Fig. 3.9.5). at the Edges of This Pit, Small Sphagnum Mats and Hare's-Tail Cottongrass (Eriophorum Vaginatum) Tufts Are Spreading

Total Page:16

File Type:pdf, Size:1020Kb

Fig. 3.9.5). at the Edges of This Pit, Small Sphagnum Mats and Hare's-Tail Cottongrass (Eriophorum Vaginatum) Tufts Are Spreading Fig. 3.9.5). At the edges of this pit, small Sphagnum mats and hare's-tail cottongrass (Eriophorum vaginatum) tufts are spreading. Fragments of Pinus mugo woods remain at the periphery of the areas which have been cut off. However, these stands are drying out and are now giving rise to a better growth of the trees and overshadowing the bog vegetation (Fig. 3.9.6). Trees, mostly spruce, are growing along the drainage ditches (FELDMEYER-CHRISTE 1987). Fig. 3.9.5. Peat cutting pit invaded with bottle sedge (Carex rostrata) viewed from the unexploited peat mound (Photo by E. Feldmeyer-Christe). 3.9.7 Land use history The name of la Chaux-des-Breuleux bog is derived from the nearby village and stands for the method of settlement: breuler in old French (= today's brUler) reflects the fact that the settlers burnt the forest for agricultural land. Drainage of the bog started in the 18th century to provide the Co,mbe mill (see Fig. 3.9.3) with water power. In 1875, the eastern part of the bog suffered a major fire. At present almost all the bog has been cut over. Until the 1930's, peat cutting was a craft industry. To provide Ciba-Geigy in Basle and the city of Bienne with fuel during World War Two, the bog was exploited with machines and the sods removed by the narrow gauge railway which still traverses the bog at the south-western edge. Parts of the bog site have been a nature reserve since 1974. Larger areas in the western part and at the south-eastern edge are still used for grazing. Since 1984, a progamme of rehabilitation, mainly by damming the drainage ditches, has been established by canton Berne in the eastern part of the bog. The method of pasture management in the areas surrounding the bog site, which led to this famous park -like landscape (called 'paturages boises' in French and 'Wytweiden' in German) is particularly noticeable. Mixed permanent common grazing has been customary. Cattle and horses are kept on the same Fig. 3.9.6. View of the remaining dried Pin us mugo woodland at the periphery of the bog area throughout the whole growing period, i.e. from about May through to (Photo by E. Feldmeyer-Christe). October. They are put into stables only for the unfavourable months of the year. 199 The livestock is kept on the pasturage by means of hedges, dry-stone walls or fences protecting gardens, meadows, arable land and the ungrazed forests. As long as the animals stay in the grazing field their dung is continually returned to it. As a result, these pastures are generally fertile. This is also partly due to the shelter effect of the trees preventing the winds from completely drying out the land during the vegetation period. A further characteristic feature is revealed in the flora of the paturages boises. Due to the mixed grazing, they are less weedy than commons where only cattle graze. However, they still contain thistles and other typical pasture weeds because in early summer there is much more fodder than the animals can eat. This results in their. selection of the most palatable plants. Rank patches where the sward has been tainted by excrement and consequently avoided by cattle are very obvious. These overfertilized patches of grass grow tall and dark green, while the sward in between these patches tends to become overgrazed. Since horses will eat grass which has been tainted by cattle and vice versa, this undesirable patchiness can to some extent be avoided by mixed grazing. However, since 1975, pasture management in the surround­ ings of the bog has been intensified by suppressing young trees and using more fertilizers. This has led to a progressive change and deterioration of the unique, park-like wooded pasture landscape. Therefore, the designation of the pro­ posed mire landscape (cf. Fig. 3.9.2) could be a helpful means to stop and reorientate the development of this most valuable part of the Franches­ Montagnes. 200 Fig. 3.10.1. Near infra-red false-colour aerial photograph showing the centre of the Bellelay mire exploited for peat a century ago. Trees have mainly invaded the drier, less exploited peat ridges in contrast to the the former, wetter peat pits which are overgrown by mire vegetation (e.g. floating mats). North of the mire there are fodder meadows and in the south there is a pasture (Aerial photo taken on 25 July 1990 by the Co-ordination Centre for Aerial Photographs, Diibendorf). 