Hurricane Matthew Recap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Matthew Disaster Recovery and Resilience Initiative ______
HURRICANE MATTHEW DISASTER RECOVERY AND RESILIENCE INITIATIVE ______________ A project of the North Carolina Policy Collaboratory Gavin Smith, PhD, AICP Project Director _________________ September 11, 2017 Progress Report Hurricane Matthew Disaster Recovery and Resilience Initiative Table of Contents Introduction .................................................................................................................................................. 2 A. Background ......................................................................................................................................... 2 B. Objectives ........................................................................................................................................... 2 C. Activities ............................................................................................................................................. 2 D. Organizational Structure .................................................................................................................... 4 Leveraging State and Federal Resources ..................................................................................................... 7 Executive Summaries of Project Reports .................................................................................................... 8 A. Home Place ......................................................................................................................................... 8 B. Affordable Housing .......................................................................................................................... -
1989 Hurricane Hugo - September 1989
1989 Hurricane Hugo - September 1989. Category 4 hurricane devastates SC and NC with ~ 20 foot storm surge and severe wind damage after hitting PR and the U.S. Virgin Islands; over $9.0 (13.9) billion (about $7.1 (10.9) billion in Carolinas); 86 deaths (57--U.S. mainland, 29--U.S. Islands). Hurricane Hugo was a powerful Cape Verde hurricane that caused widespread damage and loss of life in Guadeloupe, Saint Croix, Puerto Rico, and the Southeast United States. It formed over the eastern Atlantic near the Cape Verde Islands on September 9, 1989. Hugo moved thousands of miles across the Atlantic, rapidly strengthening to briefly attain category 5 hurricane strength on its journey. It later crossed over Guadeloupe and St. Croix on September 17 and 18 as a category 4 hurricane. Weakening slightly more, it passed over Puerto Rico as a strong category 3 hurricane. Further weakening occurred several hours after re-emerging into the Atlantic, becoming downgraded to a category 2 hurricane. However, it re-strengthened into a category 4 hurricane before making landfall just slightly north of Charleston, on Isle of Palms on September 22 with 140 mph sustained winds (gusts to more than 160 mph). It had devolved to a remnant low near Lake Erie by the next day. As of 2016, Hurricane Hugo is the most intense tropical cyclone to strike the East Coast north of Florida since 1898. Hurricane Hugo caused 34 fatalities (most by electrocution or drowning) in the Caribbean and 27 in South Carolina, left nearly 100,000 homeless, and resulted in $9.47 billion (1989 USD) in damage overall, making it the most damaging hurricane ever recorded at the time. -
Storm Tide Simulations for Hurricane Hugo (1989): on the Significance of Including Inland Flooding Areas
STORM TIDE SIMULATIONS FOR HURRICANE HUGO (1989): ON THE SIGNIFICANCE OF INCLUDING INLAND FLOODING AREAS by DANIEL DIETSCHE B.S. Basle Institute of Technology, Switzerland, 1993 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil and Environmental Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2004 ABSTRACT In this study, storm tides are simulated by performing a hindcast of water surface levels produced by Hurricane Hugo (1989). The region of interest incorporates inundation areas between Charleston and Shallotte Inlet (120 miles northeast of Charleston) and includes Bulls Bay where the highest storm surge of about 20 feet occurred. The study domain also contains an important riverine system which is connected to the Winyah Bay: the Waccamaw River up to Conway including all pertinent tributaries (Sampit River, Black River, and Pee Dee River), and the Atlantic Intracoastal Waterway (AIW) within the Grand Strand (Myrtle Beach). Five different two-dimensional