The majority of the approximately 170 recognized species inhabit the wet tropics of Central and South America, Africa and Asia, with some species also reaching the subtropics of South America and Asia (Wilkinson and Nussbaum, 2006). The current distribution is commonly accepted to reflect an Gondwanan origin of the group (Duellman and Trueb, 1986; Hedges et al., 1993; Wilkinson et al., 2002; San Mauro et al., 200). Compared to frogs and salamanders, very little information is available on many aspects of caecilian biology (see Himstedt, 1996 for most comprehensive recent review).
    [Show full text]
  • Comparative Morphology of Caecilian Sperm (Amphibia: Gymnophiona)
    JOURNAL OF MORPHOLOGY 221:261-276 (1994) Com parative Morphology of Caecilian Sperm (Amp h i bi a: Gym nop h ion a) MAFWALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 ABSTRACT The morphology of mature sperm from the testes of 22 genera and 29 species representing all five families of caecilians (Amphibia: Gymnoph- iona) was examined at the light microscope level in order to: (1)determine the effectiveness of silver-staining techniques on long-preserved, rare material, (2) assess the comparative morphology of sperm quantitatively, (3) compare pat- terns of caecilian sperm morphology with that of other amphibians, and (4) determine if sperm morphology presents any characters useful for systematic analysis. Although patterns of sperm morphology are quite consistent intrage- nerically and intrafamilially, there are inconsistencies as well. Two major types of sperm occur among caecilians: those with very long heads and pointed acrosomes, and those with shorter, wider heads and blunt acrosomes. Several taxa have sperm with undulating membranes on the flagella, but limitations of the technique likely prevented full determination of tail morphology among all taxa. Cluster analysis is more appropriate for these data than is phylogenetic analysis. cc: 1994 Wiley-Liss, Inc. Examination of sperm for purposes of describ- ('70), in a general discussion of aspects of ing comparative sperm morphology within sperm morphology, and especially Fouquette and across lineages
    [Show full text]
  • Amphibia: Gymnophiona)
    Molecular Phylogenetics and Evolution 53 (2009) 479–491 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona) Peng Zhang a,b,*, Marvalee H. Wake a,* a Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3160, USA b Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China article info abstract Article history: The caecilians, members of the amphibian Order Gymnophiona, are the least known Order of tetrapods, Received 6 February 2009 and their intra-relationships, especially within its largest group, the Family Caeciliidae (57% of all caeci- Revised 15 June 2009 lian species), remain controversial. We sequenced thirteen complete caecilian mitochondrial genomes, Accepted 30 June 2009 including twelve species of caeciliids, using a universal primer set strategy. These new sequences, Available online 3 July 2009 together with eight published caecilian mitochondrial genomes, were analyzed by maximum parsimony, partitioned maximum-likelihood and partitioned Bayesian approaches at both nucleotide and amino acid Keywords: levels, to study the intra-relationships of caecilians. An additional multiple gene dataset including most of Caeciliidae the caecilian nucleotide sequences currently available in GenBank produced phylogenetic results that are Amphibian Mitochondrial genome fully compatible with those based on the mitogenomic data. Our phylogenetic results are summarized as Molecular dating follow. The caecilian family Rhinatrematidae is the sister taxon to all other caecilians. Beyond Rhinatre- matidae, a clade comprising the Ichthyophlidae and Uraeotyphlidae is separated from a clade containing all remaining caecilians (Scolecomorphidae, Typhlonectidae and Caeciliidae).
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN RHINATREMATIDAE: A NEW FAMILY OF CAECILIANS (AMPHIBIA: GYMNOPHIONA) Of the three orders of modern Amphibia, the caecilians (G~mnophiona)are the least known. Prior to 1968, caecilians were thought to be poorly diversified and all species were placed in a single family (Caeciliidae). Largely because of the efforts of Dr. Edward H. Taylor, we now know that caecilians have undergone a much greater evolutionary expansion than was previously believed. Current classification of caecilians is based largely on Taylor's 1968 and 1969a publications, in which three families and many new genera and species were named. Taylor (1968) placed a group of species which he considered to be the most primitive in the family Ichthyophiidae. This family has a broadly disjunct distribution in the tropics of southeast Asia and northern South America. All ichthyophiids are thought to have an aquatic larval stage and terrestrial, semifossorial adults. The most diverse family, Caeciliidae, is also the most widespread, being found in the tropics of India, Seychelles, Africa, and South and Central America as far north as southern Mexico. Caeciliids are advanced over ichthyophiids, both in morphological organization and mode of life history. In general, caeciliids are more specialized for burrowing than are ichthyophiids. While some caeciliids have larvae, others have direct terrestrial development, and yet others are livebearers. A third family, Typhlonectidae, consists of specialized aquatic forms which are livebearers; they are confined to South America. The fourth and last family, Scolecomorphidae is found only in 2 Nussbaum OCC. Papers Africa and contains one genus and six species of highly specialized burrowers.
