Movement and Structure of Atmospheric Population of

Binbin Lin

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State

University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Plant Pathology, Physiology, and Weed Science

David G. Schmale III, Chair

Shane D. Ross, Co-Chair

Antonius B. Baudoin

Boris A.Vinatzer

May 8, 2013

Blacksburg, VA

Keywords: Fusarium, plant pathogen, aerobiology, aerobiological sampling, Burkard volumetric

sampler, BVS, unmanned aerial vehicle, UAV, inoculum source, long-distance transport Movement and Structure of Atmospheric Population of Fusarium

Binbin Lin

ABSTRACT

Fusarium is one of the most important genera of fungi on earth. Many species of Fusarium are well-suited for atmospheric dispersal, yet little is known about their aerobiology. Previous research has shown that large-scale features known as atmospheric transport barriers (Lagrangian coherent structures) guide the transport and mixing of atmospheric populations of Fusarium. The overall goal of this work is to expand our knowledge on the movement and structure of atmospheric populations of Fusarium. The first objective was to monitor changes in colony forming units (CFUs) in atmospheric populations of Fusarium over small time intervals (10 min to several hours). We hypothesized that consecutive collections of Fusarium with unmanned aerial vehicles (UAVs) demonstrate small variations in colony counts. To test this hypothesis, sampling devices on UAVs were separated into two groups, four inner sampling devices opened during the first 10 minutes and four outer sampling devices opened during the second 10 minutes. Results indicated that (1) consecutive collections of Fusarium at 100 m demonstrated small variations in counts and (2) the similarity between collections decreased as the time between sampling intervals increased. The second objective was to determine the structure of atmospheric populations of Fusarium species and relate this to potential source regions. We hypothesized that diverse atmospheric populations of Fusarium are associated with multiple source regions. To test this hypothesis, Fusarium samples were collected with UAVs and identified to the level of species by sequencing a portion of the translation elongation factor 1- alpha gene (TEF-1). Potential source regions were identified using the atmospheric transport model HYSPLIT. Results indicated that (1) diverse atmospheric populations of Fusarium appeared to be associated with multiple source regions, and (2) the number of Fusarium species collected with UAVs increased with back-trajectory distance of the sampled air. The third objective was to examine the associations between concentrations of populations of Fusarium at ground level (1 m) and in the lower atmosphere (100 m). We hypothesized that concentrations of

Fusarium in the atmosphere vary between 1m and 100m. To test this hypothesis, Fusarium was collected with a Burkard volumetric sampler (BVS) and UAVs. Colony counts were converted to spore concentrations (spores per cubic meter of air). Sampling efficiency was used to correct spore concentrations. Results indicated that (1) the distribution of spore concentrations was similar for both samplers over different times of the day, (2) spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter, and (3) spore concentrations were generally higher with BVS samplers than those with UAVs for both hourly and seasonal data.

The fourth objective was to assess the ability of strains of Fusarium collected in the lower atmosphere to cause plant disease. We hypothesized that certain isolates of Fusarium collected with UAVs cause plant diseases. To test this hypothesis, we randomly selected isolates of three different species (F. circinatum, F. avenaceum, and F. sporotrichioides) of Fusarium collected with UAVs to inoculate three different hosts (, corn, and pine). Known Fusarium strains were obtained from J. Leslie at Kansas State University as controls. Results indicated showed that the three different isolates tested were able to cause plant diseases in three different hosts

(wheat, corn, and pine), confirming that these were potential agents of disease. This work sets the stage for future work examining potential source regions, transport distances, and seasonal patterns of Fusarium. An increased understanding of the dynamics and population structure of plant pathogenic Fusarium in the lower atmosphere is essential for predicting the spread of plant disease and optimizing disease management strategies in the future.

iii Acknowledgements

It is a great pleasure to thank everyone who has helped me write my dissertation successfully. I would first like to thank my advisor Dr. David Schmale for his guidance, support, and encouragement throughout this research and also with my professional development. I would also like to thank my co-advisor Dr. Shane Ross for numerous scientific discussions, helpful advice, and guidance. My thanks also go to my committee members, Dr. Anton Baudoin and Dr.

Boris Vinatzer, for their detailed and constructive comments in the completion of this degree.

Also, I would like to thank Dr. John Jelesko for helping to analyze the population structure of

Fusarium.

