Rita Levi-Montalcini Y La Perseverancia En El Camino De La Ciencia

Total Page:16

File Type:pdf, Size:1020Kb

Rita Levi-Montalcini Y La Perseverancia En El Camino De La Ciencia ANALES MEDICOS Volumen Número Octubre-Diciembre Volume 49 Number 4 October-December 2004 Artículo: Rita Levi-Montalcini y la perseverancia en el camino de la ciencia Derechos reservados, Copyright © 2004: Asociación Médica del American British Cowdray Hospital, AC Otras secciones de Others sections in este sitio: this web site: ☞ Índice de este número ☞ Contents of this number ☞ Más revistas ☞ More journals ☞ Búsqueda ☞ Search edigraphic.com ANALES Historia y filosofía de la medicina MEDICOS HOSPITAL ABC Vol. 49, Núm. 4 Oct. - Dic. 2004 pp. 208 - 216 Rita Levi-Montalcini y la perseverancia en el camino de la ciencia Max Shein K,* Ana Cecilia Rodríguez de Romo** RESUMEN ABSTRACT La historia de Rita Levi Montalcini es la de perseverancia en el ca- The history of Rita Levi Montalcini is one of perseverance in the mino de la investigación científica que la lleva a recibir el Premio field of scientific investigation which her to receive the Nobel Prize Nobel a la edad de 77 años, por el descubrimiento del factor nervio- in medicine at age 77 years of age for the discovery of the Nerve so del crecimiento en 1986. Growth factor (NGF) in 1986. Palabras clave: Investigación científica, Key words: Scientific investigation, factor nervioso del crecimiento, Premio Nobel en Medicina nervous growth factor (NGF), Nobel Prize in Medicine INTRODUCCIÓN siglo XX, se ignoraba mucho acerca del desarrollo del sistema nervioso. Se ignoraba cómo se dife- Rita Levi Montalcini ganó el Premio Nobel de Me- renciaban las células nerviosas, cómo sus axones dicina en 1986, por haber descubierto el factor ner- establecían las sinapsis, cuál era la naturaleza de vioso de crecimiento (FNC), pero el personaje es los mensajes químicos con los que se comunican. tan versátil, que despierta los más diversos intere- El descubrimiento de Rita Levi-Montalcini con- ses y curiosidades. En este ensayo nos referiremos testó esas preguntas y sigue contestando otras, a dos facetas de esta investigadora italiana, la cien- pues en nuestros días se ha visto que la deficiencia tífica y la personal. del factor nervioso de crecimiento está relaciona- Uno de nosotros se sintió atraído por el contex- da con enfermedades como la de Huntington y Al- to y el momento histórico de una mujer excepcio- zheimer. nal, el otro por la saga de un descubrimiento lleno El modelo experimental más utilizado era el po- de hechos fortuitos magníficamente aprovechados llo, porque su desarrollo embriológico es muy rápi- por una científica genuina. Nuestra investigación do y el tejido nervioso se impregna muy bien de las demuestra que aunque el descubrimiento del fac- sales de plata, lo que permite observarlo adecuada- tor nervioso de crecimiento fue realizado en pleno mente al microscopio. El Premio Nobel otorgado a Rita Levi-Montalci- ni estuvo rodeado de un halo de controversia. No pocos científicos se preguntaron porqué no se había * Sociedad Mexicana de Historia y Filosofía de la Medicina. ** Departamento de Historia y Filosofía de la Medicina Facultad de Medicina, premiado también a Viktor Hamburguer (1900- Universidad Nacional Autónoma de México. 2001), quien invitó a Rita a Estados Unidos y en Recibido para publicación: 01/12/04. Aceptado para publicación: 16/12/04.edigraphic.comcuyo laboratorio ella realizó el descubrimiento. No- Correspondencia: Dr. Max Shein K sotros estamos muy lejos de pretender aclarar esa Prado Sur 290, Col. Lomas de Chapultepec, 11000 México, D. F. situación, sólo nos abocamos a poner en la mesa al E-mail: [email protected] Dra. Ana Cecilia Rodríguez de Romo personaje, a su trabajo en la ciencia y externamos E-mail: [email protected] nuestra conclusión particular. Shein KM, Rodríguez RAC. Rita Levi-Montalcini y la perseverancia en el camino de la ciencia 209 An Med Asoc Med Hosp ABC 2004; 49 (4): 208-216 DETERMINANTES DE UNA