finite element models with triangular elements are applied in order to simulate the storm tides, allow for inundation, and provide a basis of comparison to assess the significance of including inundation areas and two extents of spatial discretization. Four computational regions comprise a semicircular mesh encompassing the South Carolina coast including all relevant estuaries and bays as well as the continental shelf. Two of these four computational regions include inland topography allowing the model to simulate inland flooding. One of the floodplain meshes is then incorporated into the Western North Atlantic Tidal (WNAT) model domain to produce a fifth computational region. -
Felix Hits Nicaragua and Honduras, Then Diminishes to Tropical Storm
- Advertisement - Felix hits Nicaragua and Honduras, then diminishes to tropical storm September 5, 2007 Hurricane Felix, which reached Category 5 status and slammed into the Nicaragua-Honduras border Sept. 4, was reduced to a fast-moving tropical storm over eastern Guatemala. The storm broke up and lost strength as it hit the Honduran mountains, according to Martin Maldonado of Miami-based Team Produce International Inc. Ed Loyd, manager of investor relations and corporate communications for Chiquita Brands International in Cincinnati, said Sept. 5, "It's a little early for us to know what potential impact Hurricane Felix will have. We do have a number of farms in northern Honduras and Guatemala, and we also source from independent growers in southern Guatemala." These banana production areas "may be impacted by winds and rains. It is hard to predict." The speed of the storm is a key factor in the amount of damage, Mr. Loyd said. In 1998, Hurricane Mitch lingered for a week over Central America. That flooding dropped as much as four feet of rain on some parts of Honduras. Thus, news reports Sept. 5 that the storm was moving quickly were likely good news for produce grower-exporters in northern Central America. Mr. Loyd said that Chiquita would release more complete information about the status of its Central American banana crop around Sept. 10. Speaking from his Houston sales office, Guatemalan grower-exporter Antonio Maldonado said late in the afternoon of Sept. 5 that he was very thankful that Felix's ferocity had diminished to a tropical storm. Many Guatemalans spent the two days before the storm stocking up on supplies in preparation for the hurricane, "but now they're very tranquil," he said. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Azimuthally-Averaged Structure of Hurricane Edouard (2014) Just After Peak Intensity
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 144: 1–5 (2018) Azimuthally-averaged structure of Hurricane Edouard (2014) just after peak intensity Roger K. Smitha∗, Michael T. Montgomeryb and Scott Braunc a Meteorological Institute, Ludwig Maximilians University of Munich, Munich, Germany b Dept. of Meteorology, Naval Postgraduate School, Monterey, CA, USA c Laboratory for Mesoscale Atmospheric Processes, NASA Goddard Space Flight Center, Greenbelt, Maryland, MD, USA ∗Correspondence to: Prof. Roger K. Smith, Meteorological Institute, Ludwig-Maximilians University of Munich, Theresienstr. 37, 80333 Munich, Germany. E-mail: [email protected] Analyses of dropsonde data collected in Hurricane Edouard (2014) just after its mature stage are presented. These data, have unprecedentedly high spatial resolution, based on 87 dropsondes released by the unmanned NASA Global Hawk from an altitude of 18 km during the Hurricane and Severe Storm Sentinel (HS3) field campaign. Attempts are made to relate the analyses of the data to theories of tropical cyclone structure and behaviour. The tangential wind and thermal fields show the classical structure of a warm core vortex, in this case with a secondary eyewall feature. The equivalent potential temperature (θe) field shows also the expected structure with a mid-tropospheric minimum at outer radii and contours of θe flaring upwards and outwards at inner radii and, with some imagination, roughly congruent to the surfaces of absolute angular momentum. However, details of the analysed radial velocity field are somewhat sensitive to the way in which the sonde data are partitioned to produce an azimuthal average. This sensitivity is compounded by an apparent limitation of the assumed steadiness of the storm over the period of data collection. -
Downloaded 10/01/21 04:51 PM UTC JULY 2003 ANNUAL SUMMARY 1455