I am also thankful to colleagues and friends whose advice, support, and friendship have contributed to the completion of my research. A special thanks to these people include (in no particular order), John Cianchetti, Melissa Keller, Piyum Khatibi, Amir Bozorgmagham, Niki

McMaster, Diane Reaver, AJ Prussin, Dashzeveg Gantulga, Hope Gruszewski, Zolton Bair, Zach

Upchurch, Brycen Hill, Gunjune Kim, and Megan LeBlanc. I am also thankful to the PPWS staff members including Donna Ford, Patsy Niece, Judy Fielder, and Cris Thompson for all their help throughout this process. A special thanks to Yiming Peng, one of the LISA collaborators in the

Department of Statistics, for helping data analysis.

Finally, I am forever grateful to my family and friends for their encouragement and support throughout all my studies, which allowed me to continue during the most difficult times in my research and academic obligations.

iv Table of Contents

ABSTRACT ...... ii ACKNOWLEDGEMENTS ...... iv LIST OF TABLES ...... vii LIST OF FIGURES ...... viii ATTRIBUTIONS ...... x

Chapter 1. Introduction...... 1 Research Objectives ...... 6 Literature Cited ...... 7

Chapter 2. Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level...... 13 Abstract ...... 14 Introduction ...... 15 Materials and Methods ...... 16 Results…………………...... 18 Discussion ...... 21 Acknowledgements ...... 24 Literature Cited ...... 25

Chapter 3. Diverse assemblages of fusaria collected with unmanned aircraft 100 m above ground level suggest contribution of multiple sources across broad geographical regions...... 36 Abstract ...... 37 Introduction ...... 39 Materials and Methods ...... 41 Results ...... 47 Discussion ...... 51 Acknowledgements ...... 56 Literature Cited ...... 57

Chapter 4. Seasonal associations between atmospheric assemblages of Fusarium collected 1 meter and 100 meters above crop fields…………………………………... 79 Abstract ...... 80 Introduction ...... 81 Materials and Methods ...... 82 Results ...... 87 Discussion ...... 89 Acknowledgements ...... 93 Literature Cited ...... 94

Chapter 5. Conclusions and Future Direction ...... 106 Literature Cited ...... 110

v

Appendix A. Journal Permission for Chapter 2 ...... 113 Appendix B. BVS and UAV sampling information ...... 115

vi List of Tables

Chapter 2

Table 1. Colony counts of Fusarium from simultaneous sampling (inner arms and outer arms were opened at the same time) with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm...... 27

Table 2. Colony counts of Fusarium from consecutive (a 10 min sample on the inner arms, immediately followed by a separate 10 min sample on the outer arms) aerobiological sampling intervals with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm in 2010 and 2011……….. 28

Chapter 3

Table S1. Comparisons of GenBank, Fusarium-ID, and phylogenetic analyses for all of the isolates collected 100 m above ground level during September and October, 2010……………………………….……………………………... 62

Table 1. Colony forming units (CFUs) of Fusarium collected with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm during September and October, 2010…………………………………………………………. 73

Table 2. Relative abundance of different species of Fusarium collected during 11 UAV sampling flights 100 m above ground level in September and October, 2010……………………………………………………………… 74

Chapter 4

Table 1. Estimates of collection efficiencies with unmanned aerial vehicles (UAVs) and a Burkard volumetric sampler (BVS) for different spore types (macroconidia, mesoconidia, microconidia, and ascospores) from 14 species of Fusarium………………………………………………………... 99

Table 2. Parameters involved in estimating the aerial concentration and collection efficiency of Fusarium spores…………………………………………...... 101

Table 3. Colony forming units (CFUs) of Fusarium collected with a Burkard volumetric sampler (BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level………………………….. 102

vii List of Figures

Chapter 2

Figure 1. An autonomous unmanned aerial vehicle (UAV) equipped with an array of eight microbe-sampling devices with four inner sampling arms and four outer sampling arms……………………………………………………….. 30

Figure 2. Fractional variation in sampled colony counts of Fusarium (c is the total colony counts from inner and outer plates, and c is the variation in colony counts) based on simultaneous sampling using inner (4 plates) and outer (4 plates) arms of a UAV during sampling periods of 15 minutes….. 31

Figure 3. Scatter plot and simple linear regression of consecutive sampling of Fusarium with inner (4 plates) and outer (4 plates) arms of a UAV………. 32

Figure 4. Frequency plot of colony counts of Fusarium from consecutive sampling periods of 10 mins…………………………………………………………. 33