3.10 From exploitation to rehabilitation - La Sagne et les Tourbieres de Bellelay Philippe Grosvernier Community: Saicourt (canton Berne) Locality: La Sagne et les Tourbieres Coordinates: 579-581 / 533-535 Elevation of the mires: 930 m Area of the raised bog: 27 ha Area of the fenlands: 1 ha Area of the mire landscape Bellelay: 540 ha 3.10.1 Highlight of the visit The peat bog at BeIlelay has been heavily disturbed by several stages of peat cutting. The site is especially interesting because peat cutting stopped almost completely by the turn of the century, enabling regeneration of bog vegetation to take place during most of the past 100 years. Through observation of this "natural" rehabilitation. management techniques can be determined and used to monitor and promote regeneration in other bogs. 201 3.10.2 General information The bog at Bellelay, located at a mean altitude of 930 m, is the furthest east of twenty others in narrow valleys or dells in this region of the Folded Jura. Divided into three parts, the bog covers an approximate surface of 30 ha and is surrounded by agricultural land (Fig. 3.10.2). Most of it is the property of canton Berne which, in 1972, declared it to be a nature reserve. Fig. 3.10.2. Location of the bogs and the mire landscape of national importance in the area of Bellelay (modified from DF! 1990, 1991b, 1991c). Scale of the map: 1 : 25,000; for key, see end-cover. Reproduced by courtesy of the Federal Office of Topography, Berne, 9 June 1992. 3.10.3 Geology and hydrology Tectonically, the basin of Bellelay is the syncline between two chains of the Folded Jura. It has the form of a triangle and no surface runoff. The water disappears in various sinkholes (ponors) mainly at the south-eastern edge of the basin. This is also the location where the bogs grew over impervious geological layers made of recent clayey material that originated from the erosion of neighbouring rocks and from glacial deposits. At the north-eastern boundary of the bog (coord. 580730/233950) an erratic can be seen, indicating the Rhone glacier's presence during the Riss ice age. During the last ice age (Wtirm) the basin was only occupied by local glaciers, which left some smaller moraine walls (BARSCH 1968). 202 All the water flowing out of the bog collects in a stream which runs through the bog and disappears underground in the karst system. This borders the Kimmeridgian limestone, a hard but deeply fractured and dissolved rock. The real slope of the surface is quite difficult to appreciate in the field (cf. Fig. 3.10.3). A series ofborings and the elevation of the corresponding sites allows a graphic representation of the thickness of the peat layer and the slope. A complete and detailed mapping of drainage ditches and streams has led to a better under­ standing of water circulation through and out of the bog. A map from 1865 also offered useful information about underground drainage systems, which were built earlier to assist peat extraction. CD ~ CD A B C D 934 936 933 935 932 934 931 933 :§: 930 :§:., 932 .g 929 ;:l ~ 931 ·E 928 ~ 930 ~ 927 929 926 928 925 924 927 923 926 90m 30m 1---1 1---1 Fig. 3.10.3. The bogs of Bellelay (modified from GROSVERNIER 1989b). 1 Plane view of present-day situation. 2 Longitudinal section A-B showing present-day peat body (including the topography of bog surface and the mineral sub-soil; vertically exaggerated 30 x). 3 Cross-section C-D showing the same features and also the original bog surface: ------ 3.10.4 Climate and historical data Mean annual precipitation amounts to 1,309 mm (data from the rain-gauge station at Bellelay, collected by the Swiss Federal Meteorological Institute). Mean annual temperature is between 5 and 6° C, as stated by the atlas of thermic levels of Switzerland. Regular mists throughout the summer are unique to the valley floor where the bog is located. They ensure a water supply to agriculture even when neighbouring regions are affected by severe droughts. 203 This is related to the settlement of a monastery and a farm at Bellelay at the beginning of the 12th century. The valley offered agricultural potential and a hydrological energy supply by storing water in an artificial pond. This practice was quite common in the region. Other evidence shows that man has been living in the region for a long time. A fireplace was found under the peat layer and estimated to be at least 4,000 years old. The remains of a horse were dated and found to be from 2,000 to 2,400 years old (QUIQUEREZ 1866). Peat extraction took place in very recent times, mostly during the 19th century. Peat was even used as a fuel for blast-furnaces after forests in the region had been almost totally cleared. A second stage of extraction led to the formation of large peat cuts, about 30 to 50 m wide, up to 200 m long and approximately 2 m deep, as shown on the map of 1865 (cf.
