Biochemistry of Lean Muscle Tissue As Related to Water-Holding Capacity Riette L.J.M

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry of Lean Muscle Tissue As Related to Water-Holding Capacity Riette L.J.M MUSCLE BIOCHEMISTRY Biochemistry of Lean Muscle Tissue as Related to Water-Holding Capacity Riette L.J.M. van Laack* Morse B. Solomon Introduction (muscle cells) bounded by a plasma cell membrane, sur- rounded by a thin connective tissue network, the endomysium. The literature on water-holding contains many references Each contractile fibre is composed of myofibrils 1 to 2 pm in to the term “water-holding capacity.” Water-holding capacity diameter. These myofibrils are separated from one another (WHC) has been defined as the ability of meat to retain its by spaces containing sarcoplasmic reticulum and mitochon- own water despite the application of force. We will use the dria. Myofibrils consist of contractile filaments ordered in a term WHC as it relates to drip losses from fresh uncooked regular way; this arrangement is responsible for the striated meat. Drip loss and WHC will be used as alternative terms for appearance of skeletal muscle. The smallest contractile unit, the same phenomenon. a sarcomere, consists of thick myosin filaments, thin actin fila- The amount of drip lost from carcasses is negligible, but ments and a network of longitudinal and transverse elements; after breaking, drip losses are of the order of 0.1 to 1 Yo during the cytoskeletal network. 2 days. When the meat is further fabricated (steaks etc.), drip losses increase and may exceed 10%. Water in the Muscle: Water-holding is of great importance, because moisture How Much, Where? losses affect the weight and therefore the financial value of the meat. Moreover, exudation of drip produces an unsightly From the point of view of quantity, water is the most impor- pool of liquid around the meat which adversely affects the tant constituent of meat. At the time of slaughter, muscle con- appearance and consumer appeal. As drip has about two- tains about 75% water. Hamm (1975) estimated that approxi- thirds the protein concentration of whole meat, its loss is a mately 85% of this water is located intracellularly, primarily in costly waste of animal protein. The content of water and its the spaces between thick and thin filaments, but also in the distribution have a profound influence on the sensory proper- sarcoplasm and in connective tissue. The remaining 15% is ties of meat. located in extracellular spaces. According to Hamm (1972), Information on the mechanisms responsible for drip for- the different muscle components contribute to water-holding mation will provide better means of controlling and predicting capacity as follows: myofibrillar proteins 50%, sarcoplasmic WHC. Also, knowledge of the processes involved may allow proteins 3%, non-protein components of sarcoplasma 47%. for the prediction of the impact of new technologies on this A portion of water (4 to 1Og/l OOg protein) is bound very quality attribute. tightly. A much larger amount, 20 to 60gil OOg protein, of wa- In the following, we give a short overview of the current ter is located in a less organized fashion between the protein knowledge on WHC and indicate which aspects need more molecules. This loosely (electrostatically) bound water is af- attention. It was not the purpose of the authors to provide an fected by molecular changes brought about by protein dena- extensive review. For more detailed information, the reader is turation. referred to reviews by Offer and Knight (1988) and Hamm Since proteins form about one-fifth of the wet-weight of (1 972; 1986). meat, and the weight 3f bound water is about half the weight of the protein (1 Og), water bound (firmly or loosely) to the pro- Muscle Structure tein in meat amounts maximally to about 10% of the muscle weight. The remaining water (70%) must be held within the A muscle is completely enclosed by a sheath of connec- meat structure by capillary forces. Since myofibrils occupy ap- tive tissue, the epimysium. Muscle is divided into bundles of proximately 70% of the volume of lean muscle, most of the fibres by a connective tissue network, the perimysium. The tissue water must be located in the myofibrils. The myofibrils muscle bundles, in turn, consist of long, contractile fibres are well suited to retain water because of the three-dimen- sional network of the filaments. The amount of water immobi- lized depends on the space available between the filaments. *R.L. J. M. van Laack, USDA, Agricultural Research Service, Beltsville, MD 20705. The Origin of Drip Losses M.B. Solomon, USDA, Agricultural Research Service, Considering the amount of water bound to proteins and Beltsville, MD 20705. the amount of water lost from meat, it appears unlikely that WHC is related to the bound water. Any large changes in the Reciprocal Meat Conference Proceedings, Volume distribution of water within the meat structure must, by neces- 47, 1994. sity, originate from changes in myofilament