Storm Modification Although Experts in the Meteorological Field Aren’T Enthusiastic About These Ideas Due to the Inconclusive Results from Project Stormfury

Total Page:16

File Type:pdf, Size:1020Kb

Storm Modification Although Experts in the Meteorological Field Aren’T Enthusiastic About These Ideas Due to the Inconclusive Results from Project Stormfury Solving Today’s Hurricane Problem Through Modification Submitted by: Greg Machos Webmaster/Owner www.hurricaneville.com Submitted to: Dr. Stephan Nelson Director of Atmospheric Science National Science Foundation Room 775 4201 Wilson Boulevard Arlington, VA 22230 April 27, 2001 Final Proposal for Business and Professional Writing If found, please return to: Mark Waren Department of English Murray Hall, Room 032 College Avenue Campus, Rutgers University i ABSTRACT This proposal is for a research study that will attempt to combine the best elements of both the federal government and private industry projects on hurricane intensification and modification. There will be a difference in the way a hurricane will be attacked. Rather than trying to attack it through seeding its inner core, this proposal will try to use wind shear at the upper levels to destroy the storm’s vertical structure. Past research has shown that work in this area of study has had positive impacts on hurricane forecasting that ultimately saved lives. Furthermore, technology has improved significantly over the last twenty years and with the tremendous strides made in weather forecasting over the past century, now may be a great time to revisit this kind of research again. Coastal communities in the eastern half of the United States as well as many underdeveloped countries in the Caribbean and Central America are more vulnerable than ever to a major hurricane like Hurricane Andrew in 1992 or Hurricane Mitch in 1998. Hurricane Andrew caused approximately $27 billion dollars in damage after making landfall in South Florida while Hurricane Mitch left an estimated 11,000 people dead from heavy rains over a period of several days. While forecasting a hurricane’s storm track and intensity has improved, it has not been able to keep pace with the explosive population growth that has taken place over the past several decades. Efforts are being made into researching hurricane intensity by the federal government. NASA and NOAA have joined forces to investigate tropical storms and hurricanes to see why and how they intensify. There are also studies being done to find out how wind shear affects a hurricane along the coast during landfall. Meanwhile, private industry is making efforts to eradicate hurricanes through the concept of storm modification although experts in the meteorological field aren’t enthusiastic about these ideas due to the inconclusive results from Project Stormfury. i TABLE OF CONTENTS Abstract……………………………………………………………………………………………………………………….i Table of Contents………………………………………………………………………………………………………ii Table of Figures………………………………………………………………………………………………………..iii Introduction……………………………………………………………………………………………………………….1 Coastal Populations Continue To Grow Rapidly….…….……….………………………….2 Improvements In Forecasting Can’t Keep Up….……….……….………………………….3 The Central American Hurricane Problem….…….…………….….……………….…………4 Literature Review……………………………………………………………………………………………………..5 Problem Hurricanes Present To Today’s World……….…………..……………………….5 Early Attempts To Control Hurricanes………………………….………………………………….7 Research Being Done Today……………………………………………………………………………….9 Federal Government Projects…………………….…………………………………………………..9 Government Research Into Hurricane Intensity……………………………………………..9 Shearing A Hurricane Apart…………..………………………………………………………………10 Private Industry Projects…………………….………………….………………….……………….10 Dyn-O-Mat’s Hurricane Fighting Gel…………………………………………………..…………10 Proposal……………………….…………………………………………………………………………………..………12 Budget……………………………………………………………………………………………………………………….16 Breakdown…………………………..…………………………………………………………………………16 Budget Justification………………………………………………………………………………………..17 Discussion…………………………………………………………………………………………………………………19 Works Cited..……………………………………………………………………………………………………………20 ii TABLE OF FIGURES Figure 1: Long Term Tropical Activity in the Atlantic (1890-1995)…………….1 Figure 2: Tropical Activity in the Atlantic (1991-2001)…………….…………………..1 Figure 3: Increase in Coastal Populations………………………………………………………..2 Figure 4: Improvement in Forecasting Errors……………..…..