Recommended publications
  • Over Hill and Dale 3-Passes Adventure Route
    Bern Brienz Thun Susten pass Innertkirchen Wassen Over hill and dale Interlaken Guttannen Andermatt 3-passes adventure route Grimsel pass Furka pass Gletsch People enjoying to drive over alpine passes will love this tour. The 3-passes route “Grimsel - Furka - Susten” promises pure alpine romance! Numerous vertical meters with a unique view of imposing glaciers, reservoirs, deep gorges and romantic villages. More CONCIERGE TIPS 3-passes adventure route Highlights Lake Thun Furka pass* – glacier impressions (2429 m a.s.l.)) Your journey to the breathtaking Swiss passes will lead The journey continues to Valais! Drive down to Gletsch and you first on the Seestrasse along the deep blue lake Thun stretch your feet a little. The Rhone Glacier and the ice grotto via Interlaken to the carving village of Brienz. From Brienz can be admired directly at the Hotel Belvédère (200 meters). it leads you further in the direction Haslital. For all nostalgia fans: the intermediate stop at Furka station thunersee.ch/en takes travellers to the routes highest point of 2160 metres a.s.l. *June-Nov. (to be checked in advance with the concierge) obergoms.ch/en Gelmer funicular, Innertkirchen People seeking a thrill will find one here in the Haslital valley Andermatt on the Bernese side of the Grimsel Pass. The Gelmer Like James Bond in “Goldfinger” you cross the Furka pass to funicular, with its 106 % gradient, is the steepest open Realp and Andermatt. Treat yourself to a z’Vieri in the legendary funicular in Europe. If time permits, do a circular hike hotel The Chedi.
    [Show full text]
  • Download Chapter In
    Flora and vegetation Margaret E Bradshaw The flora of Upper Teesdale is probably more widely known than that of any other area in Britain, and yet perhaps only a few of the thousands who visit the Dale each year realise the extent to which the vegetation and flora contribute to the essence of its character. In the valley, the meadows in the small walled fields extend, in the lower part, far up the south-facing slope, and, until 1957 to almost 570m at Grass Hill, then the highest farm in England. On the north face, the ascent of the meadows is abruptly cut off from the higher, browner fells by the Whin Sill cliff, marked by a line of quarries. Below High Force, the floor of the valley has a general wooded appearance which is provided by the small copses and the many isolated trees growing along the walls and bordering the river. Above High Force is a broader, barer valley which merges with the expansive fells leading up to the characteristic skyline of Great Dun Fell, Little Dun Fell and Cross Fell. Pennine skyline above Calcareous grassland and wet bog, Spring gentian Red Sike Moss © Margaret E Bradshaw © Geoff Herbert Within this region of fairly typical North Pennine vegetation is a comparatively small area which contains many species of flowering plants, ferns, mosses, liverworts and lichens which can be justifiably described as rare. The best known is, of course, the spring gentian (Gentiana verna), but this is only one of a remarkable collection of plants of outstanding scientific value.
    [Show full text]
  • Population Ecology of Eriophorum Latifolium, a Clonal Species in Rich Fen Vegetation
    Anders Lyngstad Population Ecology of Eriophorum latifolium, a Clonal Species in Rich Fen Vegetation Thesis for the degree of Philosophiae Doctor Trondheim, October 2010 Norwegian University of Science and Technology Faculty of Natural Sciences and Technology Department of Biology NTNU Norwegian University of Science and Technology Thesis for the degree of Philosophiae Doctor Faculty of Natural Sciences and Technology Department of Biology © Anders Lyngstad ISBN 978-82-471-2332-4 (printed ver.) ISBN 978-82-471-2333-1 (electronic ver.) ISSN 1503-8181 Doctoral theses at NTNU, 2010:179 Printed by NTNU-trykk Synopsis PREFACE It was the spring of 2005, and it was the right time to move onwards. A position as a research fellow working with long-term time series at the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology (NTNU) was announced, and a PhD-project was developed with the studies of former haymaking lands at Sølendet and Tågdalen nature reserves as a starting point. Work began in earnest in January 2006, and continued at an ever increasing pace until July 2010, when all the parts of the thesis were finally completed and assembled. The study was financed by NTNU, and was carried out at the Museum of Natural History and Archaeology and the Institute of Biology, both NTNU. I am deeply grateful to my main supervisor Professor Asbjørn Moen at the Museum of Natural History and Archaeology, and my co-supervisor Associate Professor Bård Pedersen at the Institute of Biology. This project rests on the long-term studies of rich hayfens that were initiated by Asbjørn 40 years ago, and that are still ongoing, much due to his continuous effort.
