Analysis of Minor Fractures Associated with Joints and Faulted Joints

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Minor Fractures Associated with Joints and Faulted Joints Journal o/Structural Geology, Vol. 13. No. 8, pp. 865 to 886, 1991 0191-8141/91 $03.00+0.00 Printed in Great Britain © 1991 Pergamon Press plc Analysis of minor fractures associated with joints and faulted joints KENNETH M. CRUIKSHANK, GUOZHU ZHAO and ARVID M. JOHNSON M. King Hubbert Structural Geology Laboratory, Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, U.S.A. (Received 6 April 1990; accepted in revised form 7 April 1991) Abstract--In this paper, we use fracture mechanics to interpret conditions responsible for secondary cracks that adorn joints and faulted joints in the Entrada Sandstone in Arches National Park, U.S.A. Because the joints in most places accommodated shearing offsets of a few mm to perhaps 1 dm, and thus became faulted joints, some of the minor cracks are due to faulting. However, in a few places where the shearing was zero, one can examine minor cracks due solely to interaction of joint segments at the time they formed. We recognize several types of minor cracks associated with subsequent faulting of the joints. One is the kink, a crack that occurs at the termination of a straight joint and whose trend is abruptly different from that of the joint. Kinks are common and should be studied because they contain a great deal of information about conditions during fracturing. The sense of kinking indicates the sense of shear during faulting: a kink that turns clockwise with respect to the direction of the main joint is a result of right-lateral shear, and a kink that turns counter- clockwise is a result of left-lateral shear. Furthermore, the kink angle is related to the ratio of the shear stress responsible for the kinking to the normal stress responsible for the opening of the joint. The amount of opening of a joint at the time it faulted or even at the time the joint itself formed can be estimated by measuring the kink angle and the amount of strike-slip at some point along the faulted joint. Other fractures that form near terminations of pre-existing joints in response to shearing along the joint are horsetail fractures. Similar short fractures can occur anywhere along the length of the joints. The primary value in recognizing these fractures is that they indicate the sense of faulting accommodated by the host fracture and the direction of maximun tension. Even where there has been insignificant regional shearing in the Garden Area, the joints can have ornate terminations. Perhaps the simplest is a veer, where the end of one joint segment turns gradually toward a nearby joint segment. The veer is a result of a nearby, shear-stress-free face such as a joint surface. Our greatest difficulty has been explaining long overlap of parallel joint segments, that is, the lack of veer. The only plausible explanation we know is suggested by the research of Cottrell and Rice, that high compression parallel to the joint segments will tend to prevent the joints from turning toward one another. The most interesting and puzzling fractures are stepped joints and associated echelon cracks, in which the slight misalignment of the stepped joints suggests mild left-lateral shear, while the strong misalignment of echelon cracks that continue the traces of the stepped joints suggests strong right-lateral shear. The stepped joints are thought to reflect local left-lateral shearing that acted over an area of several thousand square metres, whereas the stepped echelon cracks reflect local interaction between the tips of nearby joints propagating in different directions. INTRODUCTION faulting--all were extremely mild deformations---so one can compare secondary cracks that formed where joints THE understanding of rock fracture has progressed far were subjected to negligible shearing with secondary enough for us to infer conditions of faulting and jointing cracks that formed where there was significant faulting from the forms of faults and joints, provided their following the jointing. Some of the secondary cracks geologic history has been simple. Studies combining appear to have formed at the same time as the joints theoretical and field work have provided basic rules with themselves, a result of interaction between adjacent which we can interpret conditions responsible for eche- joint segments. Others appear to be individual kinks or lon cracks, tail cracks and bridge fractures associated groups of horsetail cracks that formed near terminations with joints or faulted joints. of pre-existing joints as a result of later faulting along the The purpose of this paper is to use the understanding joints. of fracturing to develop some rules for interpreting In most areas it