Fracture Characterization Mapping for Regional Geologic Studies: the Hydrostructural Domain Approach, Ayer Quadrangle, Massachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Fracture Characterization Mapping for Regional Geologic Studies: the Hydrostructural Domain Approach, Ayer Quadrangle, Massachusetts Fracture Characterization Mapping for Regional Geologic Studies: The Hydrostructural Domain Approach, Ayer Quadrangle, Massachusetts Stephen B. Mabee And Joseph P. Kopera Office of the Massachusetts State Geologist Geosciences Department University of Massachusetts 611 North Pleasant Street Amherst, MA 01003 Abstract While traditional bedrock geologic maps contain valuable information, they commonly lack data on brittle fracture characteristics and distributions. The increased need for better understanding of groundwater flow behavior in bedrock aquifers has made this data critical. The concept of hydrostructural domains is used to redefine bedrock mapping units based on an assemblage of lithologic and fracture characteristics thought to be important controls on groundwater flow and recharge. These maps are constructed from detailed field observations and measurements of 2000-3000 fractures from 60-70 stations across a 7.5' quadrangle. Hydrostructural domains are displayed on the map as traditional lithologic units would be, with detailed descriptions and photos of the fracture systems contained in each hydrostructural “unit”. In the Ayer quadrangle, such domains closely correspond with bedrock lithology and ductile structural history. Steeply dipping metasedimentary rocks of the Merrimack Belt have pervasive, closely spaced, throughgoing fractures developed parallel to foliation, and therefore may provide excellent potential for vertical recharge and foliation-parallel flow. Where these rocks are intensely cut by a strong subhorizontal cleavage, a parallel fracture set dominates providing an opportunity for lateral flow. Massive granites generally have a well-developed, widely-spaced orthogonal network of fracture zones which may provide excellent local recharge. High-grade gneisses of the Nashoba formation have poorly developed fracture sets except near regional shear zones, where foliation parallel fractures and cross-joints may provide good vertical recharge and provide a strong northeast trending flow anisotropy. These maps are intended to provide regional-scale information to assist in site-specific groundwater investigations. We believe that such maps are an example of how new types of geologic maps can, and must, be developed to address changing societal needs. The next step is to determine if the qualitative descriptions provided by the hydrostructural domain can be translated into a quantitative measure of hydraulic properties. 169 to 186 Introduction The use of fractured-bedrock aquifers to meet private, public and commercial water supply needs is increasing in the New England region. Municipalities and water suppliers are finding it increasingly difficult to locate and develop water supplies in overburden aquifers because of contamination and a lack of suitable sites. As a result, water suppliers are going deeper into bedrock aquifers (Drew et al., 2001). Yet information on the factors that influence the availability and recharge characteristics of fractured bedrock aquifers in highly deformed crystalline metamorphic rocks is limited. The availability of water in fractured rock aquifers is particularly critical in eastern Massachusetts because growth and development along the coast, major transportation corridors, and in rural communities adjacent to large metropolitan areas is extensive. The I-495 corridor, a circumferential highway 20 miles west of Boston, has become the focus of recent growth. Professional office buildings, research and development parks associated with the computer industry, warehouses and light industry are springing up along this corridor, as are housing and condominium developments. Municipalities and water suppliers are simply unprepared for this onslaught of development and need help in understanding the complex dynamics of the ground water system. Since 2003, the Office of the Massachusetts State Geologist has been preparing a new suite of 1:24,000 scale mapping products referred to as fracture characterization maps (Mabee and Salamoff, 2004; Mabee, 2005; Kopera et al., 2006). These maps were created to fill a critical need for brittle fault and fracture information relevant to groundwater issues in bedrock environments that was not being met by traditional bedrock geologic mapping. This purpose of this paper is to describe briefly how these maps are constructed and utilized by the user community. We will provide an example of one of the fracture characterization maps from the 1:24,000-scale Ayer quadrangle in eastern Massachusetts. Study Area The Ayer quadrangle is located approximately 25 miles NW of Boston. Two major transportation routes traverse the quadrangle (Figure 1). These include Interstate 495 and Route 2. I-495 is the major transportation corridor connecting northern New England with the entire eastern seaboard megalopolis. Route 2 is the major east-west corridor that transits the northern half of Massachusetts connecting Boston with New York state. Both of these transportation routes and the communities adjoining them have been the focus of development and recent growth (Figure 1). The Ayer quadrangle encompasses parts of six communities, Groton, Ayer, Shirley, Harvard, Boxborough and Littleton (Figure 2). The population has grown by an average of 22% from 1980 to 2000 with Boxborough and Groton growing at 53% and 42%, respectively. An average of 283 acres per year are being converted from undeveloped to developed land in the six towns combined. Nearly 15% of the total land area in Groton has become developed in the 28 years extending from 1971 to 1999. Growth is expected to continue in the coming years. 2 Rt 2 Figure 1. Map showing the percentage of land area, by town, converted from undeveloped land (crops, pastures, forests, open space) to developed land (residential, commercial, industrial land uses, etc.) from 1977 to 1999 (from MassGIS). Note correlation between growth patterns and major state routes and interstates. The Ayer quadrangle is labeled Project 1. All of the communities rely primarily on groundwater to meet their potable water supply demands despite being within 30 miles of Boston. All water is supplied either through private domestic wells or limited municipal water supply systems. Ayer, Groton, Littleton and Shirley have municipal water supply systems comprised of gravel pack wells but most individuals not connected to public water rely on bedrock wells to meet demand. Harvard and Boxborough have no public water supply systems and must rely predominantly on bedrock wells. Geology In the broadest terms, Massachusetts is the amalgamation of rocks from three tectonic plates (Figure 3). These include rocks associated with the margin of Figure 2. Close-up view of the Ayer Quadrangle. Approximate location of Fort Devens shown in blue shaded area. 3 Laurentia, medial New England, which includes Ordovician-age intrusive and extrusive rocks associated with an island arc system and Proterozoic rocks of uncertain origin, and the Avalon plate. These plates were active during the early to middle Paleozoic (Robinson et al., 1993). Figure 3. Generalized map of Massachusetts showing the geographic distribution of lithotectonic packages and terranes into which the rocks of the State have been grouped (modified from Hatch, 1991). Regions discussed in this proposal are bold and all caps. Structural and metamorphic features in Massachusetts were produced during three orogenic events. These include the late Ordovician Taconian Orogeny (the docking of medial New England with Laurentia, affecting central and western Massachusetts), the Devonian Acadian orogeny (the docking of Avalon with amalgamated Laurentia and medial New England, affecting eastern and central Massachusetts predominantly) and the Pennsylvanian-Permian Alleghenian orogeny (metamorphism and reactivation of faults produced by the collision of Africa with North America). All structures were later modified and reactivated by extension in the Mesozoic during opening of the present day Atlantic Ocean (Robinson et al., 1993). Sandwiched between medial New England and Avalon is an enigmatic terrane referred to as the Nashoba terrane (Figure 3). Acceptance as a separate terrane did not take place until the early 1980’s following identification of the large terrane-bounding fault zones (Castle et al., 