Using Structure from Motion to Create Glacier Dems and Orthoimagery From
Title Page Authors Jordan R. Mertes1,2, Jason D. Gulley3, Douglas I Benn4, Sarah S. Thompson5, Lindsey I. Nicholson5 Title Using Structure from Motion to create Glacier DEMs and Orthoimagery from Historical Terrestrial and Oblique Aerial Imagery Affiliations 1Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 2Department of Arctic Geology, University Centre in Svalbard, Postboks 156, Longyearbyen, N-9170, Svalbard, Norway 3School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, NES 107, Tampa, FL 33620-5550 USA 4School of Geography and Geosciences, University of St. Andrews, North Street, St. Andrews, Fife KY16 8ST, UK 5Institute of Atmospheric and Cryospheric Sciences, Universität Innsbruck, 6020 Innsbruck, Austria This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/esp.4188 This article is protected by copyright. All rights reserved. Abstract Increased resolution and availability of remote sensing products, and advancements in small-scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as Structure from Motion (SfM), now allow users an easy and efficient method to generate 3D models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources.
[Show full text]