is no simple matter to differentiate traces of secondary cracks associated with joints and fractures that developed at the time the joints opened faulted joints. Our examples are along fractures in from fractures that developed when the joints sub- Entrada Sandstone in the Garden Area (Fig. 1) of sequently slipped as faults. We are able to make such a Arches National Park, near Moab, Utah, although differentiation in the Garden Area, however, because in Segall & Pollard (1983a) and Davies & Pollard (1986) part of the area there was only jointing (zero slip) and in have described analogous secondary cracks on joints and other parts there was faulting following the jointing. The faulted joints in Sierran granite. secondary fractures in the area of zero slip resulted from The Garden Area provides an excellent opportunity interaction of the joints at the time they formed, essen- to study joints and faulted joints. The area was subjected tially in response to mode I loading, resulting from to two periods of jointing and two periods of strike-slip regional extension. In most parts of the Garden Area, SG 13:8-A 865 866 K.M. CRU~KSHANK, G. ZHAO and A. M. JOHNSON -6 ~i i iii~:.. N 0 0.5 1.0 km Fig. 1. The Garden Area of the Arches National Park, U.S.A., showing fracture traces visible on air photographs. Inset shows that the Garden Area is on the SW limb of the Salt Valley anticline. the joints have subsequently been subjected to shearing from shearing superimposed on the joints, in addition to (mode II and III deformations; Lawn & Wilshaw 1975): secondary fractures due to shear imposed through inter- a left-lateral slip in the northern third and a right-lateral action. slip in the central half of the area (Fig. 2).Comparison of The theoretical basis of our analyses is broad, but we joint terminations between areas of shear and no shear rely most heavily on investigations of crack stability and allows us to examine secondary fractures that result effect of mode II shearing on mode I fracturing by Minor fractures associated with joints and faulted joints 867 Cottrell & Rice (1980), Sumi et al. (1985) and Olson & the lower part of the Morrison Formation (Cater & Pollard (1989), and on the investigation of effects of Craig 1970). mode III shearing on fracturing by Pollard et al. (1982). There are three sets of joints in the Garden Area (Fig. To study crack interactions, we use an alternating 2) which Dyer (1983) termed J-l, J-2 and J-3, with J-3 method similar to that explained by Pollard & Holzhau- being the youngest. Traces of J-3 joints trend about sen (1979). Results of these analyses are applied to some N10°W throughout the Garden Area and dip vertically field examples in order to infer conditions at the time the or steeply eastward. Joints J-1 trend about N60°E and secondary cracks formed. occur only in the southern part of the area. Joints J-2 trend about N30°E and occur in both the northern and southern parts of the area (Fig. 2). Reinvestigation of the fractures (Zhao & Johnson in review) indicates that SETTING joints J-1 and J-2 are jointed faults; that is, they are band faults or fault zones that formed in a shearing (mode II The Garden Area is on the SW flank of the Salt Valley or III) deformation and subsequently opened in mode I anticline, the northwesternmost of the salt-cored anti- deformation, and are in this respect similar to stepped clines of the Paradox fold and fault belt in western fault segments described in a large landslide in central Colorado and eastern Utah (Dane 1935, Elston et al. Utah by Fleming & Johnson (1989). In the Garden 1962, Cater & Craig 1970, Doelling 1985). The area is Area, the trends of the J-1 and J-2 joints were inherited largely within Arches National Park, and about mid- from the trends of strike-slip faults that formed in distance between the Salt Valley anticline in the NE and response to NE-SW compression. In the vicinity of the Moab fault zone in the SW (Fig. 1). The rocks in the joints J-2, joints J-3 degenerate into numerous short Garden Area have been only mildly deformed and dip segments, bridge cracks or horsetail cracks, in some about 7 ° toward the SW. places oblique to the regional trend, particularly in the The joints in the Garden area occur within the white northern part of the area (Fig. 2), indicating that joints sandstone of the Moab Member which, here, is about J-3 are younger than joints J-2, as indicated by Dyer 10 m thick. According to Dyer (1988), underlying the (1983). Although Dyer decided that joints J-1 are the Moab Member are 70-95 m of red, cross-bedded sand- oldest, their age is unknown. Here we are going to stone of the Slickrock Member, and overlying the Moab discuss structures associated with the J-2 and J-3 joints of Member are about 12 m of thinly bedded, alternating Dyer.