1976; Bell and Alvord, 1976). The Clinton Newbury fault zone delineates the western edge of the Nashoba terrane and separates it from the eastern portion of medial New England, an area known as the 4 Merrimack Belt (the Merrimack Belt lies within the Merrimack Synclinorium and forms the eastern half of medial New England) (Figure 3). Rocks of the Merrimack Belt are comprised of calcareous metasiltstones, phyllite, metasandstones and quartzites of Silurian and Ordovician age (Robinson and Goldsmith, 1991). The rocks immediately west of the Clinton-Newbury fault are metamorphosed to the lower greenschist facies and progressively rise in grade toward the northwest (Hepburn, 2004). In contrast, the rocks of the Nashoba terrane, east of the Clinton-Newbury fault, are multiply deformed and metamorphosed middle to upper amphibolite facies rocks (sillimanite and sillimanite-K feldspar zones) (Hepburn, 2004) consisting of largely metavolcanic materials to the east and metasedimentary rocks to the west (Goldsmith, 1991). The Ayer quadrangle is located at the junction between the Merrimack belt and the Nashoba terrane (Figure 4). The Clinton-Newbury fault passes through the southeast corner of the Figure 4. Generalized bedrock
Recommended publications
  • The Bedrock Geology and Fracture Characterization of the Maynard Quadrangle of Eastern Massachusetts
    The Bedrock Geology and Fracture Characterization of the Maynard Quadrangle of Eastern Massachusetts Author: Tracey A. Arvin Persistent link: http://hdl.handle.net/2345/1731 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2010 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Geology and Geophysics THE BEDROCK GEOLOGY AND FRACTURE CHARACTERIZATION OF THE MAYNARD QUADRANGLE OF EASTERN MASSACHUSETTS a thesis by TRACEY ANNE ARVIN submitted in partial fulfillment of the requirements for the degree of Master of Science December 2010 © copywrite by TRACEY ANNE ARVIN 2010 ABSTRACT The bedrock geology of the Maynard quadrangle of east-central Massachusetts was examined through field and petrographic studies and mapped at a scale of 1:24,000. The quadrangle spans much of the Nashoba terrane and a small area of the Avalon terrane. Two stratigraphic units were defined in the Nashoba terrane: the Cambrian to Ordovician Marlboro Formation and the Ordovician Nashoba Formation. In addition, four igneous units were defined in the Nashoba terrane: the Silurian to Ordovician phases of the Andover Granite, the Silurian to Devonian Assabet Quartz Diorite, the Silurian to Devonian White Pond Diorites (new name), and the Mississippian Indian Head Hill Igneous Complex. In the Avalon terrane, one stratigraphic unit was defined as the Proterozoic Z Westboro Formation Mylonites, and one igneous unit was defined as the Proterozoic Z to Devonian Sudbury Valley Igneous Complex. Two major faults were identified: the intra-terrane Assabet River fault zone in the central part of the quadrangle, and the south-east Nashoba terrane bounding Bloody Bluff fault zone.
    [Show full text]
  • Mineral Industries and Geology of Certain Areas
    REPORT -->/ OF TFIE STATE GEOLOGIST ON THE S 7 (9 Mineral Industries and Geology 12 of Certain Areas OF -o VERMONT. 'I 6 '4 4 7 THIRD OF THIS SERIES, 1901-1902. 4 0 4 S GEORGE H. PERKINS, Ph. D., 2 5 State Geologist and Professor of Geology, University of Vermont 7 8 9 0 2 4 9 1 T. B. LYON C0MI'ANV, I'RINTERS, ALILiNY, New VORK. 1902. CONTENTS. PG K 1NTRODFCTION 5 SKETCH OF THE LIFE OF ZADOCK THOMPSON, G. H. Perkins ----------------- 7 LIST OF OFFICIAL REPORTS ON VERMONT GEOLOGY ----------------- -- -- ----- 14 LIST OF OTHER PUBLICATIONS ON VERMONT GEOLOGY ------- - ---------- ----- 19 SKETCH OF THE LIFE OF AUGUSTUS WING, H. M. Seely -------------------- -- 22 REPORT ON MINERAL INDUSTRIES, G. H. Perkins ............................ 35 Metallic Products ------------------------------------------------------ 32 U seful Minerals ------------------------------------------------------- 35 Building and Ornamental Stone ----------------------------------------- 40 THE GRANITE AREA OF BAItRE, G. I. Finlay------------------------------ --- 46 Topography and Surface Geology ------------------------------------ - -- 46 General Geology, Petrography of the Schists -------------------------- - -- 48 Description and Petrography of Granite Areas ----------------------------51 THE TERRANES OF ORANGE COUNTY, VERMONT, C. H. Richardson ------------ 6i Topography---------------------------- -............................. 6z Chemistry ------------------------------------------------------------66 Geology --------------------------------------------------------------