Figure 5. The colony count autocorrelation coefficient versus the time-lag between sampling intervals………………………………………………... 34

Figure 6. HYSPLIT backward trajectories for flights 207 and 208 on based on 25 Oct 2011…………………………………………………………………… 35

Chapter 3

Figure S1. Phylogram of Bayesian phylogenetic analysis…………………………….. 70

Figure S2. Cladogram of Bayesian phylogenetic analysis…………………………….. 71

Figure S3. Maximum Likelihood phylogenetic analysis cladogram………………….. 72

Figure 1. Cladogram of Bayesian phylogenetic analysis of Fusarium strains………. 75

Figure 2. Comparison of different species of Fusarium collected during 11 UAV sampling flights 100 m above ground level in September and October, 2010………………………………………………………………………... 76

Figure 3 Identification of potential source areas through back trajectory analyses conducted 6 to 24 hours prior to our 11 UAV sampling flights for Fusarium…………………………………………………………………… 77

Figure 4. Trajectory distance (24 h), x, and the number of species of Fusarium, S, were positively correlated (R2 = 0.477, P = 0.027) with the best fit regression line given by a power law, S = 0.0512x0.668, which appears as a

viii straight line on log-log axes……………………………………………….. 78

Chapter 4

Figure 1. Illustration of sampling plan for Fusarium using a Burkard volumetric sampler (BVS) 1 m above ground level (right) and an unmanned aerial vehicle (UAV) 100 m above ground level (left)…………………………... 103

Figure 2. Seasonal collections of Fusarium with a Burkard volumetric sampler (BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level…………………………………………………. 104

Figure 3. Mean spore concentrations (number of viable spores/m3 of air sampled) of Fusarium collected with a Burkard volumetric sampler (BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level across four different sampling intervals (0900-1100, 1100-1300, 1300-1500, and 1500-1700)……………………………………………….. 105

ix Attributions

Several colleagues have assisted with the completion of the research in chapters of this dissertation. The following is a brief description of their contributions.

David Schmale, Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech,

Blacksburg, VA

Dr. Schmale served as the major adviser and provided funding and guidance during the implementation and completion of the research project and dissertation. He is listed as co-author of publications represented in Chapters 2, 3, and 4.

Shane Ross, Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg,

VA

Dr. Ross served as the co-adviser and provided funding and guidance during the implementation and completion of the research project and dissertation. He is listed as co-author of publications represented in Chapters 2, 3, and 4.

John G. Jelesko, Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech,

Blacksburg, VA

Dr. Jelesko was co-author of the publication represented by Chapters 3. He provide phylogenetic methods to analyze the population structure of Fusarium.

Amir Bozorgmagham, Department of Engineering Science and Mechanics, Virginia Tech,

Blacksburg, VA

x Amir Bozorgmagham is a graduate student in Dr. Ross lab. He was listed as co-author of publications represented in Chapters 2 and 3. He provided HYSPLIT models and turbulence information for calculating potential source regions.

Aaron J. Prussin II, Department of Plant Pathology, Physiology, and Weed Science, Virginia

Tech, Blacksburg, VA

Aaron J. Prussin is a graduate student in Dr. Schmale lab. He was listed as co-author of the publication represented in Chapter 4. He provided sampling efficiency calculations to correct spore concentrations.

xi CHAPTER 1

Introduction

Members of the genus Fusarium are some of the most important fungi on earth that not only cause plant diseases, but may also produce toxins that can threaten the health of both humans and domestic animals (Berek et al., 2001; Leslie, 2006; McMullen et al., 1997). The genus Fusarium is cosmopolitan and contains at least 80 biological species, with at least 100 or more proposed phylogenetic species (Leslie and Summerell, 2006; O’Donnell, 1996). These species may cause very different symptoms on different plants and under various environmental conditions, such as rot (Wang and Jeffers, 2000), cankers (Schmale and Gordon, 2003), blights (Schmale and

Bergstrom, 2003), and wilts (Chaimovitsh et al., 2006). Certain species are capable of producing dangerous mycotoxins (Bush et al., 2004; Ichinoe et al., 1983; McMullen et al., 1997). Others may be saprophytes that live on dead plant tissues (Dill-Macky and Jones, 2000).