structure. Swell- 91 92 American Meat Science Association ing or shrinkage of the muscle fibre is caused by expansion or Figure 1 shrinkage of the myofilament lattice and the resultant water movement between intracellular and extracellular spaces. It should be emphasized that swelling or shrinkage of myofibrils alters the distribution of water within the muscle but does not necessarily affect the volume of the muscle as a whole (Offer and Knight, 1989; Fig. 1). (a) The hypothesis that WHC is determined by myofibrillar shrinkage and movement of water from the myofilament space into the sarcoplasmic space and subsequently into extra- cel- lular space is supported by experimental data: NMR: H-pulse-NMR is a powerful, non-invasive tool for studying water in tissues. Water protons in (b) muscle have a shorter transverse relaxation time than water protons in bulk water. A long relax- ation time suggests a long distance of the free water protons to the site where these can ex- change with hydration water. This means that larger "pockets" of water within the structure have a greater chance of obtaining relaxation times similar to that of free water than water in small (C) pores. Post-rigor, there is a larger percentage of water with long (100-1 50ms) relaxation times, in- dicating more water in large pores (extracellular spaces) than in pre-rigor meat (Renou et al., 1985; Fjelkner and Tornberg, 1986; Tornberg et at., 1993). Fibre Diameter Measurements with Light Microscopy (d) These indicate that the pre-rigor fibre diameter is larger than the post-rigor, e.g. the post-rigor myofibrils are shrunk (Offer and Knight, 1988). Using light microscopy, Penny (1977) and Larsson and Tornberg (1988) observed a larger extracel- lular volume for PSE (Pale Soft Exudative) meat than for normal meat. Diesbourg et al. (1988) demonstrated that the distance between filaments, measured with X-ray diffraction, becomes smaller during rigor onset, indicater shrinkage of fibre di- ameter. Measurements with Inulin The extracellular space can be studied by in- The relationship between fibre volume and muscle volume; (a) to (e) cubating a thin muscle with non-metabolic sug- show varying degrees of swelling and shrinkage. ars, such as inulin, which are presumed not to Offer and Knight, 1989. enter the muscle. After equilibration, the amount of the substance in the muscle gives an indica- et al. (1989) suggested the following path for drip loss from tion of the size of the extracellular space. Currie the muscle: and Wolfe (1 980; 1983) showed that the post-rigor the myofilament lattice muscle takes up more inulin than pre-rigor muscle, 1 indicating that post-rigor muscle has a larger ex- the interfibrillar sarcoplasm tracellular compartment than pre-rigor muscle. 1 the interfibre space Offer and Cousins (1992) have shown that fibre and fibre 1 bundles shrink post-mortem when their constituent myofibrils the interfascicular space shrink, thus resulting in the formation of two extracellular com- 1 partments around the fibres and the fibre bundles. Swatland drip loss 47th Reciprocal Meat Conference 93 Offer et al. (1989) confirmed that the drip arises predomi- Protein Denaturation nantly from the longitudinal channels through the meat be- tween the fibre bundles. The main force for drip formation Approximately 95% of total muscle protein is located within seems to be gravity. the myofibre. Depending on their nature and function, intra- Presuming that myofibrillar shrinkage (the interfilament cellular proteins can be classified as sarcoplasmic proteins or myofibrillar proteins. Sarcoplasmic proteins are dissolved in spacing) is indeed the main determinant of WHC, we have to the sarcoplasm, and play an important role in cellular metabo- focus on the factors that may affect myofibrillar shrinkage. There are three main factors involved in the shrinkage and/or lism. These proteins are soluble in low ionic strength solu- swelling of myofibrils: tions. Myofibrillar proteins are insoluble in water or low ionic strength solutions. 1. onset of rigor mortis 2. the extent of pH decline A protein in an aqueous solution interacts with water. Part 3. protein denaturation of this water is electrostatically bonded to the surface of the a. myosin denaturation molecule and part may be entrapped. Denaturationof the pro- b. sarcoplasmic protein denaturation tein will affect the structure and charge of the protein and there- Each of these factors will be discussed in the following para- fore the binding of water and solubility of the protein. graphs. Myosin Denaturation Onset of Rigor Mortis There is good evidence that myosin is involved in WHC; At rigor onset, there is a rapid decline (about 4.4%) in fila- specifically in the loss of WHC in PSE meat. ment spacing due to attachment of myosin heads to actin (Of- Salt solubility of myofibrillar proteins and ATP- fer et al. 1989). The amount of shrinkage will be smaller at ase activity are lower in PSE meat than in normal longer sarcomeres (see sarcomere length).