VIDA y brillantes intelectualmente. La joven percibió esta situación, la aceptó, no pretendió modificarla, lo que Rita Levi-Montalcini nació en Turín, Italia, el 22 de tampoco significaba que le gustara; así que, inteli- abril de 1909, dicen sus biógrafos en el seno de una gentemente, decidió que sería ella la que cambiaría familia judía de descendencia sefardita, es decir, es- su propia conducta y no aceptaría las reglas masculi- pañola. En realidad su padre, Adamo Levi, pertene- nas. Hay diversos ejemplos en su vida que ilustran lo cía a una rama mucho más antigua de la Judea en el anterior. Entre los estudiosos de Rita Levi-Montalci- Medio Oriente, que sería conquistada por el Empera- ni, es conocida su decisión de no casarse para su- dor Tito Flavio Vespasiano en el año 70 de nuestra puestamente dedicarse por completo a la ciencia. En era. Muchos habitantes de la Judea bíblica emigra- efecto, Rita nunca se casó, pero siendo muy joven ron a Roma y mantuvieron su identidad hasta nues- tuvo un pretendiente, también estudiante de medici- tro tiempo; entre ellos, los de apellido Levi, derivado na, que quiso mucho y falleció. Es difícil saber qué de su pertenencia a los levitas (leviim) o ciudadanos hubiera sucedido realmente si ese joven no hubiera ayudantes de los sacerdotes del “Segundo Templo muerto y, según ella, para decidir compartir la vida de Jerusalén”. Del mismo origen es el apellido del con alguien, hay que considerar la diferencia de tem- maestro de Rita: Giuseppe Levi. peramento y los intereses culturales, concepto verda- Los levitas se mantuvieron como una de las clases dero, pero utópico en la vida real. más cultivadas que participaron en la creación de la Rita Levi-Montalcini posee una gran curiosidad República Italiana a finales del siglo XIX. Por men- intelectual, es culta y sensible. Sus escritos no cien- cionar algunos: los antecesores del famoso escritor tíficos están llenos de referencias a los sentimientos Primo Levi, sobreviviente del Holocausto, de Natalia que le evocan una pintura, un paisaje o una pieza li- Levi de Ginzburg, la laureada escritora italiana y su teraria. Sólo por dar un ejemplo, refiriéndose a los hijo Carlo Ginzburg Levi uno de los más sobresa- árboles en el otoño del lugar donde vivió en Esta- lientes microhistoriadores contemporáneos. dos Unidos expresaría: “la costumbre moderaría mi Además de una familia especial a la que se puede sensación de arrebato ante ese traje de gala del que calificar de intelectual, Rita Levi-Montalcini poseía se viste la naturaleza antes de caer en el letargo in- una personalidad peculiar —desde muy pequeña dio vernal.” muestras de ser muy inteligente, persistente y curio- De su intenso feminismo dan muestra sus opinio- sa— y tuvo ciertas experiencias de vida que facilita- nes y actitudes que expresan su rebelión contra el ron su éxito científico y el desarrollo de su vocación. sexo opuesto. Se considera privilegiada portadora de Rita es el primer producto de un parto gemelar dos cromosomas X y tener “innata aversión a esa ac- fraterno. Con Paola la gemela fallecida hace sólo dos tividad tan típicamente femenina” (tejer). años, mantuvo una íntima y constante relación. Sus Quizá también otro factor determinante en su éxi- otros dos hermanos fueron Gino, siete años mayor to fue definir bien las prioridades de cada momento, que ella y Anna cinco. La diferencia de edades hizo actitud que, llanamente expresada, bien podría inter- que la relación con esos hermanos no fuera tan estre- pretarse como una forma de egoísmo. Cuando su cha como con Paola. Su padre era ingeniero y dueño madre estaba agonizando en Turín, ella prácticamen- de una fábrica de hielo; sus hijas lo describen de te acababa de regresar a Italia, así que se fue a Roma temperamento explosivo y personalidad enérgica, para ver cómo iba su nuevo laboratorio y no alcanzó dominante y autoritaria. Sin embargo, Rita nunca a su madre viva cuando retornó a su ciudad natal. cuestionó su amor y lo admiraba mucho, aunque su Al terminar