    [Show full text]
  • FURKA T O BRIG
    ALAIS AND CHAMO UNIX FROM THE FURKA t o BRIG F. O. W OLF. With 16 Illustrations by J. WEBER and two Haps. ZÜRICH. ORELL FÜ8SLI 4. Co. Il l u s t r a t e d E u r o p e Oar Collection “ILLUSTRATED EUROPE" is published also in a German and a French edition, entitled respectively:— Europäische Wanderbilder. | L’Europe illustrée. Each volume abundantly illustrated. ■ The Collection is kept on store at every important bookseller’s on the Continent. The following numbers have appeared:— 1. The Arth-Rigi-Railway 29. 30, Gorhersdorf (Sanatorium for 2. Baden-Baden Consumptives) 3. The Vitxnan-Rigi-Rail. 31.32. Chaux-de-Fonds, Locle, Brenets 4. Heiden and the Rorschach-Heiden- 33. From Frohurg to Waldenburg R ailw ay 34.35. The Bürgenstock (Lake of Lucerne) 5. Baden in Switzerland 36. 37. Neuchâtel and its environs 6. Thnn and the Lake oi Thun 38. 39. Battaglia near Padua 7. Interlaken 4 0 .4 1 . Goire and its environs 8. The Upper-Engadine 42. 43. 44. The Pusterthal Railway 9. Znrich and its environs 45.46. 47. The Brenner Railway 10. Constance 48.49.50. From the Danube to the Adriatic 11. Nyon on the lake of Geneva 51. 52. Graz 12. Thnsis a t the V ia M ala 53. 54. From Paris to Berne 13. Lucerne 55. 56. The Lake of Lucerne 14. Florence 57. Jugenheim a. Auerbach n. Darmstadt 15.16. Milan 58.59. Aix-les-Bains and its environs 17. Schaffhansen and the Falls of the 60.61.
    [Show full text]
  • Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales Author(S) :Thomas J
    Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales Author(s) :Thomas J. Givnish, Mercedes Ames, Joel R. McNeal, Michael R. McKain, P. Roxanne Steele, Claude W. dePamphilis, Sean W. Graham, J. Chris Pires, Dennis W. Stevenson, Wendy B. Zomlefer, Barbara G. Briggs, Melvin R. Duvall, Michael J. Moore, J. Michael Heaney, Douglas E. Soltis, Pamela S. Soltis, Kevin Thiele, and James H. Leebens-Mack Source: Annals of the Missouri Botanical Garden, 97(4):584-616. 2010. Published By: Missouri Botanical Garden DOI: URL: http://www.bioone.org/doi/full/10.3417/2010023 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ASSEMBLING THE TREE OF THE Thomas J. Givnish,2 Mercedes Ames,2 Joel R. MONOCOTYLEDONS: PLASTOME McNeal,3 Michael R. McKain,3 P. Roxanne Steele,4 Claude W. dePamphilis,5 Sean W.
    [Show full text]
  • Using Structure from Motion to Create Glacier Dems and Orthoimagery From
    Title Page Authors Jordan R. Mertes1,2, Jason D. Gulley3, Douglas I Benn4, Sarah S. Thompson5, Lindsey I. Nicholson5 Title Using Structure from Motion to create Glacier DEMs and Orthoimagery from Historical Terrestrial and Oblique Aerial Imagery Affiliations 1Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 2Department of Arctic Geology, University Centre in Svalbard, Postboks 156, Longyearbyen, N-9170, Svalbard, Norway 3School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, NES 107, Tampa, FL 33620-5550 USA 4School of Geography and Geosciences, University of St. Andrews, North Street, St. Andrews, Fife KY16 8ST, UK 5Institute of Atmospheric and Cryospheric Sciences, Universität Innsbruck, 6020 Innsbruck, Austria This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/esp.4188 This article is protected by copyright. All rights reserved. Abstract Increased resolution and availability of remote sensing products, and advancements in small-scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as Structure from Motion (SfM), now allow users an easy and efficient method to generate 3D models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources.