Recommended publications
  • Biological Basis for Pale, Soft and Exudative Pork
    MEAT QUALITY Biological Basis for Pale, Soft and Exudative Pork Matthew E. Doumit*, Chuck P. Allison, Emily E. Helman, Nicholas L. Berry and Matthew J. Ritter Introduction Miller and O’Callaghan, 2002; Wurtman, 2002). Miller and O’Callaghan (2002) defined stress as any disruption of ho- Pale, soft and exudative (PSE) pork was recognized a half meostasis. Following disruption of homeostasis, the hypo- century ago by Ludvigsen (1953). The undesirable appear- thalamic-pituitary-adrenal (HPA) axis and the sympathetic ance and texture, limited functionality, and inferior process- nervous system (SNS) are activated in an attempt to preserve ing yield of PSE pork continue to make it a critical quality homeostasis (Miller and O’Callaghan, 2002). Initiation of and economic concern (Cannon et al., 1996; Cassens, the stress response via the HPA axis involves synthesis and 2000). Rapid postmortem muscle acidification combined release of corticotropin releasing factor (CRF) from the with high muscle temperature, as well as low ultimate meat paraventricular nucleus of the hypothalamus. CRF travels pH, have long been implicated as factors that induce PSE down the axons of these neurons to the external layer of the pork characteristics (Briskey, et al., 1966; Sellier and Monin, median eminence. Release of CRF into the portal blood 1994). Numerous reports on the development of PSE pork controls processing of adrenocorticotropic hormone (ACTH) have focused on major gene effects, including the halo- in anterior pituitary corticotrophs, as well as secretion of thane (stress) gene (Fujii et al., 1991; reviewed by Louis et several other pituitary hormones. Figure 1 illustrates the al., 1993) and the Napole gene (RN-; reviewed by Sellier multi-hormonal control of ACTH release.
    [Show full text]
  • Update on PSE in Poultry Meat
    Update on PSE in Poultry Meat Christine Z. Alvarado, Ph.D. Department of Animal and Food Sciences Texas Tech University Meat Quality Attributes influenced by postmortem muscle metabolism: ¾ Color ¾ Water Holding Capacity ¾ Texture Ferket and Foegeding, 1994; Pearson, 1994 Meat Quality Pale, Soft, Exudative ¾ accelerated postmortem glycolysis ¾ protein denaturation Hedrick et al., 1989; Lawrie, 1998 Meat Quality Combination of events: ¾ Rapid postmortem decline in muscle pH ¾ High carcass temperatures (early postmortem) Bendall and Wismer-Pederson, 1962; Penny, 1969 Meat Quality Pale, Soft, Exudative Meat ¾ Pale color ¾ Soft texture ¾ Low water holding capacity = reduced yields and poor quality Protein Denaturation Myofibrillar proteins Water holding capacity / gel strength Sarcomplasmic proteins Color Bendall and Wismer-Pederson, 1962; Penny, 1969 Protein Denaturation Protein denaturation can cause low strength (poor) gels to form resulting in softer (mushy) texture. Example: Pale, SOFT, Exudative meat Protein Denaturation Poor slice ability PSE meat Deli Loaves and Rolls Made with PSE Turkey Meat Excessive Purge Pale color Low WHC Problems with PSE Broiler Meat ¾ Lost yield (sometimes hidden) ¾ Problems in further processing equipment (e.g. automatic breast deboner) ¾ Variation in color Economic Implications 4The use of PSE meat in cooked products can cost a processing plant $2-4 million/year in lost meat yield alone. 4Estimate does not factor in: hpackaging costs hrework labor hmultiplier effect PSE Incidence in Poultry Ranges from 5-40%
    [Show full text]
  • Quantitative Differential Expression of Alpha and Beta Ryanodine Receptor Genes in PSE (Pale, Soft, Exudative) Meat from Two Chicken Lines: Broiler and Layer