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Town of Upton Open Space and Recreation Plan
    ____________________________________________________________________________________________________________ MAY 2011 TOWN OF UPTON D OPEN SPACE AND RECREATION PLAN a f North t Prepared by: Upton Open Space Committee (A Subcommittee of the Upton Conservation Commission) ____________________________________________________________________________________________________________ Town of Upton D OPEN SPACE rAND RECREATION PLAN a f t May 2011 Prepared by: The Upton Open Space Committee (A Subcommittee of the Upton Conservation Commission) Town of Upton Draft Open Space and Recreation Plan – May 2011 __________________________________________________________________________________________________________ DEDICATION The members of the Open Space Committee wish to dedicate this Plan to the memory of our late fellow member, Francis Walleston who graciously served on the Milford and Upton Conservation Commissions for many years. __________________________________________________________________ ACKNOWLEDGEMENTS Upton Open Space Committee Members Tom Dodd Scott Heim Rick Holmes Mike Penko Marcella Stasa Bill Taylor Assistance was provided by: Stephen Wallace (Central Massachusetts Regional Planning Commission) Peter Flinker and Hillary King (Dodson Associates) Dave Adams (Chair, Upton Recreation Commission) Chris Scott (Chair, Upton Conservation Commission) Ken Picard (as a Member of the Upton Planning Board) Upton Board of Selectmen. Trish Settles (Central Massachusetts Regional Planning Commission) __________________________________________________________________
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Fracture Cleavage'' in the Duluth Complex, Northeastern Minnesota
    Downloaded from gsabulletin.gsapubs.org on August 9, 2013 Geological Society of America Bulletin ''Fracture cleavage'' in the Duluth Complex, northeastern Minnesota M. E. FOSTER and P. J. HUDLESTON Geological Society of America Bulletin 1986;97, no. 1;85-96 doi: 10.1130/0016-7606(1986)97<85:FCITDC>2.0.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from gsabulletin.gsapubs.org on August 9, 2013 "Fracture cleavage" in the Duluth Complex, northeastern Minnesota M.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • 4. Deep-Tow Observations at the East Pacific Rise, 8°45N, and Some Interpretations
    4. DEEP-TOW OBSERVATIONS AT THE EAST PACIFIC RISE, 8°45N, AND SOME INTERPRETATIONS Peter Lonsdale and F. N. Spiess, University of California, San Diego, Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California ABSTRACT A near-bottom survey of a 24-km length of the East Pacific Rise (EPR) crest near the Leg 54 drill sites has established that the axial ridge is a 12- to 15-km-wide lava plateau, bounded by steep 300-meter-high slopes that in places are large outward-facing fault scarps. The plateau is bisected asymmetrically by a 1- to 2-km-wide crestal rift zone, with summit grabens, pillow walls, and axial peaks, which is the locus of dike injection and fissure eruption. About 900 sets of bottom photos of this rift zone and adjacent parts of the plateau show that the upper oceanic crust is composed of several dif- ferent types of pillow and sheet lava. Sheet lava is more abundant at this rise crest than on slow-spreading ridges or on some other fast- spreading rises. Beyond 2 km from the axis, most of the plateau has a patchy veneer of sediment, and its surface is increasingly broken by extensional faults and fissures. At the plateau's margins, secondary volcanism builds subcircular peaks and partly buries the fault scarps formed on the plateau and at its boundaries. Another deep-tow survey of a patch of young abyssal hills 20 to 30 km east of the spreading axis mapped a highly lineated terrain of inactive horsts and grabens. They were created by extension on inward- and outward- facing normal faults, in a zone 12 to 20 km from the axis.