……………………………..3 Figure 5: Hurricane Mitch off Coast of Honduras in October, 1998……………..5 Figure 6: Devastation From Hurricane Mitch In Honduras…………………………….6 Figure 7: Process of Orographic Lifting……………………………………………………………..6 Figure 8: Estimated Deaths in Recent Catastrophes……………………………………….7 Figure 9: Wind Reduction in Hurricane Debby………………………………………………….8 Figure 10: NOAA Gulfstream IV Aircraft…………………………………………………………….9 Figure 11: Percentage Breakdown of Proposed Budget……………….………………16 Figure 12: Percentage Breakdown of Facilities Budget……………….……………….16 Figure 13: Percentage Breakdown of Materials Budget……………….……………….17 Figure 14: Total Itemized Cost for Project……………….……………………………………..17 iii INTRODUCTION Over the past five to ten years, forecasters and scientists alike have been warning people living along the East Coast of the United States as well as many of the Caribbean islands in the Atlantic Basin that the Atlantic region is entering a period of increased tropical activity. As depicted in Figure 1, past trends in history have indicated that increased activity occurs every forty years or so. Consequently, forecasters believe that more intense hurricanes will make landfall over the next forty years. Activity has already begun to rise over the past decade. Figure 1: Long Term Tropical Activity in the Atlantic (1890-1995) 25 20 Tropical Number Of 15 Storms Storms Hurricanes 10 5 0 1890 1933 1965 1995 Year Figure 2: Tropical Activity in the Atlantic (1991-2001) 20 15 Number Of Tropical Storms 10 Storms Hurricanes 5 0 1991 1995 1997 1998 1999 2000 2001 Year Since 1991, there has been a dramatic increase in the number of tropical storms and hurricanes that have developed each year during the hurricane season as shown in Figure 2. Harbingers of such increased activity go as far back as Hurricane Andrew in 1992, which brought some $27 billion dollars in damage to South Florida (Great Storms Collection), Hurricane Opal in 1995, which heavily damaged the Gulf Coast of Florida, and Hurricane Fran in 1996 which caused some $6 billion dollars in damage to Wilimington, North Carolina. Then in 1998, Hurricane Mitch became a catastrophe of enormous proportions in parts of Central America dumping three to six feet of rain in 48 hours (Sarewitz and Pielke 45). One year later, in September, 1999, Hurricane Floyd caused approximately $6 billion dollars in damage from North Carolina to New England. 1 So far, much of the coastal population in the United States has been lucky, but research shows that the next major hurricane to strike a major coastal city could end up costing as much as $80 billion dollars in damage (Mandias, par 5). Meanwhile, coastal populations keep growing and while forecasting hurricanes has improved over the last several decades, it has not been able to keep up with the tremendous growth in population particularly along the coast (Sheets, Danger’s Edge). As a result, forecasters fear that a recipe for disaster may be brewing. Coastal Populations Continue To Grow Rapidly… Many people dream of living along the coast. The beauty and tranquility and tranquility of living near the ocean is very attractive to people who are caught up in the hectic hustle and bustle of everyday life in the cities and the suburbs. While living along the coast may sound enticing, the fact still remains that coastal life isn’t always calm and serene. It is often marred by coastal storms such as hurricanes, which claim many lives and cause billions in property damage periodically. For instance, Hurricane Andrew killed 65 people and caused $27 billion dollars in damage after it rolled through the Bahamas, South Florida, and Louisiana in August, 1992 (Great Storms Collection). Nevertheless, populations continue to experience explosive growth along our coastlines. For example, in the four coastal counties of New Jersey, which include Monmouth, Ocean, Atlantic, and Cape May, the number of residents grew from 1.3 million to 1.6 million between 1980 and 1993 (Insurance Research Council 10). Since 1993, these coastal populations have continued growing as New Jersey has become one of the most densely populated areas in the country (Insurance Research Council 10). Furthermore, since 1960, coastal populations across the United States have grown from about 175 people per square mile of coastline to about 275 people per square mile of coastline as shown in Figure 3 (http://www.census.gov). Figure 3 Increase in Coastal Populations This change in population is nearly 150% more growth over the past four decades, and that figure is expected to continue rising. By the year 2015, the coastal population per square mile is expected to double that in 1960 as reflected also in Figure 3 (http://www.census.gov). With this kind of growth in coastal population, there will need to be more buildings, roads, and houses. All of this new infrastructure will cost money to insure. Finally, the rate of growth in coastal populations relative to non-coastal populations indicates a trend of more people migrating from inland areas toward the coast (http://www.census.gov). 