Aerobiology is the study of factors and processes that influence the movement of biota in the atmosphere and involves liberation from inoculum sources, horizontal transport, and deposition (Isard and Gage, 2001). Biotas have adapted to move long distances in the atmosphere by taking advantage of aerial transport. Atmospheric movement may result in invasion of new sites, utilization of new resources, and gene transfer among populations (Rabb, 1985). It can also result in the introduction of a disease to a region or continent or the frequent re-introduction of a pathogen to a region (Aylor, 1986).

The aerobiology of the genus Fusarium is poorly understood. First, identification of

Fusarium based on Fusarium selective medium (FSM) and microscopic examination from airborne samples is difficult due to the presence of other fungi with similar conidial morphologies. Second, knowledge of the microclimate factors influencing spore release and

1 dispersal is limited. Third, knowledge of the long distance transport of Fusarium is limited.

Fourth, little is known about how Fusarium populations are structured in the atmosphere and variations due to weather patterns. Fifth, technologies for tracking the movement of Fusarium in the atmosphere are limited. Finally, knowledge of potential inoculum sources and/or potential source regions of Fusarium are also limited.

There are a number of different ways to identify unknown isolates of Fusarium to the level of species. First, isolates of Fusarium may be identified using morphological species concepts, in which species delimitation is based in part on the morphology of asexual and sexual spores produced on standard culture medium (Leslie et al., 2001). Second, unknown isolates of

Fusarium may be identified by biological species concepts, in which species delimitation is based on reproductive assays that can define mating populations, such as within the F. fujikuroi population (Kerényi et al., 1999). Third, unknown isolates of Fusarium may be identified to species using phylogenetic species concepts, based largely on DNA sequence identity and similarity (Geiser et al., 2004; Nirenberg and O'Donnell, 1998). This last approach has gained considerable traction in recent years, as most modern labs generate and analyze DNA sequence data on a regular basis. These techniques leverage DNA sequence analyses of a portion of the translation elongation factor 1-alpha gene (TEF-1), which has high phylogenetic utility because sequence variation at this locus can distinguish between in Fusarium species and universal primers that work across the Fusarium genus (Geiser et al., 2004).

Many species of Fusarium are well-suited for atmospheric dispersal (Fernando et al.,

2000; Katan et al., 1997; Maldonado-Ramirez et al., 2005; Schmale et al., 2005). The dispersal of Fusarium in the atmosphere is complex and the transport processes (release, horizontal transport, and deposition) take place in different boundary layers (Isard and Gage, 2001; Isard et

2 al., 2005). The boundary layers associated with the atmospheric transport processes are the surface boundary layer (SBL) (1-50 m) and the planetary boundary layer (PBL) (~50-1,000 m)

(Isard and Gage, 2001).

Liberation occurs primarily in the SBL and is critical for Fusarium to colonize new habitats. Once spores have escaped into the turbulent layers of the atmosphere (Isard and Gage,

2001), spores can move throughout the crop canopy or escape into the lower atmosphere for long distance transport. Drift includes long range transport of Fusarium spores in the PBL in which the turbulence tends to be homogeneous over horizontal distances (Maldonado-Ramirez et al.,

2005; Zdunkowski and Bott, 2003). Vertical mixing occurs in the PBL when the sun heats the surface of the earth, warming the air in contact with the surface. Warm air then rises carrying spores from near the surface upward. Cooler air replaces the rising warm air to be subsequently warmed in contact with the earth’s surface. Solar radiation and moderate wind speeds increase daytime convection while night-time cooling of surface air inhibits convection in the atmosphere

(Sparks et al., 1985). Because of turbulence, the SBL contains very strong vertical gradients in wind speed, temperature and humidity (Isard and Gage, 2001). Deposition occurs in the SBL when turbulence in the atmosphere slows down. At night, an inversion layer, with little to no wind, allows spores to remain above a crop canopy preventing escape and allowing spores to settle (Oke, 1992).

Other factors to consider regarding the variations observed among samples are that samples at different times correspond to air coming from different locations across different seasons (Doohan et al., 2003). There are different environmental factors during different seasons of the year. Seasonal changes, such as temperature, rainfall, humidity, ultraviolet (UV) light, and wind speed and direction, are thought to play an important role in spore release, survival, and

3 dispersal (Jones and Harrison, 2004; Lyon et al., 1984). When conditions are warm and humid with strong turbulence and complete cloud cover (no sunlight), which are favorable for spore release, survival, and dispersal, the diseases caused by Fusarium can develop rapidly on either local (within the same field) or susceptible crops at some distance (Dill-Macky and Jones, 2000;

Schmale et al., 2005). Therefore, the whole aerobiological process of the movement and structure of Fusarium may be influenced by various ecological and environmental factors.

