Paleostress and Remote Sensing Analysis of Brittle Fractures from the Eastern Margin of the Dead Sea Transform, Jordan”

Total Page:16

File Type:pdf, Size:1020Kb

Paleostress and Remote Sensing Analysis of Brittle Fractures from the Eastern Margin of the Dead Sea Transform, Jordan” Masaryk University Faculty of Sciences Department of Geological Sciences “Paleostress and Remote Sensing Analysis of Brittle Fractures from the Eastern Margin of the Dead Sea Transform, Jordan” ―Literature Thesis in Requirement for Doctor of Philosophy in Geology Degree Program‖ Prepared by: M.Sc. Omar Mohammad Radaideh Supervisors: Assoc. Prof. RNDr. Rostislav Melichar Brno, Czech Republic 2013 OUTLINES CONTENTS ……………………………………………………………...……………………… II LIST OF FIGURES………………………………………………………………………………. III LIST OF TABLE…………………………………………………………….…………………… III CONTENTS PAGE 1. INTODUCTION 1 2. GEOLOGICAL AND TECTONIC SETTING 2 2.1 General Geological Overview 5 2.2 Major Tectonic Elements 3. SIGNIFICANCE AND OBJECTIVES OF THE STUDY 7 4. METHODOLOGY 8 4.1 Paleostress 8 4.2 Remote Sensing 13 4.2.1. Linear stretching 16 4.2.2. Principal Components Analysis 16 4.2.3. Band ratios 17 4.2.4. Edge Enhancement 17 4.2.5. Intensity/Hue/Saturation (HIS) transformations 18 5. PREVIOUS STUDIES 19 5.1. Paleostress Analysis in Jordan 20 5.2. Paleostress in the Sinai-Israel Sub-Plate 22 5.3. Paleostress in the East Mediterranean 25 5.4. Summary of Paleostress Results 28 REFERENCES 28 II LIST OF FIGUERS Figure Page Figure 1: Location map of the study area…………………………………………………………… 1 Figure 2: Simplified geological map of the southwestern Jordan……………………………...…… 3 Figure 3: The Main tectonic features of the Dead Sea Transform………………………………….. 6 Figure 4: Generalized structure map of Jordan……………………………………………………... 7 Figure 5: Schematic flowchart illustrating the methods and steps that will be used in this study….. 8 Figure 6: Stress ratio and stress ellipsoid…………………………………………………………… 9 Figure 7: The relationship between stress and ideal faults………………………………………….. 10 Figure 8: Types of stress regimes…………………………………………………………………… 11 Figure 9: Worksheet window for entering the data to the Mark 2010 Program…………………….. 12 Figure 10: Criteria for determining the sense of motion on a fault surface…………………………. 13 Figure 11: The studied area, covered by four SRTM-DEM images ……………………………….. 15 Figure 12: The studied area, covered by four ETM+ images. ……………………………………… 15 Figure 13: Example of linear stretching, where pixel values 58-158 are stretched to 0-255……….. 16 Figure 14: First and second principal components………………………………………………….. 17 Figure 15: Principles of edge filter operation……………………………………………………….. 18 Figure 16: Coordinate system for the intensity, hue, and saturation (IHS) transformation………… 19 Figure 17: Synthesis of the major tectonic events in Israel and surrounding regions………………. 25 Figure 18: Shortening phases in southern Turkey…………………………………………………... 27 LIST OF TABELS Table 1: A geological column of the study area……………………………………………………. 4 Table 2: Paleostress direction (SHmax) in Jordan, Syria, Sinai-Israel, and south Turkey………….. 28 III 1. INTRODUCTION Jordan is situated in the north-western corner of the Arabian plate between the stable part of the Arabian Plate and the unstable area of the Dead Sea Transform (DST). It has lateral variation in layer thickness and facies. The Arabian Shield basement is exposed in southwest of Jordan near of Aqaba Gulf (Edgell, 1992; Alsharhan and Nairn, 1997; Abed, 2000). The structural pattern of Jordan is affected by Miocene to recent opening of the Red Sea and the Dead Sea Transform (DST) fault system. The DST is a sinistral wrench fault and part of the 6000 km long Afro- Arabian rift system, forming a transform boundary connecting the Red Sea with the Taurus- Zagros collision zone. It is considered to be a plate boundary between the Arabian plate in the east and the Israel-Sinai sub-plate (part of the African plate) in the