2 Improvements in Forecasting Can’t Keep Up… Over the past century, there have been a number of significant developments in technology that have helped hurricane forecasting make tremendous strides over the past several decades. The development of both radar and satellite imagery in the 1950s and 1960s really helped weather forecasters monitor hurricanes more effectively (Ahrens 226). Prior to the implementation
Recommended publications
  • Part 1-B Cause & Impact of Landfalling Tropical Cyclone
    Part 1-b Cause & Impact of Landfalling Tropical Cyclone Rainfall & River Flooding • In addition to high winds & storm surge, all tropical storms can produce torrential rains causing massive flooding & trigger landslides and debris floods • Catastrophic flash flooding may occur as a result of intense rainfall over a relatively short duration. Longer duration storms, say a few days, can be equally devastating. 2 River flooding associated with heavy rainfall from tropical cyclones Flood stages & inundation maps • Rain-triggered flooding is not confined to coastal areas. The reach of a large tropical storm can cause flooding well inland, especially along the estuaries. • Beneficial contributions of tropical cyclones: rainfall for needed water supply in the region; and maintenance of global heat balance 5 Cases of landfalling of catastrophic tropical cyclones • Hurricane Andrew , August 24, 1993- Florida • Hurricane Allison , June 5-9, 2001- Houston and TX and LA coasts • Hurricane Katrina , Aug 29, 2005- New Orleans & LA and TX coasts • Hurricane Mitch , Oct 26- Nov 5, Honduras, Salvador, Nicaragua, and Guatemala • Typhoon Morakot , August 3-10, 2009, Taiwan • Typhoon Ketsana , Sept 23-30, 2009, Manila, Philippine , Vietnam & Cambodia 6 Hurricane Andrew (Aug24,1993) 7 Hurricane Andrew (Aug24,1993) Source: Report on Hurricane Andrew Storm Summary & Impacts on Florida Beaches, by USACE & Florida DNR, May 1993 Pressure zones, wind zones and storm surge contour 9 Surge at landfall & waves height Storm surges Wave Heights 10 Impact of gusts on homes 11 Impacts on beaches of Florida 12 Erosion and accretion of beach profiles 13 Hurricane Allison, June 5-9, 2001 * Hurricane Allison’s swath of rainfall – 25-50 cm or more rainfall in coastal TX & LA for nearly 6 days.
    [Show full text]
  • Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear
    1290 MONTHLY WEATHER REVIEW VOLUME 142 Observed Hurricane Wind Speed Asymmetries and Relationships to Motion and Environmental Shear ERIC W. UHLHORN NOAA/AOML/Hurricane Research Division, Miami, Florida BRADLEY W. KLOTZ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida TOMISLAVA VUKICEVIC,PAUL D. REASOR, AND ROBERT F. ROGERS NOAA/AOML/Hurricane Research Division, Miami, Florida (Manuscript received 6 June 2013, in final form 19 November 2013) ABSTRACT Wavenumber-1 wind speed asymmetries in 35 hurricanes are quantified in terms of their amplitude and phase, based on aircraft observations from 128 individual flights between 1998 and 2011. The impacts of motion and 850–200-mb environmental vertical shear are examined separately to estimate the resulting asymmetric structures at the sea surface and standard 700-mb reconnaissance flight level. The surface asymmetry amplitude is on average around 50% smaller than found at flight level, and while the asymmetry amplitude grows in proportion to storm translation speed at the flight level, no significant growth at the surface is observed, contrary to conventional assumption. However, a significant upwind storm-motion- relative phase rotation is found at the surface as translation speed increases, while the flight-level phase remains fairly constant. After removing the estimated impact of storm motion on the asymmetry, a significant residual shear direction-relative asymmetry is found, particularly at the surface, and, on average, is located downshear to the left of shear. Furthermore, the shear-relative phase has a significant downwind rotation as shear magnitude increases, such that the maximum rotates from the downshear to left-of-shear azimuthal location.