Population genetic analyses may be used to develop predictions about potential sources of fungal populations (Bennett et al., 2005), and may contribute to developing strategies for disease management and control (Bissegger et al., 1997). To date, population genetic analyses have been applied to only a few species of Fusarium. High levels of genetic diversity have been reported for F. graminearum (G. zeae) (Astolfi et al., 2012; Gale et al., 2007; Lee et al., 2010;

Schmale et al., 2006; Talas et al., 2011; Zeller et al., 2004), F. pseudograminearum (Bentley et al., 2008), F. verticillioides (Reynoso et al., 2009), F. solani (Mohammadi and Mofrad, 2009), F. circinatum (Wikler and Gordon, 2000) and F. oxysporum (Bayraktar, 2010), but little is known about the population structure of other species of Fusarium, particularly for species that may be transported over long distances through the atmosphere.

It is very important to have appropriate methods for studying the aerobiology of these fungi. Members of the Schmale Lab have developed technologies with autonomous unmanned aerial vehicles (UAVs) to track the movement and structure of populations of Fusarium in the lower atmosphere (Schmale et al., 2008; Tallapragada et al., 2011). The UAVs were equipped with microbe-sampling devices that contained Petri plates with Fusarium selective medium on the wings. The UAVs flew defined sampling altitudes (100 m above ground level), sampling speeds (90km/h) and sampling patterns (circle). The sampling devices were opened and closed

4 by remote control from the ground once the UAV reached the target altitude of 100 m and then exposed to the atmosphere for durations of 10-20 min.

Previous work has shown that atmospheric populations of Fusarium in the lower atmosphere are influenced by large-scale atmospheric features known as Lagrangian coherent structures (LCSs) that may serve as atmospheric transport barriers (ATBs) (Schmale et al., 2012;

Tallapragada et al., 2011). In these studies, LCSs/ATBs were associated with punctuated changes in colony forming units (CFUs) of Fusarium recovered from a series of collections with UAVs.

Though these studies observed fluctuations in CFUs of Fusarium across varying temporal scales, they did not address the identity (i.e., species diversity), structure, composition and potential origin of atmospheric populations of Fusarium.

The overall goal of this work is to expand our knowledge on the movement and structure of atmospheric populations of Fusarium, leading to the hypotheses that: (i) consecutive collections of Fusarium with UAVs demonstrate small variations in colony counts, (ii) diverse atmospheric populations of Fusarium are associated with multiple source regions, (iii) spore concentrations of Fusarium in the atmosphere vary between 1m and 100m, and (iv) certain isolates of Fusarium collected with UAVs cause plant diseases.

Knowledge of a better understanding of the movement and structure of atmospheric populations of Fusarium in the lower atmosphere may help forecast plant disease epidemics and optimize disease measurement and control in the future (Aylor, 2003). Successful integrated pest management strategies depend upon an accurate evaluation of atmospheric sources of inoculum (Aylor, 1999). The aerobiology of Fusarium contributes to the overall knowledge of pathogen transport in the atmosphere.

5 Research Objectives

1. Monitor changes in colony forming units (CFUs) in atmospheric populations of Fusarium

over small time intervals (10 minutes to several hours),

2. Determine the structure of atmospheric populations of Fusarium species and relate this to

potential source regions,

3. Examine associations between the concentrations of population of Fusarium at ground

level (1m) and in the lower atmosphere (100m),

4. Assess the ability of strains of Fusarium collected with UAVs to cause plant diseases.

6 Literature Cited

Astolfi, P., Reynoso, M. M., Ramirez, M. L., Chulze, S. N., Alves, T. C. A., Tessmann, D. J.,

and Del Ponte, E. M. (2012). Genetic population structure and trichothecene genotypes of

Fusarium graminearum isolated from wheat in southern Brazil. Plant Pathology 61, 289–

295.

Aylor, D. E. (1986). A framework for examining inter-regional aerial transport of fungal spores.

Agricultural and Forest Meteorology 38, 263-288.

Aylor, D. E. (2003). Spread of Plant Disease on a Continental Scale: Role of Aerial Dispersal of

Pathogens. Ecology 84, 1989-1997.

Bayraktar, H. (2010). Genetic Diversity and Population Structure of Fusarium oxysporum f. sp

cepae, the Causal Agent of Fusarium Basal Plate Rot on Onion, using RAPD Markers.