west (Garfunkel, 1981; Edgell, 1992; Atallah et al., 2005). The study area is located in the east margin of the Dead Sea transform (Figure 1). It covers an area about 10644 km2 and includes sedimentary, metamorphic and igneous rocks, ranging in age from Precambrian to Quaternary age. The study area is characterized by numerous fault trends and different orientation of fractures. Figure 1: Location map of the study area. 1 The regional tectonics of the Arabian plate (including Jordan) has been studied throughout macrostructures by many authors, but few analyses of the regional tectonics based on mesostructures were conducted. This study will integrate paleostress analysis based on the fault slip data in combination with Geographic Information system (GIS) and remote sensing to enhance our understanding of the structural and tectonic evolution of the east margin of the Dead Sea Rift. Moreover, recent satellite images will be used to characterize the spatial trends of lineament. It is hoped that the integration of satellite–based lineaments analyses from enhanced satellite imageries with fault slip data will provide more insight into the regional structure and tectonics of the study area. 2. GEOLOGICAL AND TECTONIC SETTING 2.1. General Geologic Overview The study area incorporates exposures of sedimentary, metamorphic and igneous rocks, ranging in age from Precambrian to Quaternary (Figure 2). The Precambrian and Palaeozoic units are only exposed in south area and in small parts along the Wadi Araba-Dead Sea-Rift. The Precambrian basement is part of the Arabian-Nubian shield (Rashdan, 1988; Petters, 1991; Al- Hwaiti et al., 2010) and divides into the Aqaba and Araba complexes. These complexes include various granites, diorites, pegmatites, aplites, rhyolithes and metamorphic rocks (Bender, 1968; 1974; 1975). The plutonic rocks are intruded by a vast number of intermediate to basic dykes. The orientation and concentration of dykes depend on availability of weakness zone such as fractures and joints in the rocks (Rashdan, 1988). Palaeozoic clastic sediments overlie the Precambrian Basement with Pre-Saq unconformity, and comprise of the Salib, Burj, Umm Ishrin, Disi, and Umm Sahm formations (Table 1). The Devonian, Carboniferous and Permian ages are not exposed in Jordan (Sharland et al., 2001; Bender, 1968; Bender et al., 1968; Bender, 1974; Barjous, 1992; Rabba, 1994). Triassic and Jurassic deposits are not present in the study area. The Cretaceous overlay the Palaeozoic sediments after a slight angular unconformity created by uplift and erosion during the Jurassic (Bender, 1968; 1974; Amireh, 1997; 2000). The Cretaceous deposits of the area comprise of the Kurnub Group, the Ajlun Group, and most of the Belqa Group (Table 1). The groups are separated from each other by regional unconformities (Powell, 1989; Powell et al., 1996). The Kurnub Sandstone Group (Early Cretaceous) exposes along many 2 scarps and valleys, and consists mainly of white, pale yellow and pink to multicolored, medium to coarse grained quartzose sandstone, with rounded quartz granules and pebbles (Powell, 1989). The Ajlun Group (Early Cenomanian to Turonian-Coniacian) comprised of (in ascending order) Na‘ur, Fuhies, Hummer, Shuayb and Wadi As Sir formations. Generally, the Group consists of fine grained sandstone, calcareous siltstone, green-red mudstone, micritic limestone, yellow-tan marl and interbedded with harder beds of shelly micritic and dolomitic limestone (Powell, 1989). The Ajlun Group is overlain by the Belqa Group. The Belqa Group (Upper Cretaceous to Middle Eocene age) consists of Wadi Umm Ghudran, Amman Silicified Limestone, Al Hisa Phosphate, Muwaqqar Chalk Marl and Umm Rijam Chert Limestone (Powell, 1989). The Balqa Group consists mainly of massive bedded chalk, chert, limestone (micrete, microcrystalline, oyster-shell grainstone types), chalky limestone, phosphate and dolomitic marl. Cenozoic sedimentary deposits are covered many parts of the study area, spatially in the Dead Sea Rift. It consists of clay, marl, gypsum crystals, pleistocene fluviatile deposits, alluvial sediments, alluvial fans, and Wadi sediments (Powell, 1989). Figure 2: Simplified geological map of the southwestern Jordan, modified from Strijker (2013). 