    [Show full text]
  • Petrology of the High-Alumina Hoosac Schist from the Chloritoid+Garnet Through the Kyanite+Biotite Zones in Western Massachusetts1
    332 PETROLOGY OF THE HIGH-ALUMINA HOOSAC SCHIST FROM THE CHLORITOID+GARNET THROUGH THE KYANITE+BIOTITE ZONES IN WESTERN MASSACHUSETTS1 by John T. Cheney, Department of Geology, Amherst College, Amherst, MA 01002 and John B. Brady, Department of Geology, Smith College, Northampton, MA 01063 INTRODUCTION The eastern limb of the Berkshire anticlinorium of western Massachusetts (Figure 1) is a complex, multiply- deformed, polymetamorphic, Taconian/Acadian orogenic terrane. The geologic framework of this area is well established, originally by the mapping of B.K. Emerson (1892, 1898, 1899) and Pumpelly et al. (1894), as summarized on the Massachusetts geologic map of Emerson (1917), and more recently by the mapping of L.M. Hall, N.L. Hatch, S.A. Norton, P.H. Osberg, N.M. Ratcliffe, and R.S. Stanley, as summarized on the Massachusetts geologic map of Zen et al. (1983). The summary reports of USGS Professional Paper 1366 in 1988 as well as the work of Hatch et al. (1984), Stanley and Ratcliffe (1985), and Sutter et al. (1985), among others, provide a provocative regional synthesis that brings into sharp focus a variety of interrelated structural, stratigraphic, petrologic, and geochronologic problems. Despite vigorous efforts, our ability to constrain the timing of many fundamental events is still hampered by both the complexity of the terrane and a lack of data. As reviewed by Karabinos and Laird (1988), differentiating between the effects of different metamorphic events remains quite problematic in much of the terrane. The recent work of Hames et al. (1991) and Armstrong et al. (1992) emphasizes the problem of differentiating between Taconian and Acadian orogenic effects along the zone of maximum overlap, which generally coincides with the axis of the Berkshire massif.
    [Show full text]
  • Paleostress and Remote Sensing Analysis of Brittle Fractures from the Eastern Margin of the Dead Sea Transform, Jordan”
    Masaryk University Faculty of Sciences Department of Geological Sciences “Paleostress and Remote Sensing Analysis of Brittle Fractures from the Eastern Margin of the Dead Sea Transform, Jordan” ―Literature Thesis in Requirement for Doctor of Philosophy in Geology Degree Program‖ Prepared by: M.Sc. Omar Mohammad Radaideh Supervisors: Assoc. Prof. RNDr. Rostislav Melichar Brno, Czech Republic 2013 OUTLINES CONTENTS ……………………………………………………………...……………………… II LIST OF FIGURES………………………………………………………………………………. III LIST OF TABLE…………………………………………………………….…………………… III CONTENTS PAGE 1. INTODUCTION 1 2. GEOLOGICAL AND TECTONIC SETTING 2 2.1 General Geological Overview 5 2.2 Major Tectonic Elements 3. SIGNIFICANCE AND OBJECTIVES OF THE STUDY 7 4. METHODOLOGY 8 4.1 Paleostress 8 4.2 Remote Sensing 13 4.2.1. Linear stretching 16 4.2.2. Principal Components Analysis 16 4.2.3. Band ratios 17 4.2.4. Edge Enhancement 17 4.2.5. Intensity/Hue/Saturation (HIS) transformations 18 5. PREVIOUS STUDIES 19 5.1. Paleostress Analysis in Jordan 20 5.2. Paleostress in the Sinai-Israel Sub-Plate 22 5.3. Paleostress in the East Mediterranean 25 5.4. Summary of Paleostress Results 28 REFERENCES 28 II LIST OF FIGUERS Figure Page Figure 1: Location map of the study area…………………………………………………………… 1 Figure 2: Simplified geological map of the southwestern Jordan……………………………...…… 3 Figure 3: The Main tectonic features of the Dead Sea Transform………………………………….. 6 Figure 4: Generalized structure map of Jordan……………………………………………………... 7 Figure 5: Schematic flowchart illustrating the methods and steps that will be used in this study….. 8 Figure 6: Stress ratio and stress ellipsoid…………………………………………………………… 9 Figure 7: The relationship between stress and ideal faults………………………………………….