la educación básica expresó su deseo relación fue difícil. Su madre Adele fue una escrito- de seguir estudiando, pero su padre determinó que ra frustrada, esposa reservada y sumisa. Rita recibióedigraphic.comella y Paola asistirían a una escuela femenina de se- la influencia de un padre cuidadoso de mantener las gunda enseñanza para aprender a ser buenas esposas tradiciones familiares, pero al mismo tiempo van- y madres. Sin embargo, a los veinte años, manifestó guardista y de una madre cultivada, pero obediente su deseo de estudiar medicina. Rita Levi relata en su de los roles de poder en el matrimonio, los dos cultos autobiografía que lo decidió así, cuando, en la más Shein KM, Rodríguez RAC. Rita Levi-Montalcini y la perseverancia en el camino de la ciencia MG 210 An Med Asoc Med Hosp ABC 2004; 49 (4): 208-216 profunda impotencia, vio morir a su querida nana de contraba la embriología del sistema:rop odarobalenervioso; enton- FDP cáncer de estómago. ces se sabía muy poco de su desarrollo y Levi pensó Su padre se mostró renuente, pero le dijo: “Si es que hacer eso podríaVC ed ayudar AS, cidemihparG a entender si el número en realidad lo que quieres, no me opondré a tu cami- de células de ciertos grupos nerviosos dependía de no, aunque estoy dudoso de tu elección”. Rita estu- factores ambientales o estaba predeterminado.arap dió filosofía, literatura e historia para preparar el Al terminar sus estudios de medicina en 1936, examen de ingreso a la Escuela de Medicina, lo que RitaacidémoiB Levi pensó arutaretiL especializarse :cihpargideM en neurología y psi- sucedió en 1930. Dos años después su padre murió sustraídode-m.e.d.i.g.r.a.p.h.i.cquiatría, pero tal deseo se vio frustrado a causa del repentinamente de un infarto al miocardio. Manifiesto de Defensa de la Raza de Benito Musso- En ese tiempo había sólo siete mujeres entre 300 lini que prohibió la presencia de los judíos en las hombres en la Escuela de Medicina de Turín y sus universidades.
Recommended publications
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Jewels in the Crown
    Jewels in the crown CSHL’s 8 Nobel laureates Eight scientists who have worked at Cold Max Delbrück and Salvador Luria Spring Harbor Laboratory over its first 125 years have earned the ultimate Beginning in 1941, two scientists, both refugees of European honor, the Nobel Prize for Physiology fascism, began spending their summers doing research at Cold or Medicine. Some have been full- Spring Harbor. In this idyllic setting, the pair—who had full-time time faculty members; others came appointments elsewhere—explored the deep mystery of genetics to the Lab to do summer research by exploiting the simplicity of tiny viruses called bacteriophages, or a postdoctoral fellowship. Two, or phages, which infect bacteria. Max Delbrück and Salvador who performed experiments at Luria, original protagonists in what came to be called the Phage the Lab as part of the historic Group, were at the center of a movement whose members made Phage Group, later served as seminal discoveries that launched the revolutionary field of mo- Directors. lecular genetics. Their distinctive math- and physics-oriented ap- Peter Tarr proach to biology, partly a reflection of Delbrück’s physics train- ing, was propagated far and wide via the famous Phage Course that Delbrück first taught in 1945. The famous Luria-Delbrück experiment of 1943 showed that genetic mutations occur ran- domly in bacteria, not necessarily in response to selection. The pair also showed that resistance was a heritable trait in the tiny organisms. Delbrück and Luria, along with Alfred Hershey, were awarded a Nobel Prize in 1969 “for their discoveries concerning the replication mechanism and the genetic structure of viruses.” Barbara McClintock Alfred Hershey Today we know that “jumping genes”—transposable elements (TEs)—are littered everywhere, like so much Alfred Hershey first came to Cold Spring Harbor to participate in Phage Group wreckage, in the chromosomes of every organism.