    [Show full text]
  • Embryonic and Larval Development in the Caecilian Ichthyophis Kohtaoensis (Amphibia, Gymnophiona): a Staging Table
    JOURNAL OF MORPHOLOGY 243:3–34 (2000) Embryonic and Larval Development in the Caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona): A Staging Table Nicole Du¨ nker,1 Marvalee H. Wake,2* and Wendy M. Olson2 1 Department of Zoology, Technical University of Darmstadt, Darmstadt, Germany 2 Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California ABSTRACT Little is known about the developmental of the lateral line organs, formation of three pairs of ex- biology of caecilians—tropical, elongate, limbless, mostly ternal gills, development of the eyes, changes in yolk fossorial amphibians that are members of the Order Gym- structure, changes in the structure of the cloacal aperture nophiona. Ichthyophis kohtaoensis (Family Ichthyophi- and growth of the tail, including the formation and regres- idae; southeast Asia) is an oviparous species in which sion of the tail fin. This study provides a comparison with maternal care of the clutch is provided. The clutch is laid descriptions of embryonic stages of I. glutinosus and Hy- in a burrow on land, and the embryos develop in their egg pogeophis rostratus and with a recent staging table for the membranes, curved around a large yolk mass. Larvae are aquatic, viviparous caecilian Typhlonectes compressi- aquatic and exhibit characteristic features that are not cauda, the only other caecilians for which reasonably com- present in the terrestrial adults. Because accurate de- plete ontogenetic information exists in the literature. scriptions of ontogenies and the establishment of stan- Comparisons with established staging tables for selected dardized stages of embryonic and larval development are useful for both experimental and comparative embryology, frogs and salamanders are also presented.
    [Show full text]
  • Cryptic Lineages in Seychelles' Frogs
    1 1 TITLE 2 Endemic, endangered, and evolutionarily significant: Cryptic lineages in Seychelles’ frogs 3 (Anura: Sooglossidae). 4 RUNNING TITLE 5 Cryptic diversity in the Sooglossidae 6 AUTHORS 7 Jim Labisko (corresponding author – [email protected]) 8 Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, 9 University of Kent, Canterbury, Kent. CT2 7NR. UK; Island Biodiversity and Conservation, 10 P.O. Box 1348, Anse Royale, Mahé, Seychelles. 11 Richard A. Griffiths 12 Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, 13 University of Kent, Canterbury, Kent. CT2 7NR. UK. 14 Lindsay Chong-Seng 15 Plant Conservation Action group, P.O. Box 392, Victoria, Mahé, Seychelles. 16 Nancy Bunbury 17 Seychelles Islands Foundation, La Ciotat Building, Mont Fleuri. P.O. Box 853, Victoria, Mahé, 18 Seychelles; Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, 19 Penryn, TR10 9FE, UK. 20 Simon T. Maddock 21 School of Biology, Chemistry and Forensic Science, Faculty of Science and Engineering, 22 University of Wolverhampton, Wulfruna Street, Wolverhampton. WV1 1LY. UK; Department 23 of Life Sciences, The Natural History Museum, Cromwell Road, London. SW7 5BD. UK; 24 Department of Genetics, Evolution and Environment, University College London, Gower 2 25 Street, London. WC1E 6BT. UK.; Island Biodiversity and Conservation, P.O. Box 1348, Anse 26 Royale, Mahé, Seychelles. 27 Kay S. Bradfield 28 Perth Zoo, South Perth, WA 6151, Australia. 29 Michelle L. Taylor 30 Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, 31 University of Kent, Canterbury, Kent. CT2 7NR. UK. 32 Jim J.
    [Show full text]