    [Show full text]
  • Resilience Potential: Assessing Jamaica's “Bounce-Back” from Hurricane Dean
    Resilience Potential: Assessing Jamaica’s “Bounce-Back” from Hurricane Dean CaPRI is a Caribbean think tank that promotes evidence- based policymaking in the region. CaPRI espouses a methodology which is built on the values of multi- disciplinary work, team work and the utilization of the diaspora in our search for evidence. Committed to the region’s development, CaPRI has strong linkages with the academic community, the private sector and civil society. For information and feedback, please contact: Caribbean Policy Research Institute GUANGO TREE HOUSE, 29 MUNROE ROAD, KINGSTON 6 JAMAICA, W.I. TEL: (876) 970-3447 (876) 970-2910 FAX: (876) 970-4544 E-mail: [email protected] WEBSITE: http://www.takingresponsibility.org 2 Table of Contents Pages List of Figures, Tables and Boxes .............................................................4 Preface......................................................................................................5 Executive Summary .................................................................................6-7 Introduction: Resilience Potential ...........................................................8-9 1. Natural Disasters: The Global Context................................................10-13 2. Natural Disasters in the Caribbean .....................................................14-18 3. Changing Practices in Disaster Management…………………………19-20 4. Disaster Management in Jamaica .....................................................21 4.1 National Disaster Plan…………………………………………….21
    [Show full text]
  • Long-Term Development in Post-Disaster Intentional Communities in Honduras
    From Tragedy to Opportunity: Long-term Development in Post-Disaster Intentional Communities in Honduras A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Ryan Chelese Alaniz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Ronald Aminzade June 2012 © Ryan Alaniz 2012 Acknowledgements Like all manuscripts of this length it took the patience, love, and encouragement of dozens of people and organizations. I would like to thank my parents for their support, numerous friends who provided feedback in informal conversations, my amazing editor and partner Jenny, my survey team, and the residents of Nueva Esperanza, La Joya, San Miguel Arcangel, Villa El Porvenir, La Roca, and especially Ciudad España and Divina for their openness in sharing their lives and experiences. Finally, I would like to thank Doug Hartmann, Pat McNamara, David Pellow, and Ross MacMillan for their generosity of time and wisdom. Most importantly I would like to express my gratitude to my advisor, Ron, who is an inspiration personally and professionally. I would also like to thank the following organizations and fellowship sponsors for their financial support: the University of Minnesota and the Department of Sociology, the Social Science Research Council, Fulbright, the Bilinski Foundation, the Public Entity Risk Institute, and the Diversity of Views and Experiences (DOVE) Fellowship. i Dedication This dissertation is dedicated to all those who have been displaced by a disaster and have struggled/continue to struggle to rebuild their lives. It is also dedicated to my son, Santiago. May you grow up with a desire to serve the most vulnerable.
    [Show full text]
  • UB Powerpoint Template
    converge.colorado.edu CONVERGE ethical, coordinated, and scientifically rigorous social science, engineering, and interdisciplinary extreme events research Lori Peek Principal Investigator, CONVERGE, SSEER, and ISEEER Director, Natural Hazards Center Professor, Department of Sociology University of Colorado Boulder Session 2: Collecting, Managing, and Archiving Social and Behavioral Science Data Describe opportunities for identifying and coordinating social science researchers so that we can best share information and publish our data as well as data collection protocols using DOIs, repositories, etc. Discuss some of the overarching challenges and concerns with sharing social science data, such as privacy, data management plans and related IRB policies, duplication vs. replication, etc. converge.colorado.edu 4 Things converge.colorado.edu 1. NSF has funded the CONVERGE initiative converge.colorado.edu Why CONVERGE? Why CONVERGE? • identify and coordinate researchers and research teams; • advance hazards and disaster research; • encourage the publication of data and data collection instruments and protocols (DesignSafe Cyberinfrastructure + CONVERGE). • support and accelerate training and mentoring; • fund virtual reconnaissance, field research, and the development of novel research instruments and data collection protocols; • accelerate the development of mobile applications for social science data collection (NHERI RAPID); Why CONVERGE? 