    [Show full text]
  • PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, the BRUNTON COMPASS, FIELD BOOK, and NJGS FMS
    PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, THE BRUNTON COMPASS, FIELD BOOK, and NJGS FMS The word azimuth stems from an Arabic word meaning "direction“, and means an angular measurement in a spherical coordinate system. In structural geology, we primarily deal with land navigation and directional readings on two-dimensional maps of the Earth surface, and azimuth commonly refers to incremental measures in a circular (0- 360 °) and horizontal reference frame relative to land surface. Sources: Lisle, R. J., 2004, Geological Structures and Maps, A Practical Guide, Third edition http://www.geo.utexas.edu/courses/420k/PDF_files/Brunton_Compass_09.pdf http://en.wikipedia.org/wiki/Azimuth http://en.wikipedia.org/wiki/Brunton_compass FLASH DRIVE/Rider/PDFs/Holcombe_conv_and_meas.pdf http://www.state.nj.us/dep/njgs/geodata/fmsdoc/fmsuser.htm Brunton Pocket Transit Rider Structural Geology 310 2012 GCHERMAN 1 PlanePlane DipDip andand LinearLinear PlungePlunge horizontal dddooo Dip = dddooo Bedding and other geological layers and planes that are not horizontal are said to dip. The dip is the slope of a geological surface. There are two aspects to the dip of a plane: (a) the direction of dip , which is the compass direction towards which the plane slopes; and (b) the angle of dip , which is the angle that the plane makes with a horizontal plane (Fig. 2.3). The direction of dip can be visualized as the direction in which water would flow if poured onto the plane. The angle of dip is an angle between 0 ° (for horizontal planes) and 90 ° (for vertical planes). To record the dip of a plane all that is needed are two numbers; the angle of dip followed by the direction (or azimuth) of dip, e.g.
    [Show full text]
  • Legacy Sediment Controls on Post-Glacial Beaches of Massachusetts
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses March 2019 Legacy Sediment Controls on Post-Glacial Beaches of Massachusetts Alycia DiTroia University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Geology Commons, Geomorphology Commons, and the Sedimentology Commons Recommended Citation DiTroia, Alycia, "Legacy Sediment Controls on Post-Glacial Beaches of Massachusetts" (2019). Masters Theses. 738. https://doi.org/10.7275/13437184 https://scholarworks.umass.edu/masters_theses_2/738 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Legacy sediment controls on post-glacial beaches of Massachusetts A Thesis Presented By ALYCIA L. DITROIA Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE February 2019 Department of Geosciences © Copyright by Alycia L. DiTroia 2019 All Rights Reserved Legacy sediment controls on post-glacial beaches of Massachusetts A Thesis Presented By ALYCIA L. DITROIA Approved as to style and content by: _____________________________________________ Jonathan D. Woodruff, Chair _____________________________________________ Stephen B. Mabee, Member _____________________________________________ William P. Clement, Member _____________________________________________ Julie Brigham-Grette, Department Head Department of Geosciences ABSTRACT LEGACY SEDIMENT CONTROLS ON POST-GLACIAL BEACHES OF MASSACHUSETTS FEBRUARY 2019 ALYCIA DITROIA, B.S., UNIVERSITY OF MASSACHUETTS AMHERST M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Jonathan D.
    [Show full text]