1454 MONTHLY WEATHER REVIEW VOLUME 131 ANNUAL SUMMARY Atlantic Hurricane Season of 2001 JOHN L. BEVEN II, STACY R. STEWART,MILES B. LAWRENCE,LIXION A. AVILA,JAMES L. FRANKLIN, AND RICHARD J. PASCH NOAA/NWS/Tropical Prediction Center/National Hurricane Center, Miami, Florida (Manuscript received 19 July 2002, in ®nal form 9 December 2002) ABSTRACT Activity during the 2001 hurricane season was similar to that of the 2000 season. Fifteen tropical storms developed, with nine becoming hurricanes and four major hurricanes. Two tropical depressions failed to become tropical storms. Similarities to the 2000 season include overall activity much above climatological levels and most of the cyclones occurring over the open Atlantic north of 258N. The overall ``lateness'' of the season was notable, with 11 named storms, including all the hurricanes, forming after 1 September. There were no hurricane landfalls in the United States for the second year in a row. However, the season's tropical cyclones were responsible for 93 deaths, including 41 from Tropical Storm Allison in the United States, and 48 from Hurricanes Iris and Michelle in the Caribbean. 1. Overview of the 2001 season cycleÐsimultaneously exhibiting characteristics of both tropical and extratropical cyclones (Hebert 1973). The National Hurricane Center (NHC) tracked 15 No hurricanes struck the United States during 2001. tropical cyclones (TCs) that achieved tropical storm or The season thus joins the 2000, 1990, and 1951 seasons hurricane strength in the Atlantic basin during 2001 as years in which eight or more hurricanes occurred (Table 1). Nine of these became hurricanes and four without a U.S. -
Hurricane Marãa Tripled Stem Breaks and Doubled Tree Mortality Relative
ARTICLE https://doi.org/10.1038/s41467-019-09319-2 OPEN Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms María Uriarte 1, Jill Thompson2 & Jess K. Zimmerman3 Tropical cyclones are expected to intensify under a warming climate, with uncertain effects on tropical forests. One key challenge to predicting how more intense storms will influence these ecosystems is to attribute impacts specifically to storm meteorology rather than dif- 1234567890():,; ferences in forest characteristics. Here we compare tree damage data collected in the same forest in Puerto Rico after Hurricanes Hugo (1989, category 3), Georges (1998, category 3), and María (2017, category 4). María killed twice as many trees as Hugo, and for all but two species, broke 2- to 12-fold more stems than the other two storms. Species with high density wood were resistant to uprooting, hurricane-induced mortality, and were protected from breakage during Hugo but not María. Tree inventories and a wind exposure model allow us to attribute these differences in impacts to storm meteorology. A better understanding of risk factors associated with tree species susceptibility to severe storms is key to predicting the future of forest ecosystems under climate warming. 1 Department of Ecology Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA. 2 Centre for Ecology & Hydrology Bush Estate, Penicuik, Midlothian EH26 0QB, UK. 3 Department of Environmental Sciences, University of Puerto Rico, San Juan, Puerto Rico 00925, USA. Correspondence and requests for materials should be addressed to M.U. (email: [email protected]) NATURE COMMUNICATIONS | (2019) 10:1362 | https://doi.org/10.1038/s41467-019-09319-2 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09319-2 yclonic storms (hurricanes, cyclones, and typhoons) exposure to wind or the structure and composition of forests at Crepresent the dominant natural disturbance in coastal the time the storm struck. -
Florida Hurricanes and Tropical Storms
FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book. -
Storm Modification Although Experts in the Meteorological Field Aren’T Enthusiastic About These Ideas Due to the Inconclusive Results from Project Stormfury
Solving Today’s Hurricane Problem Through Modification Submitted by: Greg Machos Webmaster/Owner www.hurricaneville.com Submitted to: Dr. Stephan Nelson Director of Atmospheric Science National Science Foundation Room 775 4201 Wilson Boulevard Arlington, VA 22230 April 27, 2001 Final Proposal for Business and Professional Writing If found, please return to: Mark Waren Department of English Murray Hall, Room 032 College Avenue Campus, Rutgers University i ABSTRACT This proposal is for a research study that will attempt to combine the best elements of both the federal government and private industry projects on hurricane intensification and modification. There will be a difference in the way a hurricane