Regeneration and Growth of Several Canopy Tree Species in the Maya Forest of Quintana Roo, Mexico: the Role of Competition and Microhabitat Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Regeneration and Growth of Several Canopy Tree Species in the Maya Forest of Quintana Roo, Mexico: the Role of Competition and Microhabitat Conditions AN ABSTRACT OF THE DISSERTATION OF NaDene S. Sorensen for the degree of Doctor of Philosophy in Forest Science presented on July 26, 2006. Title: Regeneration and Growth of Several Canopy Tree Species in the Maya Forest of Quintana Roo, Mexico: The Role of Competition and Microhabitat Conditions. Abstract approved: David E. Hibbs We evaluated the regeneration behavior and early growth rates of 10 non-pioneer canopy tree species in medium-height, semi-evergreen dry tropical forest in Quintana Roo, Mexico. These species provide timber and non-timber forest products for local communities and include evergreen and deciduous species with varied dispersal mechanisms. The species were Coccoloba spicata, Cordia dodecandra, Dendropanax arboreus, Guettarda combsii, Lysiloma latisiliquum, Manilkara zapota, Metopium brownei, Piscidia piscipula, Platymiscium yucatanum, and Sabal yapa. An evaluation of seedling abundances in understory and open conditions, understory seedling spatial aggregation, and adult size frequency distributions revealed divergent regeneration behaviors. Among the 10 species, we detected three processes limiting regeneration: seed availability, resource conditions, and negative density dependence. Based on observed regeneration behaviors, species were assigned to five regeneration behavior groups, reflecting, in part, inferred shade tolerance. Highly shade intolerant species would have been favored by past slash and burn agriculture. We evaluated growth responses of individuals regenerating in 0.5 ha artificial clearings to a number of biotic and abiotic factors using neighborhood measures and model selection based on Akaike’s Information Criterion (AIC). Neighbors reduced both height and diameter growth rates for most, but not all, target species within 4-5 years of opening creation. Species responses to soil factors were highly individualistic. For some species, competitive response depended on edaphic factors. Individualistic responses of species to these biotic and abiotic factors suggest that diversity may be maintained, in part, by very early niche partitioning. Neither inherent growth rate nor competitive response alone corresponded with species groupings derived from shade tolerance characteristics. However, shade tolerance was associated with an early size hierarchy among the species and with their final crown class positions. The silvicultural implications of our research results, other studies in Quintana Roo, and the historic disturbance regime are discussed. Slash and burn agriculture is identified as a central and more important component of the historic disturbance regime than hurricanes. Based on the wide range of observed regeneration behaviors, recommended silviculture techniques to maintain current species composition include variably-sized patch cuts, site preparation, control of competing vegetation, and seed tree and structural retention. Regeneracion y Crecimiento de Varias Especies Arbóreas del Estrato Superior en la Selva Maya de Quintana Roo, México: El Rol de la Competencia y las Condiciones del Microhabitat Hemos evaluado el comportamiento de la regeneración y el crecimiento inicial de 10 especies arbóreas no pioneras del estrato superior en la selva mediana subperennifolia en Quintana Roo, México. Estas especies proveen madera y productos no maderables a las comunidades locales e incluyen especies siempre verdes y deciduas con diversos mecanismos de dispersión. Las especies fueron: Coccoloba spicata, Cordia dodecandra, Dendropanax arboreus, Guettarda combsii, Lysiloma latisiliquum, Manilkara zapota, Metopium brownei, Piscidia piscipula, Platymiscium yucatanum, y Sabal yapa. La evaluación de la abundancia de la regeneración en el sotobosque y en claros, la agregación espacial de la regeneración en el sotobosque, y la distribución de adultos por frecuencia de tamaños, reveló comportamientos divergentes de la regeneración. Entre las 10 especies hemos detectado tres procesos que limitan la regeneración: la disponibilidad de las semillas, la condición de los recursos y una dependencia negativa a la densidad. Basado en el comportamiento de la regeneración observado, las especies fueron asignadas