    [Show full text]
  • (Thurniaceae) by Rabelani Munyai
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University A SYSTEMATIC STUDY OF THE SOUTH AFRICAN GENUS PRIONIUM (THURNIACEAE) BY RABELANI MUNYAI Town Cape of University DISSERTATION PRESENTED FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF BOTANY, UNIVERSITY OF CAPE TOWN MAY, 2013 Supervisors: Dr M.A Muasya and Dr S.M.B Chimphango i ABSTRACT The South African monocotyledonous plant genus Prionium E. Mey (Thurniaceae; Cyperid clade) is an old, species-poor lineage which split from its sister genus Thurnia about 33–43 million years ago. It is a clonal shrubby macrophyte, widespread within the Fynbos biome in the Cape Floristic Region (CFR) with scattered populations into the Maputaland-Pondoland Region (MPR). This study of the systematics of the genus Prionium investigates whether this old lineage comprising of a single extant species P. serratum, is morphologically, genetically and ecologically impoverished, and identifies apomorphic floral developmental traits in relation to its phylogenetic position as sister to the Cyperid families, Juncaceae and Cyperaceae. Sampling for morphological, molecular and ecological studies was done to obtain representatives from its entire distribution range, falling within the phytogeographic regions of the CFR (North West, NW; South West, SW; Agulhas Plain, AP; Langeberg, LB) and extending into Eastern Cape (South East, SE) and KwaZulu Natal (KZN).
    [Show full text]
  • Coenonympha Oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Slovenia 7 Tatjana Celik & Rudi Verovnik
    Editorial: Oedippus in Oedippus 5 26 (2010) Matthias Dolek, Christian Stettmer, Markus Bräu & Josef Settele Distribution, habitat preferences and population ecology of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Slovenia 7 Tatjana Celik & Rudi Verovnik False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Croatia: current status, population dynamics and conservation management 16 Martina Šašić False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Poland: state of knowledge and conservation prospects 20 Marcin Sielezniew, Krzysztof Pałka, Wiaczesław Michalczuk, Cezary Bystrowski, Marek Hołowiński & Marek Czerwiński Ecology of Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Italy 25 Simona Bonelli, Sara Canterino & Emilio Balletto Structure and size of a threatened population of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Hungary 31 Noémi Örvössy, Ágnes Vozár, Ádám Kőrösi, Péter Batáry & László Peregovits Concerning the situation of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) in Switzerland 38 Goran Dušej, Emmanuel Wermeille, Gilles Carron & Heiner Ziegler Habitat requirements, larval development and food preferences of the German population of the False Ringlet Coenonympha oedippus (FABRICIUS, 1787) (Lepidoptera: Nymphalidae) – Research on the ecological needs to develop management tools 41 Markus Bräu, Matthias Dolek & Christian Stettmer
    [Show full text]
  • Melting Glaciers Key to Greater Reliance on Hydroelectric Power? 14 September 2012, by Sandy Evangelista
    Melting glaciers key to greater reliance on hydroelectric power? 14 September 2012, by Sandy Evangelista Credit: 2012 EPFL (Phys.org)—The great glaciers of the Alps are melting. Several climate change scenarios, some of which are based on an average temperature increase of +4°C, predict their complete disappearance by the end of this century. As they retreat, the glaciers uncover cavities; these fill with meltwater, becoming lakes. The Swiss National Science Foundation (SNSF) is funding a research project on the risks and possibilities of these new mountain lakes. Anton Schleiss, director of EPFL's Hydraulic Constructions Laboratory, is participating in the project. "Glaciers store water and transfer winter precipitation into summer runoff. Once they have disappeared, we will need to manage these new reservoirs, which will take over this water storage In the first scenario, the lake water would go role." through turbines on site, as part of the construction of a future Gletsch-Oberwald hydroelectric power For his Master's thesis project, EPFL Civil plant. This would yield less energy, but would not Engineering student David Zumofen studied require altering any existing structures between the several different options for how we can take Rhone and Lake Geneva. advantage of these new natural reservoirs to produce electricity. The second scenario would use the existing hydroelectric structures in place in Oberhasli, on the other side of the Grimsel Pass, at the drainage 1 / 2 divide between the Rhine and Rhone watersheds. Because the water can pass through existing turbines several times on its journey downstream, this solution is much cheaper and could generate more electricity.