    [Show full text]
  • Genes, Genomes and Genetic Analysis
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION UNIT 1 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORDefining SALE OR DISTRIBUTION and WorkingNOT FOR SALE OR DISTRIBUTION with Genes © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter 1 Genes, Genomes, and Genetic Analysis Chapter 2 DNA Structure and Genetic Variation © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Molekuul/Science Photo Library/Getty Images. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284136609_CH01_Hartl.indd 1 08/11/17 8:50 am © Jones & Bartlett Learning, LLC
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • Happy Birthday to Renato Dulbecco, Cancer Researcher Extraordinaire
    pbs.org http://www.pbs.org/newshour/updates/happy-birthday-renato-dulbecco-cancer-researcher-extraordinaire/ Happy birthday to Renato Dulbecco, cancer researcher extraordinaire Photo of Renato Dulbecco (public domain) Every elementary school student knows that Feb. 22 is George Washington’s birthday. Far fewer (if any) know that it is also the birthday of the Nobel Prize-winning scientist Renato Dulbecco. While not the father of his country — he was born in Italy and immigrated to the United States in 1947 — Renato Dulbecco is credited with playing a crucial role in our understanding of oncoviruses, a class of viruses that cause cancer when they infect animal cells. Dulbecco was born in Catanzaro, the capital of the Calabria region of Italy. Early in his childhood, after his father was drafted into the army during World War I, his family moved to northern Italy (first Cuneo, then Turin, and thence to Liguria). A bright boy, young Renato whizzed through high school and graduated in 1930 at the age of 16. From there, he attended the University of Turin, where he studied mathematics, physics, and ultimately medicine. Dulbecco found biology far more fascinating than the actual practice of medicine. As a result, he studied under the famed anatomist, Giuseppe Levi, and graduated at age 22 in 1936 at the top of his class with a degree in morbid anatomy and pathology (in essence, the study of disease). Soon after receiving his diploma, Dr. Dulbecco was inducted into the Italian army as a medical officer. Although he completed his military tour of duty by 1938, he was called back in 1940 when Italy entered World War II.
    [Show full text]
  • Martha Chase Dies
    PublisherInfo PublisherName : BioMed Central PublisherLocation : London PublisherImprintName : BioMed Central Martha Chase dies ArticleInfo ArticleID : 4830 ArticleDOI : 10.1186/gb-spotlight-20030820-01 ArticleCitationID : spotlight-20030820-01 ArticleSequenceNumber : 182 ArticleCategory : Research news ArticleFirstPage : 1 ArticleLastPage : 4 RegistrationDate : 2003–8–20 ArticleHistory : OnlineDate : 2003–8–20 ArticleCopyright : BioMed Central Ltd2003 ArticleGrants : ArticleContext : 130594411 Milly Dawson Email: [email protected] Martha Chase, renowned for her part in the pivotal "blender experiment," which firmly established DNA as the substance that transmits genetic information, died of pneumonia on August 8 in Lorain, Ohio. She was 75. In 1952, Chase participated in what came to be known as the Hershey-Chase experiment in her capacity as a laboratory assistant to Alfred D. Hershey. He won a Nobel Prize for his insights into the nature of viruses in 1969, along with Max Delbrück and Salvador Luria. Peter Sherwood, a spokesman for Cold Spring Harbor Laboratory, where the work took place, described the Hershey-Chase study as "one of the most simple and elegant experiments in the early days of the emerging field of molecular biology." "Her name would always be associated with that experiment, so she is some sort of monument," said her longtime friend Waclaw Szybalski, who met her when he joined Cold Spring Harbor Laboratory in 1951 and who is now a professor of oncology at the University of Wisconsin-Madison. Szybalski attended the first staff presentation of the Hershey-Chase experiment and was so impressed that he invited Chase for dinner and dancing the same evening. "I had an impression that she did not realize what an important piece of work that she did, but I think that I convinced her that evening," he said.