will be attacked. Rather than trying to attack it through seeding its inner core, this proposal will try to use wind shear at the upper levels to destroy the storm’s vertical structure. Past research has shown that work in this area of study has had positive impacts on hurricane forecasting that ultimately saved lives. Furthermore, technology has improved significantly over the last twenty years and with the tremendous strides made in weather forecasting over the past century, now may be a great time to revisit this kind of research again. Coastal communities in the eastern half of the United States as well as many underdeveloped countries in the Caribbean and Central America are more vulnerable than ever to a major hurricane like Hurricane Andrew in 1992 or Hurricane Mitch in 1998. Hurricane Andrew caused approximately $27 billion dollars in damage after making landfall in South Florida while Hurricane Mitch left an estimated 11,000 people dead from heavy rains over a period of several days. -
Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed
Journal of South Carolina Water Resources, Volume 6, Issue 1, Pages 28–35, 2019 Historic Rainfall and Record-Breaking Flooding from Hurricane Florence in the Pee Dee Watershed MELISSA GRIFFIN1, MARK MALSICK1, HOPE MIZZELL1, AND LEAH MOORE1 AUTHORS: 1SC State Climatology Office, SC Department of Natural Resources, 1000 Assembly Street Columbia, SC 29201 . KEYWORDS: Florence, flooding, average return intervals, rainfall, ARI . With the advancements of software packages and data visualization, much of the analysis and information on the impact and historical perspective of the rainfall from Tropical Storm Florence included in our online ERSI Story Map is not viable to translate into the print format standards required by many publications. However, with the newly enacted Journal of South Carolina Resources policy, our article creates a precedent in how the Journal will address submittals that include subject matter available on the internet, by permanently archiving the information, and applying a structured peer-review process to the content. Abstract. For the third time in four years, record-breaking flooding occurred in South Carolina. Hurricane Florence, which made landfall near Wrightsville Beach, North Carolina, on September 14, 2018, moved slowly across South Carolina from September 14–17, 2018. Over those four days, heavy rain fell over portions of the Pee Dee Watershed and eastern North Carolina, with over 30 inches of rain measured by an observer in Swansboro, North Carolina. Most of the excessive rainfall was confined to the Pee Dee region, with reported totals of over 24 inches in Horry County, while closer to the Savannah River Valley observers measured less than an inch of rain. -
62Nd Book Cover.Cdr:Coreldraw
62nd Interdepartmental Hurricane Conference Theme: Tropical Cyclone Operations and Research: Priorities for the Future AGENDA Monday, March 3, 2008 9:00 AM Early Registration (9:00 AM-12:30 PM) Opening Session 12:30 PM Conference Opening Mr. Samuel P. Williamson Federal Coordinator for Meteorology 12:35 PM Introduction of Mayor Mr. Howard Chapman Executive Director, Charleston Area Regional Transportation Authority 12:40 PM Welcome/Opening Remarks The Honorable Joseph P. Riley, Jr. Mayor, Charleston, South Carolina 12:55 PM Introductory Comments Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:15 PM Keynote Address Ms. Mary M. Glackin Deputy Under Secretary for Oceans and Atmosphere (NOAA) 1:30 PM Panel Introduction Mr. Samuel P. Williamson Federal Coordinator for Meteorology 1:35 PM Panel: Priorities for Tropical Cyclone Research: A Senior Leader Perspective Moderator: Dr. Elbert W. (Joe) Friday, Professor Emeritus, University of Oklahoma Panelists: Dr. Alexander “Sandy” MacDonald, Deputy Assistant Administrator for NOAA Research Laboratories and Cooperative Institutes Mr. Robert Winokur, Technical Director, Office of the Oceanographer and Navigator of the Navy Dr. Jack Kaye, Associate Director for Research, Earth Science Division, NASA Dr. Fred Lewis, Air Force Director of Weather RDML (sel) David Titley, Commander, Naval Meteorology and Oceanography Command Dr. John “Jack” Hayes, Assistant Administrator for Weather Services, NOAA 3:00 PM Introduction of Federal Agency Lead Mr. Samuel P. Williamson Representatives Federal Coordinator for Meteorology 3:15 PM Afternoon Coffee/Soda Break (3:15-3:45 PM) 1 Session 1 Coordinator: Mr. Mark Welshinger (OFCM) Session 1: The 2007 Tropical Cyclone Season in Review Session Leaders Dr.