    [Show full text]
  • Phytosociological Analysis of Natural and Artificial Pine Forests Of
    Article Phytosociological Analysis of Natural and Artificial Pine Forests of the Class Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 in the Sudetes and Their Foreland (Bohemian Massif, Central Europe) Kamila Reczy ´nska 1 , Paweł Pech 2 and Krzysztof Swierkosz´ 3,* 1 Department of Botany, Institute of Environmental Biology, University of Wrocław, Kanonia 6/8, PL-50-328 Wrocław, Poland; [email protected] 2 Bureau of Forest Management and Geodesy, Piastowska 9, PL-49-300 Brzeg, Poland; [email protected] 3 Museum of Natural History, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, PL-50-335 Wrocław, Poland * Correspondence: [email protected] Abstract: Research Highlights: Differentiation of Scots pine forests of the class Vaccinio-Piceetea in Poland has been the subject of numerous studies, including revisions. Despite that, the area of southwestern Poland was hitherto practically unexplored in this respect. Background and Objectives: The aim of this work was therefore (i) to present the diversity of the pine forests in the Sudetes and their foreland; (ii) to compare the ecology of studied communities. Materials and Methods: We analyzed 175 phytosociological relevés collected between 1991 and 2020 in natural and anthropogenic pine stands. To identify vegetation types, we used the modified TWINSPAN algorithm; principal coordinate analysis, distance-based redundancy analysis and permutational tests were applied to identify the variation explained and the main environmental gradients shaping the studied plant com- munities. Results: Five associations were distinguished: thermophilous Asplenio cuneifolii-Pinetum Citation: Reczy´nska,K.; Pech, P.; sylvestris Pišta ex Husová in Husová et al.
    [Show full text]
  • Ornamental Grasses for Cold Climates North Central Regional Extension P Ublication 573
    \ Ornamental Grasses for Cold Climates North Central Regional Extension P ublication 573 ....._:; I • • I M. Hockenberry Meyer is an assistant professor and extension horticulturist who specializes in research on ornamental and native grasses. D. B. White is a professor of turfgrass science. H. Pellett is a professor who has done extensive research on cold hardiness. All authors are in the Department of Horticultural Science. UNIVERSITY OF MINNESOTA Extension SE R VICE The Minnesota Experiment Station provided financial support for this research under project number 21-55. Additional funding was provided by the College of Agricultural, Food, and Environmental Sciences. Editor/Product Manager: Richard Sherman Graphic Designer: Deb Thayer Photographers: Dave Hansen, Mary Meyer Illustrators: Kristine Kirkeby, John Molstad ~ CD< ~ ll> ~ ~ 3 ;;;· C') ll> :, ~ Cen ~ ~ CD s:: s· :, enCD 0 5j" r ll> :, a. en C') ll> -0 CD a-)> ro0 C: 3 Introduction Desirable Traits Culture and Maintenance 2 Research in Minnesota 2 USDA Hardiness Map 3 Research Results 4 Snow Cover and Minimum Temperatures for the Six-Year Trial 4 Group 1. Recommended for Cold Climates Including USDA Zone 4a 5 Group 2. Marginally Hardy in USDA Zone 4a 16 Group 3. Not Recommended as Perennials for USDA Zone 4a 19 Miscanthus for Cold Climates 20 What About Pampasgrass? 21 Grasses for Different Landscape Needs 22 22 Water Gardens and Standing Water Miscanthus sinensis 'Malepartus' Shady Locations 22 Erosion Control/Invasive Rhizomes 23 Perennial Grasses That Can Be Grown as Annuals 23 The ruler symbol appears Fall Color and Winter Interest 24 25 throughout this Alternative Lawns bulletin as a Native Ornamental Grasses 26 height reference for illustrations.
    [Show full text]
  • Package Gruy\350Re
    Cheese and chocolate Cheese and chocolate Programme 09.00 Mini-bus transfer to the heliplace 09.15 Heliflight over the Swiss Alps 15.45 Visit the village of Gruyère 15.45 Visit the cheese factory 16.45 Meal at the restaurantt 15.45 Visit the chocolat factory 16.45 Heliflight over the Swiss Alps The package includes Mini-bus transfer Heliflight Visit of the cheese factory Meal at the Botta restaurant Visit of the chocolate factory Cailler Facts for gruyere .From the top of Glacier you can enjoy the 360-degree panoramic view that includes some of the most beautiful alpine peaks - from the Eiger, Mönch and Jungfrau to the Matterhorn - and views onto over 24 peaks that are over 4000 m high. Enjoy a romantic ride on a dog sled pulled by a team of Huskies and experience the unique team work between humans and animals. The dog sled ride takes you through the beautiful glacial landscape . The lake lies on the course of the Rhone. The river has its source at the Rhone Glacier near the Grimsel Pass in Valais. Lake Geneva is the largest body of water in Switzerland, and greatly exceeds in size all others that are connected with the main valleys of the Alps. It is in the shape of a crescent, with the horns pointing south, the northern shore being 95 km (59 mi), the southern shore 72 km (45 mi) in length.... With the Aquarel, solar electric boat, take the advantage of a perfectly silent and ecological cruise. In moderate speed, we shall follow the respectable plane tree of the island of Peilz, dormitory six months a year of hundreds of Big Cormorants.
    [Show full text]