Recommended publications
  • Meat: a Novel
    University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 2019 Meat: A Novel Sergey Belyaev Boris Pilnyak Ronald D. LeBlanc University of New Hampshire, [email protected] Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Belyaev, Sergey; Pilnyak, Boris; and LeBlanc, Ronald D., "Meat: A Novel" (2019). Faculty Publications. 650. https://scholars.unh.edu/faculty_pubs/650 This Book is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Sergey Belyaev and Boris Pilnyak Meat: A Novel Translated by Ronald D. LeBlanc Table of Contents Acknowledgments . III Note on Translation & Transliteration . IV Meat: A Novel: Text and Context . V Meat: A Novel: Part I . 1 Meat: A Novel: Part II . 56 Meat: A Novel: Part III . 98 Memorandum from the Authors . 157 II Acknowledgments I wish to thank the several friends and colleagues who provided me with assistance, advice, and support during the course of my work on this translation project, especially those who helped me to identify some of the exotic culinary items that are mentioned in the opening section of Part I. They include Lynn Visson, Darra Goldstein, Joyce Toomre, and Viktor Konstantinovich Lanchikov. Valuable translation help with tricky grammatical constructions and idiomatic expressions was provided by Dwight and Liya Roesch, both while they were in Moscow serving as interpreters for the State Department and since their return stateside.
    [Show full text]
  • Experimental Fracture Mechanics Through Digital Image Analysis Alireza Mehdi-Soozani Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Experimental fracture mechanics through digital image analysis Alireza Mehdi-Soozani Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mechanical Engineering Commons Recommended Citation Mehdi-Soozani, Alireza, "Experimental fracture mechanics through digital image analysis " (1986). Retrospective Theses and Dissertations. 8272. https://lib.dr.iastate.edu/rtd/8272 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a I7"x 23" black and wWte photographic print.
    [Show full text]
  • Evolution of a Highly Dilatant Fault Zone in the Grabens of Canyonlands
    Solid Earth, 6, 839–855, 2015 www.solid-earth.net/6/839/2015/ doi:10.5194/se-6-839-2015 © Author(s) 2015. CC Attribution 3.0 License. Evolution of a highly dilatant fault zone in the grabens of Canyonlands National Park, Utah, USA – integrating fieldwork, ground-penetrating radar and airborne imagery analysis M. Kettermann1, C. Grützner2,a, H. W. van Gent1,b, J. L. Urai1, K. Reicherter2, and J. Mertens1,c 1Structural Geology, Tectonics and Geomechanics Energy and Mineral Resources Group, RWTH Aachen University, Lochnerstraße 4–20, 52056 Aachen, Germany 2Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstraße 4–20, 52056 Aachen, Germany anow at: COMET; Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Cambridge, UK bnow at: Shell Global Solutions International, Rijswijk, the Netherlands cnow at: ETH Zürich, Zürich, Switzerland Correspondence to: M. Kettermann ([email protected]) Received: 20 February 2015 – Published in Solid Earth Discuss.: 17 March 2015 Revised: 18 June 2015 – Accepted: 22 June 2015 – Published: 21 July 2015 Abstract. The grabens of Canyonlands National Park are 1 Introduction a young and active system of sub-parallel, arcuate grabens, whose evolution is the result of salt movement in the sub- Understanding the structure of dilatant fractures in normal surface and a slight regional tilt of the faulted strata. We fault zones is important for many applications in geoscience. present results of ground-penetrating radar (GPR) surveys Reservoirs for hydrocarbons, geothermal energy and fresh- in combination with field observations and analysis of high- water often contain dilatant fractures (e.g., Ehrenberg and resolution airborne imagery.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Crack Growth During Brittle Fracture in Compres1
    CRACK GROWTH DURING BRITTLE FRACTURE IN COMPRES1 by -SIST. TEC, L I SRA' BARTLETT W. PAULDING, JR. LIN DGRE~N Geol. Eng., Colorado School of Mines (1959) SUBMITTED IN PARTIAL, FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHjUSETTS INSTITUTE OF TECHNOLOGY June 1965 Signature of Author Departmenit of Geology an4'Geophysics, February 9, 1965 Certified by.......... Thesis Supervisor- Accepted by .... Chairman, Departmental Committee on Graduate Students Room 14-0551 77 Massachusetts Avenue Cambridge, MA 02139 Ph: 617.253.5668 Fax: 617.253.1690 MITLibraries Email: [email protected] Document Services http,//Iibraries.mit.,edu/doos DISCLAIMER OF QUALITY Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible. Thank you. Author misnumbered pages. ABSTRACT Title: Crack Growth During Brittle Fracture in Compression. Author: Bartlett W. Paulding, Jr. Submitted to the Department of Geology and Geophysics February 9, 1965 in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology. Photoelastic analysis of several two-crack arrays pre- dicts that compressive fracture is initiated at cracks oriented in a particular en schelon manner. Observation of partially-fractured samples of Westerly granite, obtained during uniaxial and confined compression tests by stopping the fracture process, indicate that fracture is initiated by en echelon arrays of biotite grains and pre-existing, trans-granular, cracks.