Tarim Bilimleri Dergisi-Journal of Agricultural Sciences 16, 139-149.

Bennett, R. S., Milgroom, M. G., and Bergstrom, G. C. (2005). Population structure of seedborne

Phaeosphaeria nodorum on New York wheat. Phytopathology 95, 300-305.

Bentley, A. R., Leslie, J. F., Liew, E. C. Y., Burgess, L. W., and Summerell, B. A. (2008).

Genetic structure of Fusarium pseudograminearum populations from the Australian grain

belt. Phytopathology 98, 250-255.

Berek, L., Petri, I. B., Mesterházy, Á., Téren, J., and Molnár, J. (2001). Effects of mycotoxins on

human immune functions in vitro. Toxicology in Vitro 15, 25-30.

Bissegger, M., Rigling, D., and Heiniger, U. (1997). Population structure and disease

development of Cryphonectria parasitica in European chestnut forests in the presence of

natural hypovirulence. Phytopathology 87, 50-59.

7 Bush, B. J., Carson, M. L., Cubeta, M. A., Hagler, W. M., and Payne, G. A. (2004). Infection and

Fumonisin Production by Fusarium verticillioides in Developing Maize Kernels.

Phytopathology 94, 88-93.

Chaimovitsh, D., Dudai, N., Putievsky, E., and Ashri, A. (2006). Inheritance of Resistance to

Fusarium Wilt in Sweet Basil. Plant Disease 90, 58-60.

Dill-Macky, R., and Jones, R. K. (2000). The effect of previous crop residues and tillage on

fusarium head blight of wheat. Plant Disease 84, 71-76.

Doohan, F. M., Brennan, J., and Cooke, B. M. (2003). Influence of Climatic Factors on Fusarium

Species Pathogenic to Cereals. European Journal of Plant Pathology 109, 755-768.

Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., and Paulitz, T. C. (2000). Daily

and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium

species sampled over wheat plots. Canadian Journal of Botany 78, 497-505.

Gale, L. R., Ward, T. J., Balmas, V., and Kistler, H. C. (2007). Population subdivision of

Fusarium graminearum sensu stricto in the upper Midwestern United States.

Phytopathology 97, 1434-1439.

Geiser, D. M., Jimenez-Gasco, M. D., Kang, S. C., Makalowska, I., Veeraraghavan, N., Ward, T.

J., Zhang, N., Kuldau, G. A., and O'Donnell, K. (2004). FUSARIUM-ID v. 1.0: A DNA

sequence database for identifying Fusarium. European Journal of Plant Pathology 110,

473-479.

Ichinoe, M., Kurata, H., Sugiura, Y., and Ueno, Y. (1983). Chemotaxonomy of -Zeae

with Special Reference to Production of Trichothecenes and Zearalenone. Applied and

Environmental Microbiology 46, 1364-1369.

8 Isard, S. A., and Gage, S. H. (2001). "Flow of Life in the Atmosphere." Michigan State

University Press, East Lansing.

Isard, S. A., Gage, S. H., Comtois, P., and Russo, J. M. (2005). Principles of the Atmospheric

Pathway for Invasive Species Applied to Soybean Rust. BioScience 55, 851-861.

Jones, A. M., and Harrison, R. M. (2004). The effects of meteorological factors on atmospheric

bioaerosol concentrations--a review. Science of the Total Environment 326, 151-80.

Katan, T., Shlevin, E., and Katan, J. (1997). Sporulation of Fusarium oxysporum f. sp.

lycopersici on Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum.

Phytopathology 87, 712-9.

Kerényi, Z., Zeller, K., Hornok, L., and Leslie, J. F. (1999). Molecular standardization of mating

type terminology in the Gibberella fujikuroi species complex. Applied and Environmental

Microbiology 65, 4071-4076.

Lee, T., Lee, S. H., Lee, J., Nam, Y. J., Lee, S., and Ryu, J. G. (2010). Population Structure of

Fusarium graminearum from Maize and Rice in 2009 in Korea. Plant Pathology Journal

26, 321-327.

Leslie, J. F., and Summerell, B. A. (2006). "The Fusarium Laboratory Manual," Blackwell

Publishing, Ames, Iowa.

Leslie, J. F., Zeller, K. A., and Summerell, B. A. (2001). Icebergs and species in populations of

Fusarium. Physiological and Molecular Plant Pathology 59, 107-117.