    1519 Vol.52, n. 6: pp. 1519-1525, November-December 2009 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Quantitative Differential Expression of Alpha and Beta Ryanodine Receptor Genes in PSE (Pale, Soft, Exudative) Meat from Two Chicken Lines: Broiler and Layer Sandra Helena Inoue Oda 1, Alexandre Lima Nepomuceno 2, Mônica Corrêa Ledur 3, Maria Cristina Neves de Oliveira 2, Silvana Regina Rockenbach Marin 2, Elza Iouko Ida 1 and Massami Shimokomaki 1* 1Departamento de Ciências e Tecnologia de Alimentos; Centro de Ciências Agrárias; Universidade Estadual de Londrina, C. P.: 600; 86051-970; Londrina - PR - Brasil. 2Centro de Pesquisa Embrapa Soja; 86001-970; Londrina - PR - Brasil. 3 Centro de Pesquisa Embrapa Suínos e Aves; 89700-000; Concordia - SC - Brasil ABSTRACT Total RNA isolated from Pectoralis major muscle from PSE (L* 24h >53.0, pH<5.8) and non-PSE (44 ≤L* 24h ≥53) meats of two phenotypically distinct chicken lines, broiler and layer, was used to investigate the α-ryr and β-ryr gene expression by real-time RT-PCR approach. Mean relative quantification (RQ) values were lower (p<0.05) for β-ryr in PSE chickens from both lines when compared to non-PSE chickens, while there was no difference (p>0.05) in α-ryr gene expression regardless of line studied. The β-ryr RQ results suggested that in PSE samples an alteration might occur in the regular ratio (1:1) of α-RyR/ β-RyR normally found in avian muscles. These results provided the first evidence of PSE meat occurrence as a result of the differential expression of ryanodine receptor genes which might lead to an increased in Ca 2+ availability at the cell milieu.
    [Show full text]
  • (DFD) Meats: Causes and Measures to Reduce These Incidences - a Mini Review
    International Food Research Journal 18: 11-20 (2011) Review Article Pale soft exudative (PSE) and dark firm dry (DFD) meats: causes and measures to reduce these incidences - a mini review Adzitey, F. and *Nurul, H. Fish and Meat Processing Laboratory, Food Technology Programme, School of Industrial Technology, Universiti Sains Malaysia, Minden, 11800, Pulau Pinang, Malaysia Abstract: Pale Soft Exudative (PSE) and Dark Firm Dry (DFD) meats are two of the major quality defects facing the meat industry. These defects reduce consumer acceptability, shelf life and yield of meat thus affecting profits tremendously. Breed, sex, species, pre-slaughter and post-slaughter handling of animals are among the main predisposing factors contributing to PSE and DFD in meats. Nowadays, strenuous efforts are being made by farmers, researchers and all stakeholders in the meat industry to reduce the incidence of PSE and DFD meats. Modern technologies to reduce these incidences in meats have included careful design of vehicles for transporting live animals to the abattoir, the design of abattoirs, stunning methods, and chilling processes. Various additives and/or ingredients have also been introduced to improve upon the processing qualities of PSE and DFD in processed meat products. In this review, PSE and DFD meats, the causes and measures to reduce these incidences are described. Keywords: pale soft exudative, dry firm dark, meat, meat industry Introduction the meat moves along the line of distribution (from slaughter, processors, retailers and finally to the Profitability in any venture has model the meat consumer), quality becomes increasingly important industry to aim towards producing animals that are and the quality characteristics change (O’Neill et al., efficient feed converters, fast growing and have high 2003).