2. NSF Supports Extreme Events Research (EER) Networks converge.colorado.edu Why the EER’s? Disciplinary
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment
    Journal of Marine Science and Engineering Article Assessing Natural and Mechanical Dune Performance in a Post-Hurricane Environment Jean T. Ellis * and Mayra A. Román-Rivera Department of Geography, University of South Carolina, Columbia, SC 29208, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 29 April 2019; Published: 2 May 2019 Abstract: The purpose of this study is to document the geomorphic evolution of a mechanical dune over approximately one year following its installation and compare it to the recovery of a natural dune following the impact of Hurricane Matthew (2016). During the study period, the dunes’ integrity was tested by wave and wind events, including king tides, and a second hurricane (Irma, 2017), at the end of the study period. Prior to the impact of the second hurricane, the volumetric increase of the mechanical and natural dune was 32% and 75%, respectively, suggesting that scraping alone is not the optimal protection method. If scraping is employed, we advocate that the dune should be augmented by planting. Ideally, the storm-impacted dune should naturally recover. Post-storm vegetation regrowth was lower around the mechanical dune, which encouraged aeolian transport and dune deflation. Hurricane Irma, an extreme forcing event, substantially impacted the dunes. The natural dune was scarped and the mechanical dune was overtopped; the system was essentially left homogeneous following the hurricane. The results from this study question the current practice of sand scraping along the South Carolina coast, which occurs post-storm, emplacement along the former primary dune line, and does not include the planting of vegetation.
    [Show full text]
  • A Classification Scheme for Landfalling Tropical Cyclones
    A CLASSIFICATION SCHEME FOR LANDFALLING TROPICAL CYCLONES BASED ON PRECIPITATION VARIABLES DERIVED FROM GIS AND GROUND RADAR ANALYSIS by IAN J. COMSTOCK JASON C. SENKBEIL, COMMITTEE CHAIR DAVID M. BROMMER JOE WEBER P. GRADY DIXON A THESIS Submitted in partial fulfillment of the requirements for the degree Master of Science in the Department of Geography in the graduate school of The University of Alabama TUSCALOOSA, ALABAMA 2011 Copyright Ian J. Comstock 2011 ALL RIGHTS RESERVED ABSTRACT Landfalling tropical cyclones present a multitude of hazards that threaten life and property to coastal and inland communities. These hazards are most commonly categorized by the Saffir-Simpson Hurricane Potential Disaster Scale. Currently, there is not a system or scale that categorizes tropical cyclones by precipitation and flooding, which is the primary cause of fatalities and property damage from landfalling tropical cyclones. This research compiles ground based radar data (Nexrad Level-III) in the U.S. and analyzes tropical cyclone precipitation data in a GIS platform. Twenty-six landfalling tropical cyclones from 1995 to 2008 are included in this research where they were classified using Cluster Analysis. Precipitation and storm variables used in classification include: rain shield area, convective precipitation area, rain shield decay, and storm forward speed. Results indicate six distinct groups of tropical cyclones based on these variables. ii ACKNOWLEDGEMENTS I would like to thank the faculty members I have been working with over the last year and a half on this project. I was able to present different aspects of this thesis at various conferences and for this I would like to thank Jason Senkbeil for keeping me ambitious and for his patience through the many hours spent deliberating over the enormous amounts of data generated from this research.