3 Table 1: A geological column of the study area (compiled from Bender (1974; 1975), Rashdan (1988), Powell (1989), Powell et al. (1994) and NRA (1995)). Period Age Formation Description Era Group Holocene Alluvial fans , Wadi Unconsolidated sand, silt, clay and Quaternary (Recent) and lake sediments gravels Pleistocene Lisan Pliocene Neogene Gypsum, conglomerates, marl, clay, Miocene Valley n Undifferentiated gravels, fine silt and clay. Cenozoic Oligocene Jorda Paleogene Tertiary Eocene Umm Rijam chert Paleocene Muwaqqar chalk marl Massive bedded chalk, chert, limestone Maastrichtian (micrete, microcrystalline, oyster-shell grainstone types), chalky limestone, Al Hisa phosphorite Campanian Belqa phosphate and dolomitic marl. Amman Silicified Santonian Wadi Umm Ghudran Torronian Wadi As Sir Shuayb Fine grained sandstone, calcareous siltstone, green-red mudstone, micritic Cretaceous limestone, yellow-tan marl and Hummer Cenomanian Ajlun Mesozoic interbedded with harder beds of shelly Fuhies micritic and dolomitic limestone. Na‘ur Albian White, pale yellow and pink to multicolored, medium to coarse Aptian Kurnub grained quartzose sandstone, with Neocomian rounded quartz granules and pebbles Middle Silurian Khushsha Early Alternating cycles of fine- to medium- Late Mudawwara grained quartz arenite, mudstone and shale Middle Khrayim Dubaydib Ordovician Hiswa Early Umm Sahm Paleozoic Late Cambrian Disi Coarse arkosic sandstone, mature Late Middle Umm Ishrin quartz-arenite, dolomite, shale, Cambrian Ram siltstone and pebbly conglomerate Early-Middle Burj Early Salib Araba complex Various granites, diorites, pegmatites,
Recommended publications
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • The Role of Pressure Solution Seam and Joint Assemblages In
    THE ROLE OF PRESSURE SOLUTION SEAM AND JOINT ASSEMBLAGES IN THE FORMATION OF STRIKE-SLIP AND THRUST FAULTS IN A COMPRESSIVE TECTONIC SETTING; THE VARISCAN OF SOUTHWESTERN IRELAND Filippo Nenna and Atilla Aydin Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 e-mail: [email protected] scale such as strike-slip faults and thrust-cored folds in Abstract various stages of their development. In this study we focus on the initiation and development of strike-slip The Ross Sandstone in County Clare, Ireland, was faults by shearing of the initial JVs and PSSs and deformed by an approximately north-south compression formation of thrust faults by exploiting weak shale during the end-Carboniferous Variscan orogeny. horizons and the strike-parallel PSSs in the adjacent Orthogonal sets of fundamental structures form the sandstone intervals. initial assemblage; mutually abutting arrays of 170˚ Development of faults from shearing of initial oriented set 1 joints/veins (JVs) and approximately 75˚ fundamental structural elements with either opening or pressure solution seams (PSSs) that formed under the closing modes in a wide range of structural settings has same stress conditions. Orientations of set 2 (splay) JVs been extensively reported. Segall and Pollard (1983), and PSSs suggest a clockwise remote stress rotation of Martel and Pollard (1989) and Martel (1990) have about 35˚ responsible for the contemporaneous described strike-slip faults formed by shearing of shearing of the set 1 arrays. Prominent strike-slip faults thermal fractures in granitic rocks. Myers and Aydin are sub-parallel to set 1 JVs and form by the linkage of (2004) and Flodin and Aydin (2004) reported strike-slip en-echelon segments with broad damage zones faulting formed by shearing of joints formed by an responsible for strike-slip offsets of hundreds of metres.