en cinco grupos, los cuales reflejan, en parte, su tolerancia a la sombra. Hemos evaluado las respuestas en crecimiento de individuos regenerando en claros de 0.5 ha a un determinado número de factores bióticos y abióticos utilizando las mediciones vecinales y la selección de modelos basados en el Criterio de Información de Akaike (AIC por sus siglas en inglés). La vegetación vecina redujo las tasas de crecimiento en altura y diámetro para la mayoría de las especies de interés para los 4 a 5 años después de la creación de los claros. Las respuestas de las especias a los factores edáficos fueron altamente individualistas. Para algunas especies, las respuestas a la competencia variaron con los factores edáficos. Las respuestas individualistas de las especies a los factores bióticos y abióticos sugieren que la diversidad arbórea podría ser mantenida, en parte, por la temprana división de los nichos. Ni la tasa de crecimiento inherente ni las respuestas a la competencia por sí solas concordaron con el agrupamiento de las especies derivado de sus características de tolerancia a la sombra. Sin embargo, la tolerancia a la sombra estuvo asociada a una jerarquización temprana de las especies por tamaño y la posición final de la copa en el dosel. Discutimos las implicancias silvícolas de los resultados de este y otros estudios y el régimen histórico de los disturbios en Quintana Roo. Identificamos la agricultura de roza, tumba y quema como componente central del régimen histórico de disturbios, más importante que los huracanes. Basado en el amplio rango de comportamiento de la regneración observado y suponiendo el objetivo de mantener la diversidad de especies, recomendamos técnicas silvícolas que incluyen la apertura de claros de tamaño variable, la preparación de los sitios, el control de la vegetación competitiva, la retención de árboles semilleros y estructurales. ©Copyright by NaDene S. Sorensen July 26, 2006 All Rights Reserved Regeneration and Growth of Several Canopy Tree Species in the Maya Forest of Quintana Roo, Mexico: The Role of Competition and Microhabitat Conditions by NaDene S. Sorensen A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented July 26, 2006 Commencement June 2007 Doctor of Philosophy dissertation of NaDene S. Sorensen presented on July 26, 2006. APPROVED: Major Professor, representing Forest Science Head of the Department of Forest Science Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. NaDene S. Sorensen, Author ACKNOWLEDGEMENTS First and foremost I offer my sincere gratitude to Dave Hibbs. More than being just a major professor, Dave has become a friend and someone to whom I can happily say “mi casa es su casa”. I appreciate his commitment to me as a graduate student, his visits to the field sites in Mexico, and his patience and advice throughout the writing process. I also want to thank my committee members: Barbara Bond, who has been on my committee since the beginning and whose support helped me through many difficult moments along the path to this degree; Manuela Huso, who patiently helped with the statistical analyses, challenged my thinking on numerous fronts, and still found a way to make me feel good about my research; Klaus Puettman who kept me looking for ways to broaden my knowledge of forest ecology, and Ken Johnson, my graduate representative. In addition to my committee I want to thank fellow graduate students and friends who provided much needed moral support over several years, both in and out of Corvallis. Special thanks to Luisa Camara, Sarah Karr, Julia Jones, Melissa Morris, Tara Nierenberg, Jeff Shatford, and Suzanne Simard. Thanks also to Jessica Halofsky, Allison Cross and Carlos Sierra for interesting scientific, and non-scientific, conversation that made many months in the computer lab actually enjoyable. Julia Jones provided many insightful comments on Chapter 2 and Jessica Halofsky helped clarify the text. Thanks to Cristina Eisenberg for her friendship and editing of Chapter 3. In Mexico my research was facilitated by Patricia Negreros-Castillo and Laura Snook who set up the research sites and provided me with an entry into the communities where this research was conducted. I especially thank Patricia for her friendship, her enthusiasm and her collegiality. Funding and collaboration: Initial funding for setting up the treatment plots used in my studies was provided to Drs. Laura Snook and Patricia Negreros-Castillo by the Worldwide Fund for Nature (WWF). Additional funding provided to NaDene Sorensen included: Lucille Berger, Walt A. Gruetter and Forest Science Fellowships (Oregon State University), Sports Lottery Scholarship (Oregon State System of Higher Education), International Trade and Development Graduate Fellowship (Oregon State System of Higher Education). Invaluable collaboration was provided by the Instituto Tecnológico No. 16 (ITA No. 16), the Organización de Ejidos Productores Forestales de la Zona Maya (OEPFZM), and the ejidos of Limones/Cafetal, Naranjal Poniente, X-Pichil and the private ranch of the late Don Antonio Uh and his family. Numerous hours were spent in the herbarium