    [Show full text]
  • UNIVERSITY of HELSINKI Department of Food And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto UNIVERSITY OF HELSINKI Department of Food and Environmental Sciences EKT Series 1622 THE UTILIZATION OF POULTRY BREAST MUSCLE OF DIFFERENT QUALITY CLASSES Nanbing Qin Helsinki 2013 LIOPISTO -HELSINGFORS UNIVERSITET -UNIVERSITY OF HELSINKI Tiedekunta/Osasto - Fakultet/Sektion – Faculty Laitos-Institution –Department Faculty of Agriculture and Forestry Department of Food and Environmental sciences Tekijä - Författare – Author Nanbing Qin Työnnimi - Arbetetstitel– Title The Utilization of Poultry Breast Muscle of Different Quality Classes Oppiaine -Läroämne– Subject Food Sciences (track Food Bioprocessing) Työnlaji - Arbetets art – Level Aika - Datum - Month and year Sivumäärä-Sidoantal-Number of pages Master Thesis Aug 2013 72 Tiivistelmä - Referat– Abstract The literature review dealt with the principles and methods for the evaluation of the quality of raw meat and meat product in different aspects. The factors influencing the quality of meat products were also involved. A new type of muscular dystrophy in broiler Musculus pectoralis, wooden breast, has been found in broilers. The dystrophy results in fibrinogenesis and thus local hardening in the muscle, but poses no health risk in human consumption. The aim of the study was to explore the maximal percentage of wooden breast that can be used in the meat products without causing a perceived quality defect. In the preliminary tests, wooden breast was incorporated with normal meat in different percentages to make sausage and chicken nuggets. Different methods of comminuting were also applied in the processing of wooden breast. The quality of the products was evaluated through the measuring in different aspects.
    [Show full text]
  • (Pale, Soft, Exudative) Broiler Meat in the Production of Mortadella
    213 Vol. 52, Special Number: pp. 213-217, November 2009 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Functional Properties of PSE ( Pale, Soft, Exudative ) Broiler Meat in the Production of Mortadella Cassiana Kissel 1, Adriana Lourenço Soares 1, Alessandro Rossa 2 and Massami Shimokomaki 1* 1Departamento de Ciência e Tecnologia de Alimentos; Universidade Estadual de Londrina; 86051-970; Londrina – PR - Brasil. 2Universidade Estadual de Londrina; Rua Cláudio Zatta, 35; Cafelândia - PR - Brasil ABSTRACT This work was carried out in order to evaluate whether the functional properties of broiler meat are affected by the factors that lead to PSE (Pale, Soft, Exudative). PSE meat was characterized by pH and L* values, and mortadella formulations consisted of isolated soy protein, sodium tripolyphosphate, and cassava starch in addition to PSE and normal meats. The functionality of the meat was evaluated by examining the water holding capacity (WHC), texture profile, emulsion stability (ES) and color of the final products. The results show that in mortadella prepared with PSE meat, the protein denaturation affected the ES. Additives are necessary to enhance the functional properties of PSE meat. Key words : mortadella, water holding capacity, texture profile, meat color, emulsion stability INTRODUCTION (Mitchell and Kettewell, 1998). In fact, heat stress during truck transport is one of the main causes of It is well known that PSE conditions in broiler PSE (Mitchell and Kettewell, 1998, Langer, et al, meat result from the denaturation of myofibril 2009, Simões et al., 2009). PSE meat occurs proteins. This denaturation is caused by rapid around the world: in the USA, Woelfel et al.
    [Show full text]
  • Regulation of Post-Mortem Glycolysis in Ruminant Muscle
    CSIRO PUBLISHING Animal Production Science, 2014, 54, 464–481 Review http://dx.doi.org/10.1071/AN13088 Regulation of post-mortem glycolysis in ruminant muscle D. M. Ferguson A,C and D. E. Gerrard B ACSIRO Division of Animal, Food and Health Sciences, Locked Bag 1, Armidale, NSW 2350, Australia. BDepartment of Animal and Poultry Sciences, Virginia University, Blacksburg, VA 24061, USA. CCorresponding author. Email: [email protected] Abstract. As a tissue, muscle has the unique ability to switch its metabolic source of ATP, the energy currency underpinning muscle function. During oxygen debt, such as that occurring immediately following the death of animals, anaerobic metabolism is initiated in an attempt to restore homeostasis within the muscle. The cascade of biochemical events that are initiated is paramount in the context of meat quality. This review revisits this reasonably well-known subject but takes a new perspective by drawing on the understanding outside the traditional discipline of meat science. Our understanding of the intrinsic regulators of glycolytic flux has improved but knowledge gaps remain. Further efforts to understand how the glycolytic enzyme kinetics are influenced by both pre- and post-slaughter factors will be beneficial in the ongoing quest to maximise fresh meat quality. Additional keywords: muscle, post-mortem glycolysis, ruminant. Received 8 March 2013, accepted 6 January 2014, published online 11 March 2014 Introduction This highly efficient and robust means of providing ATP Transformation of muscle to meat involves several physiological rapidly in working skeletal muscle cells is retained, at least in and biochemical processes evoked by the animal and its tissues part, during the transformation of muscle to meat.