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Fracture Cleavage'' in the Duluth Complex, Northeastern Minnesota
    Downloaded from gsabulletin.gsapubs.org on August 9, 2013 Geological Society of America Bulletin ''Fracture cleavage'' in the Duluth Complex, northeastern Minnesota M. E. FOSTER and P. J. HUDLESTON Geological Society of America Bulletin 1986;97, no. 1;85-96 doi: 10.1130/0016-7606(1986)97<85:FCITDC>2.0.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from gsabulletin.gsapubs.org on August 9, 2013 "Fracture cleavage" in the Duluth Complex, northeastern Minnesota M.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • 4. Deep-Tow Observations at the East Pacific Rise, 8°45N, and Some Interpretations
    4. DEEP-TOW OBSERVATIONS AT THE EAST PACIFIC RISE, 8°45N, AND SOME INTERPRETATIONS Peter Lonsdale and F. N. Spiess, University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California ABSTRACT A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several dif- ferent types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fast- spreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outward- facing normal faults, in a zone 12 to 20 km from the axis.
    [Show full text]
  • Fracture Characterization Mapping for Regional Geologic Studies: the Hydrostructural Domain Approach, Ayer Quadrangle, Massachusetts
    Fracture Characterization Mapping for Regional Geologic Studies: The Hydrostructural Domain Approach, Ayer Quadrangle, Massachusetts Stephen B. Mabee And Joseph P. Kopera Office of the Massachusetts State Geologist Geosciences Department University of Massachusetts 611 North Pleasant Street Amherst, MA 01003 Abstract While traditional bedrock geologic maps contain valuable information, they commonly lack data on brittle fracture characteristics and distributions. The increased need for better understanding of groundwater flow behavior in bedrock aquifers has made this data critical. The concept of hydrostructural domains is used to redefine bedrock mapping units based on an assemblage of lithologic and fracture characteristics thought to be important controls on groundwater flow and recharge. These maps are constructed from detailed field observations and measurements of 2000-3000 fractures from 60-70 stations across a 7.5' quadrangle. Hydrostructural domains are displayed on the map as traditional lithologic units would be, with detailed descriptions and photos of the fracture systems contained in each hydrostructural “unit”. In the Ayer quadrangle, such domains closely correspond with bedrock lithology and ductile structural history. Steeply dipping metasedimentary rocks of the Merrimack Belt have pervasive, closely spaced, throughgoing fractures developed parallel to foliation, and therefore may provide excellent potential for vertical recharge and foliation-parallel flow. Where these rocks are intensely cut by a strong subhorizontal cleavage, a parallel fracture set dominates providing an opportunity for lateral flow. Massive granites generally have a well-developed, widely-spaced orthogonal network of fracture zones which may provide excellent local recharge. High-grade gneisses of the Nashoba formation have poorly developed fracture sets except near regional shear zones, where foliation parallel fractures and cross-joints may provide good vertical recharge and provide a strong northeast trending flow anisotropy.