Recommended publications
  • Journal of the International Palm Society Vol. 58(4) Dec. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(4) Dec. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Last Frontiers-Belize
    Last Frontiers-Belize (I) Gales Point – Belize District - Belize Quick identification guide for some conspicuous or common native vegetation Photos © Jan Meerman, Belize Tropical Forest Studies, 2010 Typha dominguensis Bulbostylis sp. Rhynchospora barbata Fibristylis sp. Acrostychum aureum Typhaceae Cyperaceae Cyperaceae Cyperaceae Pteridophyta Reed: Wetland Sedge: Savanna Sedge: Savanna Sedge: Savanna Fern: Wetland Zamia prasina Zamia meermanii Acoelorraphe wrightii Attalea cohune Attalea cohune Zamiaceae Zamiaceae Arecaeae Arecaceae Arecaceae Cycad: Savanna/Forest Cycad: Steep Cliffs Palm: Wet areas Palm: Hills Palm: Hills Schippia concolor Bactris mexicana Bactris mexicana Brassavola nodosa Oeceoclades maculata Arecaceae Arecaceae Palm: Arecaceae Orchidaceae Orchidaceae Palm: Savanna scrub Wet forest Palm: Wet forest Orchid: Savanna Orchid: Hill forest Catasetum Vriesea heliconoides. Catopsis berteroana Najas wrightii Xyris ambigua integerrimum Bromeliaceae Bromeliaceae Najadaceae Xyridaceae Orchidaeceae Bromeliad: on Trees in Bromeliad: on trees Aquatic plant: Herb: Savanna Orchid: On Trees wet forest wetlands Last Frontiers-Belize (II) Gales Point – Belize District - Belize Quick identification guide for some conspicuous or common native vegetation Photos © Jan Meerman, Belize Tropical Forest Studies, 2010 Anisantherina hispidula Buchnera pusilla Dalechampia schippii Hypericum terra-firmae Polygala sp. Polygalaceae Scrophulariaceae. Herb: Scrophulariaceae Euphorbiaceae Vine: Clusiaceae Herb: Herb: Savanna Savanna Herb: Savanna Savanna
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Dermatitis Por Contacto a Metopium Brownei (Chechem). Observaciones Clínicas De 20 Casos En Quintana Roo, México Contact Dermatitis Caused by Metopium Brownei
    Artículos Originales DermatologíaCMQ2009;7(4):226-233 Dermatitis por contacto a Metopium brownei (Chechem). Observaciones clínicas de 20 casos en Quintana Roo, México Contact dermatitis caused by Metopium brownei. Report of 20 cases in Quintana Roo, Mexico Marco Romano Quintanilla*, Roberto Arenas** * Dermatólogo. Clínica Carranza. Venustiano Carranza 366. Chetumal Q. Roo , México [email protected] ** Jefe de la Sección de Micología. Departamento de Dermatología Hospital General Fecha de aceptación: Agosto 2009 Resumen NTECEDENTES: Las fitodermatitis son frecuentes en la práctica dermatológica. En la península de Yucatán observamos entre otras, la ocasionada por METOPIUM BROWNEI cuyo componente tóxico es el urushiol. No hay Acomunicaciones previas de esta dermatosis en la literatura revisada. OBJETIVO: Identificar las principales características clínicas de la dermatitis reaccional por METOPIUM BROWNEI. METODOLOGÍA: Estudio retrospectivo de 20 casos. Se registraron las siguientes variables: edad, sexo, ocupación, sitio de exposición, tiempo de aparición de las primeras manifestaciones, topografía, morfología y diagnóstico clínico. No se realizaron pruebas epicutáneas. RESULTADOS: 65% fueron de sexo masculino, con un promedio de edad de 25.1 años. No se documentó una ocupación predominante, la selva fue el sitio de encuentro con el árbol (90%) y el tiempo de inicio de las manifestaciones fue en promedio, de 2.5 días luego de la exposición. Las reacciones tipo eccema fueron las más comunes. En ausencia de pruebas de parche, se realizó el diagnóstico clínico probable de dermatitis por contacto alérgica en 9 de los 20 pacientes (45%), en 30% tanto irritativa como alérgica, en 1% fotosensibilidad y en 1% dermatitis por contacto aerotransportada. CONCLUSIONES: Las reacciones a METOPIUM BROWNEI corresponden principalmente a un probable proceso alérgico local, sistémico, con fotosensibilidad o aerotransportado.