    [Show full text]
  • Structural Geology
    2 STRUCTURAL GEOLOGY Conventional Map A map is a proportionate representation of an area/structure. The study of maps is known as cartography and the experts are known as cartographers. The maps were first prepared by people of Sumerian civilization by using clay lens. The characteristic elements of a map are scale (ratio of map distance to field distance and can be represented in three ways—statement method, e.g., 1 cm = 0.5 km, representative fraction method, e.g., 1:50,000 and graphical method in the form of a figure), direction, symbol and colour. On the basis of scale, maps are of two types: large-scale map (map gives more information pertaining to a smaller area, e.g., village map: 1:3956) and small: scale map (map gives less information pertaining to a larger area, e.g., world atlas: 1:100 km). Topographic Maps / Toposheet A toposheet is a map representing topography of an area. It is prepared by the Survey of India, Dehradun. Here, a three-dimensional feature is represented on a two-dimensional map and the information is mainly represented by contours. The contours/isohypses are lines connecting points of same elevation with respect to mean sea level (msl). The index contours are the contours representing 100’s/multiples of 100’s drawn with thick lines. The contour interval is usually 20 m. The contours never intersect each other and are not parallel. The characteristic elements of a toposheet are scale, colour, symbol and direction. The various layers which can be prepared from a toposheet are structural elements like fault and lineaments, cropping pattern, land use/land cover, groundwater abstruction structures, drainage density, drainage divide, elongation ratio, circularity ratio, drainage frequency, natural vegetation, rock types, landform units, infrastructural facilities, drainage and waterbodies, drainage number, drainage pattern, drainage length, relief/slope, stream order, sinuosity index and infiltration number.
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Amplitude Inversion of Fast and Slow Converted Waves for Fracture Characterization of the Montney Formation in Pouce Coupe Field, Alberta, Canada
    AMPLITUDE INVERSION OF FAST AND SLOW CONVERTED WAVES FOR FRACTURE CHARACTERIZATION OF THE MONTNEY FORMATION IN POUCE COUPE FIELD, ALBERTA, CANADA by Tyler L. MacFarlane c Copyright by Tyler L. MacFarlane, 2014 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geo- physics). Golden, Colorado Date Signed: Tyler L. MacFarlane Signed: Dr. Thomas L. Davis Thesis Advisor Golden, Colorado Date Signed: Dr. Terence K. Young Professor and Head Department of Geophysics ii ABSTRACT The Montney Formation of western Canada is one of the largest economically viable gas resource plays in North America with reserves of 449TCF. As an unconventional tight gas play, the well development costs are high due to the hydraulic stimulations necessary for economic success. The Pouce Coupe research project is a multidisciplinary collaboration between the Reservoir Characterization Project (RCP) and Talisman Energy Inc. with the objective of understanding the reservoir to enable the optimization of well placement and completion design. The work in this thesis focuses on identifying the natural fractures in the reservoir that act as the delivery systems for hydrocarbon flow to the wellbore. Characterization of the Montney Formation at Pouce Coupe is based on time-lapse mul- ticomponent seismic surveys that were acquired before and after the hydraulic stimulation of two horizontal wells. Since shear-wave velocities and amplitudes of the PS-waves are known to be sensitive to near-vertical fractures, I utilize isotropic simultaneous seismic in- versions on azimuthally-sectored PS1 and PS2 data sets to obtain measurements of the fast and slow shear-velocities.