    [Show full text]
  • Cenozoic Paleostress and Kinematic Evolution of the Rukwa - North Malawi Rift Valley (East African Rift System)
    CENOZOIC PALEOSTRESS AND KINEMATIC EVOLUTION OF THE RUKWA - NORTH MALAWI RIFT VALLEY (EAST AFRICAN RIFT SYSTEM) Damien DELVAUX, Kirill LEVI, Rugaibuhamu KAJARA and Julius SAROTA DELVAUX, D" LEVI, K" KAJARA, R, & SAROTA, J (1992), - Cenozoic paleostress and kinematic evolution of the Rukwa - North Malawi rift valley (East African Rift System), - Bull Centres Recti. Explor-Prod. Elf Aquitaine, 16, 2, 383-406, 13 fig" 2 tab.: Boussens, December 24, 1992, - ISSN ; 0396-2687 CODEN' BCREDP. l.'evolution cinematique du secteur Tanganyika - Rukwa - Malawi de la branche occidentale du rift est-africain est encore relativement mal connue. Le r61e respectif des mouvements verticaux ou horizontaux Ie long des failles liees au developpement des bassins du rift est toujours I'objet de discussions contradictoires, ainsi que l'estimation de la direction d'extension principale. Afin d'eclaircir ces problernes, 976 failles mineures provenant de 29 sites difte­ rents ont ete mesurees dans I'ouest de la Tanzanie, Ie long de la partie nord de la depression du lac Malawi et de sa jonction triple avec Ie rift de Rukwa et la depression transversale d'Usanqu. Ces mesures ont ete ettectuees Ie long des failles majeures ainsi que dans les sediments et volcanites du rift. Les donnees de faille avec stries de glissement ont ete analysees en termes de palsctenseurs de contraintes. D'apres les donnees de terrain et ainsi qu'il a ete montre par d'autres, il est clair que la direction NW-SE majeure des failles du rift Rukwa - Nord Malawi a etc fortement influencee par les directions structurales precarnbriennnes. D'autre part, elles sont egalement largement heritees de la phase de rifting Karoo (perrno-triassique).
    [Show full text]
  • PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, the BRUNTON COMPASS, FIELD BOOK, and NJGS FMS
    PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, THE BRUNTON COMPASS, FIELD BOOK, and NJGS FMS The word azimuth stems from an Arabic word meaning "direction“, and means an angular measurement in a spherical coordinate system. In structural geology, we primarily deal with land navigation and directional readings on two-dimensional maps of the Earth surface, and azimuth commonly refers to incremental measures in a circular (0- 360 °) and horizontal reference frame relative to land surface. Sources: Lisle, R. J., 2004, Geological Structures and Maps, A Practical Guide, Third edition http://www.geo.utexas.edu/courses/420k/PDF_files/Brunton_Compass_09.pdf http://en.wikipedia.org/wiki/Azimuth http://en.wikipedia.org/wiki/Brunton_compass FLASH DRIVE/Rider/PDFs/Holcombe_conv_and_meas.pdf http://www.state.nj.us/dep/njgs/geodata/fmsdoc/fmsuser.htm Brunton Pocket Transit Rider Structural Geology 310 2012 GCHERMAN 1 PlanePlane DipDip andand LinearLinear PlungePlunge horizontal dddooo Dip = dddooo Bedding and other geological layers and planes that are not horizontal are said to dip. The dip is the slope of a geological surface. There are two aspects to the dip of a plane: (a) the direction of dip , which is the compass direction towards which the plane slopes; and (b) the angle of dip , which is the angle that the plane makes with a horizontal plane (Fig. 2.3). The direction of dip can be visualized as the direction in which water would flow if poured onto the plane. The angle of dip is an angle between 0 ° (for horizontal planes) and 90 ° (for vertical planes). To record the dip of a plane all that is needed are two numbers; the angle of dip followed by the direction (or azimuth) of dip, e.g.
    [Show full text]
  • Stylolites: a Review
    Stylolites: a review Toussaint R.1,2,3*, Aharonov E.4, Koehn, D.5, Gratier, J.-P.6, Ebner, M.7, Baud, P.1, Rolland, A.1, and Renard, F.6,8 1Institut de Physique du Globe de Strasbourg, CNRS, University of Strasbourg, 5 rue Descartes, F- 67084 Strasbourg Cedex, France. Phone : +33 673142994. email : [email protected] 2 International Associate Laboratory D-FFRACT, Deformation, Flow and Fracture of Disordered Materials, France-Norway. 3SFF PoreLab, The Njord Centre, Department of Physics, University of Oslo, Norway. 4Institute of Earth Sciences, The Hebrew University, Jerusalem, 91904, Israel 5School of Geographical and Earth Sciences, University of Glasgow, UK 6University Grenoble Alpes, ISTerre, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, 38000 Grenoble, France 7OMV Exploration & Production GmbH Trabrennstrasse 6-8, 1020 Vienna, Austria 8 The Njord Centre,PGP, Department of Geosciences, University of Oslo, Norway *corresponding author Highlights: . Stylolite formation depends on rock composition and structure, stress and fluids. Stylolite geometry, fractal and self-affine properties, network structure, are investigated. The experiments and physics-based numerical models for their formation are reviewed. Stylolites can be used as markers of strain, paleostress orientation and magnitude. Stylolites impact transport properties, as function of maturity and flow direction. Abstract Stylolites are ubiquitous geo-patterns observed in rocks in the upper crust, from geological reservoirs in sedimentary rocks to deformation zones, in folds, faults, and shear zones. These rough surfaces play a major role in the dissolution of rocks around stressed contacts, the transport of dissolved material and the precipitation in surrounding pores. Consequently, they 1 play an active role in the evolution of rock microstructures and rheological properties in the Earth’s crust.