    [Show full text]
  • Preleminary Report IP and ETA&IOTA Hurricanes .Indd
    PRELIMINARY REPORT November 2020 ConsequencesConsequences ofof thethe HurricaneHurricane 20202020 SeasonSeason onon IndigenousIndigenous CommunitiesCommunities inin CentralCentral AmericaAmerica Destruction and Resilience PRELIMINARY REPORT ON THE CONSEQUENCES OF THE 2020 HURRICANE SEASON ON INDIGENOUS COMMUNITIES IN CEN- TRAL AMERICA DESTRUCTION AND RESILIENCE NOVEMBER 2020 GENERAL COORDINATION Myrna Cunningham Kain - President of FILAC Board of Directors Jesús Amadeo Martínez - General Coordinator of the Indigenous Forum of AbyaYala FIAY GENERAL SUPERVISION Álvaro Pop - FILAC Technical Secretary Amparo Morales - FILAC Chief of Staff TECHNICAL TEAM Ricardo Changala - Coordinator of the Regional Observatory for the Rights of Indigenous Peoples ORDPI FILAC Liber- tad Pinto - Technical Team ORDPI-FILAC Jean Paul Guevara - Technical Team ORDPI-FILAC TECHNICAL SUPPORT Ernesto Marconi - FILAC Technical Program Management Gabriel Mariaca - Coordinator of Institutional Communication FILAC Dennis Mairena - Management of Technical Programs FILAC Wendy Medina - FILAC Communication and Press Office GRAPHIC DESIGN Institutional Communication - FILAC IMAGES FILAC Imaging Archive UN Photos Shutterstock Unsplash LICENSE FOR DISTRIBUTION CC-BY-NC 4.0 This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. Credit must be given to the creator Only noncommercial uses of the work are permitted DOGOTAL ACCESS ON: https://indigenascovid19.red/monitoreo/ FILAC 20 de Octubre 2287 esq. Rosendo Gutiérrez [email protected] La Paz, Bolivia SUPPORT Ford Foundation, AECID and Pawanka Fund Introduction This document is a preliminary report on the human and material impacts of hurricanes Eta and Iota on the Central American isthmus. It has been an extraordinary fact that two hurricanes of this size and strength have hit the region so close in time, affecting all Central American countries.
    [Show full text]
  • Toward a Sustainable Recovery After Hurricane Mitch
    Lessons from the Field Reasons for Resiliency: Toward a Sustainable Recovery after Hurricane Mitch This report presents the methods and findings of an action research effort to measure and compare the impact of Hurricane Mitch on conventionally and agroecologically farmed lands in Honduras, Nicaragua and Guatemala. The project included farmers, promoters and local organizations as full partners in the research process, from beginning to end, and was de- signed to stimulate reflection and action based upon the lessons learned. Published by World Neighbors 2000 Printed in Honduras Also available in Spanish World Neighbors - Central America Office Apartado 3385 Tegulcigalpa HONDURAS tel: 504-230-2006 fax: 504-230-2004 email: [email protected] World Neighbors - International Headquarters 4127 NW 122nd Street Oklahoma City, OK 73120-8869 USA tel: (405) 752-9700 fax: (405) 752-9393 email: [email protected] www.wn.org Major support for this project was provided by the Ford Foundation, The Summit Foundation, The Rockefeller Foundation and the Inter-American Foundation Table of Contents ACKNOWLEDGMENTS ....................................................................................................................... 3 EXECUTIVE SUMMARY ...................................................................................................................... 5 Hurricane Mitch Action Research Key Results INTRODUCTION ...............................................................................................................................
    [Show full text]
  • Aircurrents Novel Tools for Modeling Tropical Cyclone Risk in the Caribbean and Central America
    AIRCURRENTS NOVEL TOOLS FOR MODELING TROPICAL CYCLONE RISK IN THE CARIBBEAN AND CENTRAL AMERICA By Tim Doggett, Ph.D., and Mr. Scott Stransky 08.2011 Edited by Meagan Phelan INTRODUCTION This article provides an overview of tropical cyclone risk in If a tropical cyclone has only weak winds and does not come the Caribbean and Central America, with a focus on tropical ashore, can it still cause notable insured losses to exposure cyclone-induced flooding, which can be a significant driver nearby? In the Caribbean and Central America, the answer of loss. is yes—primarily as a result of the precipitation hazard associated with tropical cyclones, even those with relatively TROPICAL CYCLONE CLIMATOLOGY IN THE CARIBBEAN AND CENTRAL AMERICA weak winds. Within the North Atlantic basin, roughly eleven tropical cyclones are spawned each year on average, six of which Indeed, the often-held view that flood-dominated tropical become hurricanes. Of all the landmasses in the basin, cyclones always result in lower insured losses than their the Caribbean islands experience the greatest number of windier counterparts requires a hard look; “wet” storms can storms—and often the most intense. That said, some island significantly impact a company’s portfolio. 1979’s Hurricane countries and territories within the Caribbean are more at David in the Caribbean, from which more than 50% of risk than others; in general, risk increases south to north, losses were flood-related—and which AIR estimates would such that the Bahamas is perhaps the most at-risk country in cause USD 6.0 billion in insured losses if it were to recur the Caribbean today.
    [Show full text]