    [Show full text]
  • Tourism and Forest Livelihoods: Linking Architecture with Tropical Forest Management
    TOURISM AND FOREST LIVELIHOODS: LINKING ARCHITECTURE WITH TROPICAL FOREST MANAGEMENT By JOSÉ ANTONIO SIERRA HUELSZ A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 © 2016 José Antonio Sierra Huelsz To Mane and Mateo, my sources of inspiration and love To my parents for their ever loving support ACKNOWLEDGMENTS I am deeply grateful to my exceptional advisor Dr. Karen A. Kainer for her generous mentoring, for being a great teacher, colleague and friend. My committee contributed substantially to the conception of this dissertation, pushing me to think in new directions. I am very thankful to Erick Keys, Francis “Jack” Putz, Patricia Negreros- Castillo and Salvador Gezan for their stimulating perspectives and feedback. In particular, I am in debt with Dr. Negreros-Castillo for inspiring me to work in Quintana Roo and facilitating my landing in the Zona Maya. I would like to thank Wendell P. Cropper for his kind support at the early stages of this journey. This dissertation was enriched by the time, knowledge, and creativity of Sebastián Palmas Pérez, Angélica Navarro Martinez, Pedro Antonio Macario Mendoza, and Mirna Valdez Hernández - all who kindly collaborated in this process. Santos Colli Balam has been an irreplaceable friend, bush colleague, and cultural ambassador. Without Angel David Cab Argüelles, Edgar Can Balam, and the ever supportive X-Pichil crew, my fieldwork plans would be just an unrealized dream. Tarín Toledo Aceves, Eddie A. Ellis and Horacio Paz Hernández kindly provided essential support for accessing funds that helped make this project possible; many thanks to you all.
    [Show full text]
  • Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
    Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e.
    [Show full text]
  • Scaevola Taccada (Gaertn.) Roxb
    BioInvasions Records (2021) Volume 10, Issue 2: 425–435 CORRECTED PROOF Rapid Communication First record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) in southeastern Mexico Gonzalo Castillo-Campos1,*, José G. García-Franco2 and M. Luisa Martínez2 1Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, México 2Red de Ecología Funcional, Instituto de Ecología, A.C. Xalapa, Veracruz, 91073, México Author e-mails: [email protected] (GCC), [email protected] (JGGF), [email protected] (MLM) *Corresponding author Citation: Castillo-Campos G, García- Franco JG, Martínez ML (2021) First Abstract record of naturalization of Scaevola taccada (Gaertn.) Roxb. (Goodeniaceae) Scaevola taccada (Gaertn.) Roxb. is native of Asia and eastern Africa but has been in southeastern Mexico. BioInvasions introduced into the Americas as an ornamental urban plant. This paper reports, for Records 10(2): 425–435, https://doi.org/10. the first time, the presence of Scaevola taccada in natural environments from 3391/bir.2021.10.2.21 southeastern Mexico. Several populations of S. taccada were identified during a Received: 23 July 2020 botanical survey of the coastal dunes of the Cozumel Island Biosphere Reserve Accepted: 22 October 2020 (State of Quintana Roo, Mexico) aimed at recording the most common plant Published: 22 January 2021 species. Scaevola taccada is considered as an invasive species of coastal areas in this region. Evidence of its invasiveness is suggested by the fact that populations Handling editor: Oliver Pescott consisting of individuals of different size classes are found distributed throughout Thematic editor: Stelios Katsanevakis the island. Furthermore, they appear to belong to different generations since we Copyright: © Castillo-Campos et al.
    [Show full text]
  • Research Article: Life History and Host Range of Prochoerodes Onustaria, an Unsuitable Classical Biological Control Agent of Brazilian Peppertree
    Biocontrol Science and Technology ISSN: 0958-3157 (Print) 1360-0478 (Online) Journal homepage: http://www.tandfonline.com/loi/cbst20 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jones & G. S. Wheeler To cite this article: E. Jones & G. S. Wheeler (2017) Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree, Biocontrol Science and Technology, 27:4, 565-580, DOI: 10.1080/09583157.2017.1325837 To link to this article: http://dx.doi.org/10.1080/09583157.2017.1325837 Published online: 16 May 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=cbst20 Download by: [University of Florida] Date: 13 July 2017, At: 08:24 BIOCONTROL SCIENCE AND TECHNOLOGY, 2017 VOL. 27, NO. 4, 565–580 https://doi.org/10.1080/09583157.2017.1325837 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jonesa,b and G. S. Wheelera aUSDA/ARS Invasive Plant Research Laboratory, Ft Lauderdale, FL, USA; bSCA/AmeriCorps, Ft Lauderdale, FL, USA ABSTRACT ARTICLE HISTORY The life history and host range of the South American defoliator Received 13 January 2017 Prochoerodes onustaria (Lepidoptera: Geometridae) were examined Accepted 26 April 2017 to determine its suitability as a classical biological control agent of KEYWORDS the invasive weed Brazilian Peppertree, Schinus terebinthifolia,in Schinus terebinthifolia; the U.S.A.