    [Show full text]
  • Milestones and Personalities in Science and Technology
    History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting,
    [Show full text]
  • From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize Nathaniel C
    454 Forum TRENDS in Biochemical Sciences Vol.26 No.7 July 2001 Historical Perspective From controlling elements to transposons: Barbara McClintock and the Nobel Prize Nathaniel C. Comfort Why did it take so long for Barbara correspondence. From these and other to prevent her controlling elements from McClintock (Fig. 1) to win the Nobel Prize? materials, we can reconstruct the events moving because their effects were difficult In the mid-1940s, McClintock discovered leading up to the 1983 prize*. to study when they jumped around. She genetic transposition in maize. She What today are known as transposable never had any inclination to pursue the published her results over several years elements, McClintock called ‘controlling biochemistry of transposition. and, in 1951, gave a famous presentation elements’. During the years 1945–1946, at Current understanding of how gene at the Cold Spring Harbor Symposium, the Carnegie Dept of Genetics, Cold activity is regulated, of course, springs yet it took until 1983 for her to win a Nobel Spring Harbor, McClintock discovered a from the operon, François Jacob and Prize. The delay is widely attributed to a pair of genetic loci in maize that seemed to Jacques Monod’s 1960 model of a block of combination of gender bias and gendered trigger spontaneous and reversible structural genes under the control of an science. McClintock’s results were not mutations in what had been ordinary, adjacent set of regulatory genes (Fig. 2). accepted, the story goes, because women stable alleles. In the term of the day, they Though subsequent studies revealed in science are marginalized, because the made stable alleles into ‘mutable’ ones.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Alfred Day Hershey (1908–1997) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Alfred Day Hershey (1908–1997) [1] By: Hernandez, Victoria Keywords: Hershey, Alfred Day [2] Lambda phage [3] Bacteriophage [4] Hershey-Chase experiments [5] During the twentieth century in the United States, Alfred Day Hershey studied phages, or viruses that infect bacteria, and experimentally verified that genes [6] were made of deoxyribonucleic acid, or DNA. Genes are molecular, heritable instructions for how an organism develops. When Hershey started to study phages, scientists did not know if phages contained genes [6], or whether genes [6] were made of DNA or protein. In 1952, Hershey and his research assistant, Martha Chase, conducted phage experiments that convinced scientists that genes [6] were made of DNA. For his work with phages, Hershey shared the 1969 Nobel Prize in Physiology or Medicine [7] with Max Delbrück and Salvador Luria. Hershey conducted experiments with results that connected DNA to the function of genes [6], thereby changing the way scientists studied molecular biology and the development of organisms. Hershey was born on 4 December 1908 to Alma Wilbur and Robert Hershey in Owosso, Michigan. He attended public schools in both Owosso and Lansing, Michigan, where his father worked as a stockkeeper at an automobile factory. For his higher education, Hershey attended Michigan State College, later called Michigan State University, in East Lansing, Michigan. There, he received his Bachelor’s of Science in chemistry in 1930 and his PhD in bacteriology and chemistry in 1934. Hershey wrote his doctoral dissertation on the separation of chemical constituents, or components like sugars, fats, and proteins, from different strains of the Brucella [8] bacterial group.
    [Show full text]
  • Dna Learning Center
    DNA LEARNING CENTER DNA LEARNING CENTER ADMINISTRATION INSTRUCTION MULTIMEDIA David Micklos Scott Bronson Susan Lauter Judy Cumella-Korabik Amanda McBrien Shirley Chan Nancy Daidola Danielle Sixsmith Chun-hua Yang Vin Torti Veronique Bourdeau Susan Conova Elna Carrasco Uwe Hilgert Maureen Cowan We stand at the threshold of a new century with the whole human genome stretched out before us. Messages from science and the popular media suggest a world of seemingly limitless opportunities to improve human health and productivity. Yet, at the turn of the last century, science and society faced a similar rush to exploit human genetics. The story of eugenics—humankind’s first venture into a “gene age”—holds a cautionary lesson for our current preoccupation with genes. Eugenics was the effort to apply principles of genetics to improve the human race. Most people equate eugenics with the atrocities committed for the sake of racial purity in Nazi Germany. Most are unaware of the “positive” eugenics movement, exemplified in England, which advocated voluntary efforts by families to improve their own heredity. Fewer still realize that a coercive, “negative” eugenics movement flourished in the United States, that it involved numerous prominent scientists and civic lead- ers, and that it made its intellectual home at the forerunner of the now prestigious Cold Spring Harbor Laboratory. During the first decade of the 20th century, eugenics was organized as a scientific field by the con- fluence of Mendelian genetics and experimental breeding. This synthesis was embodied by Charles Benedict Davenport, who is considered the father of the American eugenics movement. When Charles Da v e n p o r t arrived at Cold Spring Harbor in 1898, he assumed the directorship of The Biological La b o r a t o r y, a prog r essive, if somewhat sleepy, “summer camp” for the study of evolution.
    [Show full text]