    [Show full text]
  • The Structural Basis of the Water-Holding, Appearance and Toughness of Meat and Meat Products
    Food Structure Volume 8 Number 1 Article 17 1989 The Structural Basis of the Water-Holding, Appearance and Toughness of Meat and Meat Products Gerald Offer Peter Knight Robin Jeacocke Richard Almond Tony Cousins See next page for additional authors Follow this and additional works at: https://digitalcommons.usu.edu/foodmicrostructure Part of the Food Science Commons Recommended Citation Offer, Gerald; Knight, Peter; Jeacocke, Robin; Almond, Richard; Cousins, Tony; Elsey, John; Parsons, Nick; Sharp, Alan; Starr, Roger; and Purslow, Peter (1989) "The Structural Basis of the Water-Holding, Appearance and Toughness of Meat and Meat Products," Food Structure: Vol. 8 : No. 1 , Article 17. Available at: https://digitalcommons.usu.edu/foodmicrostructure/vol8/iss1/17 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Food Structure by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. The Structural Basis of the Water-Holding, Appearance and Toughness of Meat and Meat Products Authors Gerald Offer, Peter Knight, Robin Jeacocke, Richard Almond, Tony Cousins, John Elsey, Nick Parsons, Alan Sharp, Roger Starr, and Peter Purslow This article is available in Food Structure: https://digitalcommons.usu.edu/foodmicrostructure/vol8/iss1/17 FOOD MICROSTRUCTURE, Vol. 8 (1989) , pp. 151- 170 0730- 5419/89$3 .00+. 00 Scanning Microscopy International, Chicago CAMF O'Hare) , IL 60666 USA THE STRUCTURAL BASIS OF THE WATER-HOLDIN G, APP EAR AN CE AND TOUGHNESS OF MEAT AND MEAT PRODUCTS Gerald Offer. Peter Knight, Rob1 n Jeacocke, Richard Almond, Tony Cousins.
    [Show full text]
  • Update on Pse Research*
    UPDATE ON PSE RESEARCH* DR. W. SYBESMA Research Institute for Animal Husbandry "Schoonoord" Zeist, The Netherlands Introduction In recent years the PSE problem has been studied from different angles. Important issues in this respect are: Fresh Pork and Technology Physiological Aspc t s Environmental Influences Genetical Aspects A lot of what is reviewed here is based mainly on the reports of investigators at an International symposium on PSE which was held in 1971 in Zeist. More recent literature is also quoted. Fresh Pork and Technology The drip losses in fresh pork and the cooking losses in the cooked end- product have been regarded as those aspects with the heaviest economical impact. The use of polyphosphates eliminates to a great extent these cookhg losses. Whereas the consumer considers the fat content far more important than the color, PSE meat will hardly give any objections (Zuidam --et al., 1971). Wirth (1972) showed that the pretreatment of the fresh meat with bread crumbs is a pre-condition for preserving the juiciness in PSE. Storage decreases the tenderness more rapidly than in nom1 meat (Buchter and Zeuthen, 1971). The keepability is prolonged especially if the pH is under 5.3 (Mulder, 1971). Economic losses, although they do exist are fairly slight under present conditions. * Presented at the 25th Annual Reciprocal Meat Conference of the American Meat Science Association, 1972. Physiological Aspects Greater economic harm can be attributed to losses from physiological Instability of the mre meaty pig Which shows a higher incidence of PSE. Much research has been directed on endocrinological imbalance of the hypo- physis--adrenal axis (Topel, 1971; Judge and Marple, 1971) and blood para- meters to show the physiological effect.