    [Show full text]
  • Tectonic and Geological Structures of Gunung Kromong, West Java, Indonesia
    International Journal of GEOMATE, Oct., 2020, Vol.19, Issue 74, pp.185–193 ISSN: 2186-2982 (P), 2186-2990 (O), Japan, DOI: https://doi.org/10.21660/2020.74.05449 Geotechnique, Construction Materials and Environment TECTONIC AND GEOLOGICAL STRUCTURES OF GUNUNG KROMONG, WEST JAVA, INDONESIA *Iyan Haryanto1, Nisa Nurul Ilmi2, Johanes Hutabarat3, Billy Gumelar Adhiperdana4, Lili Fauzielly5, Yoga Andriana Sendjaja6, and Edy Sunardi7 1-7Faculty of Geological Engineering, Universitas Padjadjaran, Indonesia *Corresponding Author, Received: 12 May 2020, Revised: 29 May 2020, Accepted: 15 June 2020 ABSTRACT: The Gunung Kromong complex is a solitary hill which physiographically located within the Jakarta Coastal Plain Zone. The research is mainly formed of primary data from observations and measurements of all geological elements especially morphological aspects and geological structures to reveal the tectonic background and its relation to the oil seepage. Sedimentary rocks outcrops appear in the western part around the cement plant surrounded by well exposed of igneous rocks. Oil seepage, gas and hot springs are found in limestone which has high fracture intensity and at low elevation. The distribution of sedimentary rocks is not only controlled by the folds and fault structures but also influenced by the igneous rock intrusion. The alignment of the structure in West Palimanan is formed by steep slopes on dacite igneous rock which is concluded as fault scarp. There are found abundance of fault indications in the form of slickenside, fault breccias, millonites, drag folds and have high intensity of shear joint. The KRG-7, KRG-8 and KRG-9 observation points, a slickenside with the same plane was found but has different slicken line, each shows a thrust fault and normal faults.
    [Show full text]
  • Fracture Cleavage'' in the Duluth Complex, Northeastern Minnesota
    Downloaded from gsabulletin.gsapubs.org on August 9, 2013 Geological Society of America Bulletin ''Fracture cleavage'' in the Duluth Complex, northeastern Minnesota M. E. FOSTER and P. J. HUDLESTON Geological Society of America Bulletin 1986;97, no. 1;85-96 doi: 10.1130/0016-7606(1986)97<85:FCITDC>2.0.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from gsabulletin.gsapubs.org on August 9, 2013 "Fracture cleavage" in the Duluth Complex, northeastern Minnesota M.
    [Show full text]
  • Faulted Joints: Kinematics, Displacement±Length Scaling Relations and Criteria for Their Identi®Cation
    Journal of Structural Geology 23 (2001) 315±327 www.elsevier.nl/locate/jstrugeo Faulted joints: kinematics, displacement±length scaling relations and criteria for their identi®cation Scott J. Wilkinsa,*, Michael R. Grossa, Michael Wackera, Yehuda Eyalb, Terry Engelderc aDepartment of Geology, Florida International University, Miami, FL 33199, USA bDepartment of Geology, Ben Gurion University, Beer Sheva 84105, Israel cDepartment of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA Received 6 December 1999; accepted 6 June 2000 Abstract Structural geometries and kinematics based on two sets of joints, pinnate joints and fault striations, reveal that some mesoscale faults at Split Mountain, Utah, originated as joints. Unlike many other types of faults, displacements (D) across faulted joints do not scale with lengths (L) and therefore do not adhere to published fault scaling laws. Rather, fault size corresponds initially to original joint length, which in turn is controlled by bed thickness for bed-con®ned joints. Although faulted joints will grow in length with increasing slip, the total change in length is negligible compared to the original length, leading to an independence of D from L during early stages of joint reactivation. Therefore, attempts to predict fault length, gouge thickness, or hydrologic properties based solely upon D±L scaling laws could yield misleading results for faulted joints. Pinnate joints, distinguishable from wing cracks, developed within the dilational quadrants along faulted joints and help to constrain the kinematics of joint reactivation. q 2001 Elsevier Science Ltd. All rights reserved. 1. Introduction impact of these ªfaulted jointsº on displacement±length scaling relations and fault-slip kinematics.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]