    [Show full text]
  • Phylogeny and Evolution of the Genus Ctenocolum Kingsolver & Whitehead
    Insect Systematics & Evolution 50 (2019) 1-35 brill.com/ise Phylogeny and evolution of the genus Ctenocolum Kingsolver & Whitehead (Coleoptera, Chrysomelidae, Bruchinae), with the description of three new species Daiara Manfioa, Isaac Reis Jorgeb, Gael J. Kergoatc and Cibele Stramare Ribeiro-Costab aUniversidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança, Km 04, Comunidade de São Cristóvão, 85660-000, Dois Vizinhos (PR), Brazil. E-mail: [email protected] bLaboratório de Sistemática e Bioecologia de Coleoptera, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980, Curitiba, Paraná, Brazil. E-mail: [email protected], [email protected] cINRA - UMR CBGP (INRA, IRD, Cirad, Montpellier SupAgro), 755 Av. du campus Agropolis, 34988 Montferrier-sur-Lez, France. E-mail: [email protected] Version of Record, published online 4 December 2017; published in print 2 January 2019 Abstract The seed beetle genus Ctenocolum Kingsolver & Whitehead is peculiar because its preferred host Lon- chocharpus Kunth (Fabaceae) is not preyed upon by other bruchine species. This study investigates the phy- logenetic relationships and evolution of this genus and of its species groups, while providing the description of three new species and of the male of C. biolleyi Kingsolver & Whitehead. To infer phylogenetic relation- ships, a character matrix of 40 morphological characters was assembled and analysed using both parsimony and Bayesian inference. Ancestral state estimations of host plant use and biogeography analyses were also performed. A total of 22 species were examined: 16 Ctenocolum species (including the three new ones) and six outgroup bruchine species (from genera Caryedes Hummel, Meibomeus Bridwell, Pygiopachymerus Pic and Pachymerus Thunberg).
    [Show full text]
  • Tree Management Plan DRAFT Otter Mound Preserve, Marco Island, FL
    Tree Management Plan DRAFT Otter Mound Preserve, Marco Island, FL Prepared by: Alexandra Sulecki, Certified Arborist FL0561A February 2013 INTRODUCTION The Otter Mound Preserve is a 2.45-acre urban preserve located at 1831 Addison Court within the boundaries of the City of Marco Island in southwestern Collier County, Florida. The preserve lies within the “Indian Hills” section, on the south side of the island. Three parcels totaling 1.77 acres were acquired by Collier County under the Conservation Collier Program in 2004. An additional adjoining .68 acre parcel was acquired in 2007. The property was purchased primarily to protect the existing native Tropical Hardwood Hammock vegetation community. Tropical Hardwood Hammock is becoming rare in Collier County because its aesthetic qualities and location at higher elevations along the coast make it attractive for residential development. Tropical Hardwood Hammock is identified as a priority vegetation community for preservation under the Conservation Collier Ordinance, (Ord. 2002- 63, as amended, Section 10 1.A). The Florida Natural Areas Inventory (FNAI) associates Tropical Hardwood Hammock with a natural community identified as “Shell Mound,” which is imperiled statewide (ranking of S2) and globally (ranking of G2), due to its rarity (Guide to the Natural Communities of Florida, 2010). The preserve is managed for conservation, restoration and passive public use. The Preserve’s forest has conservation features that draw visitors. Its canopy serves as an important stopover site for a variety of migratory bird species and is home to the Florida tree snail (Liguus fasciatus), a Florida Fish and Wildlife Conservation Commission (FWC) Species of Special Concern.
    [Show full text]
  • Low-Maintenance Landscape Plants for South Florida1
    ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †.
    [Show full text]