    [Show full text]
  • Scale Brittle Rock Structures and the Estimation of “Paleostress” Axes – a Case Study from the Koralm Region (Styria/Carinthia)______
    Austrian Journal of Earth Sciences Volume 107/2 Vienna 2014 Small- to meso - scale brittle rock structures and the estimation of “paleostress” axes – A case study from the Koralm region (Styria/Carinthia)______________________ Franz-Josef BROSCH1) & Gerald PISCHINGER1)2)*) KEYWORDS paleostress analysis brittle tectonics Koralm Tunnel 1) Institute of Applied Geosciences, TU Graz, Rechbauerstraße 12, A-8010 Graz, Austria; Florianer beds 2) Geoconsult ZT GmbH, Hölzlstraße 5, A-5071 Wals bei Salzburg, Austria; Eastern Alps Badenian *) Corresponding author, [email protected] Koralpe Abstract Mapping of fault slip data and the consecutive estimation of paleostress orientations are routine procedures during structural geo- logical investigation. In addition, there are various other small- to mesoscale features of brittle deformation which are frequently nei- ther mapped nor routinely used for paleostress analysis. In this paper we present such data, i.e. conjugate shear fractures, faulting related secondary fractures, tensile/extensional fractures, veins, low angle shears and listric faults, from the Koralpe, Eastern Alps. Paleostress orientations are determined with the help of stereographic projection techniques and compared to the results of published fault slip data and fault slip data gathered during tunnelling of the Koralm Tunnel in the Badenian Florianer beds of the western Sty- rian Basin. The analysed data yield paleostress axes which may be attributed to the three Andersonian fault types with similar ori- entations as the ones achieved by fault slip analysis. Yet, a reliable (relative) timing of the different tectonic events is not possible on the basis of the structures analysed and time constraints from the surrounding basins are limited to Ottnangium till Sarmatium.
    [Show full text]
  • Significance of Fracture Patterns in a Rock Mass During Excavation by Blasting in Bandhagen, Sweden
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 332 Significance of Fracture Patterns in a Rock Mass during Excavation by Blasting in Bandhagen, Sweden Betydelsen av ett sprickmönster vid utschaktning av berg genom sprängning i Bandhagen, Sverige Mattias Ryttberg INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 332 Significance of Fracture Patterns in a Rock Mass during Excavation by Blasting in Bandhagen, Sweden Betydelsen av ett sprickmönster vid utschaktning av berg genom sprängning i Bandhagen, Sverige Mattias Ryttberg ISSN 1650-6553 Copyright © Mattias Ryttberg and the Department of Earth Sciences, Uppsala University Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2015 Abstract Significance of Fracture Patterns in a Rock Mass during Excavation by Blasting in Band- hagen, Sweden Mattias Ryttberg When excavating a rock wall by blasting, pre-existing structures in the rock has a strong impact on the stability of the wall. For excavation in Bandhagen in Stockholm, the nature and orientation of the pre- existing geological features, namely fractures, were not taken into consideration before excavation begun. Geological field studies were carried out in order to investigate the possibility of a more favorable outcome than in the Bandhagen case. Mapping conducted in March 2015 was focused on fracture distribution and the results showed two sets of open shear fractures with fresh surfaces. The first set of the fractures cross-cuts the wall with a strike of NNW-SSE and dips between 70°±30°.
    [Show full text]