    [Show full text]
  • Identification of New Physiological Parameters for Monitoring Chronic Stress in Growing Pigs: Hair Cortisol and Chromogranin A
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Identification of new physiological parameters for monitoring chronic stress in growing pigs: Hair cortisol and Chromogranin A Tesi Doctoral presentada per NICOLAU CASAL i PLANA Per accedir al grau de doctor dins el programa de doctorat de Producció Animal del Departament de Ciència Animal i dels Aliments de la Universitat Autònoma de Barcelona Bellaterra, Setembre 2016 EMMA FÀBREGA i ROMANS, Investigadora del Subprograma de Benestar Animal de l’Institut de Recerca i Tecnologia Agroalimentàries (com a directora) i XAVIER MANTECA VILANOVA, Catedràtic del Departament de Ciència Animal i dels Aliments de la facultat de Veterinària de la Universitat Autònoma de Barcelona (com a director i tutor acadèmic) Certifiquen que la present tesi ha estat realitzada sota llur direcció, i considerant-la acabada, autoritzen la seva presentació per tal que sigui jutjada per la comissió corresponent. Dra. Emma Fàbrega i Romans Dr. Xavier Manteca Vilanova Aquest projecte ha estat finançat per l’Instituto Nacional de Investigación Agraria y Alimentaria (INIA) del Ministerio de Ciencias e Innovación del Gobierno de España.
    [Show full text]
  • Role of AMP-Activated Protein Kinase in the Glycolysis of Postmortem Muscle
    Journal of the Science of Food and Agriculture J Sci Food Agric 85:2401–2406 (2005) DOI: 10.1002/jsfa.2252 Role of AMP-activated protein kinase in the glycolysis of postmortem muscle Qingwu W Shen and Min Du∗ Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA Abstract: AMP-activated protein kinase (AMPK) is a newly identified kinase controlling energy metabolism in vivo. The objective of this study was to show the role of AMPK in postmortem glycolysis. Rapid and excessive postmortem glycolysis is directly related to the incidence of PSE (pale, soft and exudative) meat in pork, chicken and turkey, while insufficient glycolysis leads to dark cutters in beef and lamb, which causes significant loss to the meat industry. A total of 24 two-month-old C57BL/6J mice were assigned to three treatments: (1) wild-type mice without pre-slaughter treatment; (2) wild-type mice with a 2 min swim before slaughter; and (3) wild-type mice intraperitoneally injected with AICAr (50 mg kg−1), a specific activator of AMPK, to stimulate the activity of AMPK. In addition, 16 two- month-old C57BL/6J mice with AMPK knockout were assigned to two treatments: (4) AMPK knockout mice without pre-slaughter treatment; and (5) AMPK knockout mice with a 2 min swim before slaughter. The longissimus dorsi muscle was sampled at 0, 1 and 24 h postmortem for pH and enzyme activity measurements. Results showed that AMPK activity had a major role in determining the ultimate muscle pH. Pre-slaughter stress induced by swimming significantly accelerated the glycogenolysis in postmortem muscle through activating glycogen phosphorylase.
    [Show full text]
  • Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys
    foods Review Understanding the Determination of Meat Quality Using Biochemical Characteristics of the Muscle: Stress at Slaughter and Other Missing Keys E. M. Claudia Terlouw 1,* , Brigitte Picard 1,Véronique Deiss 1,Cécile Berri 2, Jean-François Hocquette 1, Bénédicte Lebret 3 , Florence Lefèvre 4, Ruth Hamill 5 and Mohammed Gagaoua 5 1 UMR Herbivores, INRAE, VetAgro Sup, Theix, 63122 Saint-Genès Champanelle, France; [email protected] (B.P.); [email protected] (V.D.); [email protected] (J.-F.H.) 2 INRAE, Université de Tours, BOA, 37380 Nouzilly, France; [email protected] 3 UMR Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage, INRAE, AgroCampus Ouest, 35590 Saint-Gilles, France; [email protected] 4 Laboratoire de Physiologie et Génomique des Poissons, INRAE, 35042 Rennes, France; fl[email protected] 5 Teagasc Ashtown Food Research Centre, Food Quality and Sensory Science Department, Ashtown, Dublin 15, Ireland; [email protected] (R.H.); [email protected] (M.G.) * Correspondence: [email protected] Abstract: Despite increasingly detailed knowledge of the biochemical processes involved in the determination of meat quality traits, robust models, using biochemical characteristics of the muscle to predict future meat quality, lack. The neglecting of various aspects of the model paradigm may explain this. First, preslaughter stress has a major impact on meat quality and varies according to slaughter context and individuals. Yet, it is rarely taken into account in meat quality models. Second, Citation: Terlouw, E.M.C.; Picard, B.; phenotypic similarity does not imply similarity in the underlying biological causes, and several Deiss, V.; Berri, C.; Hocquette, J.-F.; models may be needed to explain a given phenotype.
    [Show full text]