Leslie, J. F. a. S., B.A. (2006). "The Fusarium Laboratory Manual," Blackwell Publishing,

Ames, Iowa.

Lyon, F. L., Kramer, C. L., and Eversmeyer, M. G. (1984). Variation of airspora in the

atmosphere due to weather conditions. Grana 23, 177-181.

9 Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., and Bergstrom, G. C. (2005). The

relative abundance of viable spores of Gibberella zeae in the planetary boundary layer

suggests the role of long-distance transport in regional epidemics of Fusarium head

blight. Agricultural and Forest Meteorology 132, 20-27.

McMullen, M., Jones, R., and Gallenberg, D. (1997). Scab of Wheat and : A Re-emerging

Disease of Devastating Impact. Plant Disease 81, 1340-1348.

Mohammadi, A., and Mofrad, N. N. (2009). Genetic diversity in population of Fusarium solani

from cumin in Iran. Journal of Plant Protection Research 49, 283-286.

Nirenberg, H. I., and O'Donnell, K. (1998). New Fusarium species and combinations within the

Gibberella fujikuroi species complex. Mycologia 90, 434-458.

O’Donnell, K. (1996). Progress towards a phylogenetic classification of Fusarium. Sydowia 48,

57-70.

Oke, T. R. (1992). "Boundary Layer Climates," Routledge.

Rabb, R. L. (1985). Conceptual bases to develop and use information on the movement and

dispersal of biotic agents in agriculture. Pages 5-34 In: The Movement and Dispersal of

Agriculturally Important Biotic Agents, Eds. D.R. Mackenzie, C.S. Barfield, G.G.

Kennedy, and R.D. Berger. Claitors Publishing Division, Baton Rouge, LA.

Reynoso, M., Chulze, S., Zeller, K., Torres, A., and Leslie, J. (2009). Genetic structure of

Fusarium verticillioides populations isolated from maize in Argentina. European Journal

of Plant Pathology 123, 207-215.

Schmale, D. G., Ross, S. D., Fetters, T., Tallapragada, P., Wood-Jones, A., and Dingus, B.

(2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level

10 cause Fusarium head blight in wheat and produce trichothecene mycotoxins.

Aerobiologia 28, 1-11.

Schmale, D. G., Arntsen, Q. A., and Bergstrom, G. C. (2005). The forcible discharge distance of

ascospores of Gibberella zeae. Canadian Journal of Plant Pathology 27, 376–382.

Schmale, D. G., and Bergstrom, G. C. (2003). Fusarium head blight. The Plant Health Instructor,

DOI:10.1094/PHI-I-2003-0612-01

Schmale, D. G., Dingus, B. R., and Reinholtz, C. (2008). Development and application of an

autonomous unmanned aerial vehicle for precise aerobiological sampling above

agricultural fields. Journal of Field Robotics 25, 133-147.

Schmale, D. G., and Gordon, T. R. (2003). Variation in susceptibility to pitch canker disease,

caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathology 52,

720-725.

Schmale, D. G., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., and Bergstrom, G. C.

(2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology

96, 1021-1026.

Sparks, A. N., Westbrook, J. K., Wolf, W. W., Pair, S. D., and Raulston, J. R. (1985).

Atmospheric transport of biotic agents on a local scale. Pages 203-217. . In: The

Movement and Dispersal of Agriculturally Important Biotic Agents, Eds. D.R.

MacKenzie, Barfield, Kennedy, Berger. Claitors Publishing Division, Baton Rouge, LA.

Talas, F., Parzies, H., and Miedaner, T. (2011). Diversity in genetic structure and chemotype

composition of Fusarium graminearum sensu stricto populations causing wheat head

blight in individual fields in Germany. European Journal of Plant Pathology 131, 39-48.

11 Tallapragada, P., Ross, S. D., and Schmale, D. G. (2011). Lagrangian coherent structures are

associated with fluctuations in airborne microbial populations. Chaos 21, 033122.

Wang, B., and Jeffers, S. N. (2000). Fusarium Root and Crown Rot: A Disease of Container-

Grown Hostas. Plant Disease 84, 980-988.

Wikler, K., and Gordon, T. R. (2000). An initial assessment of genetic relationships among

populations of Fusarium circinatum in different parts of the world. Canadian Journal of

Botany 78, 709-717.

Zdunkowski, W., and Bott, A. (2003). "Dynamics of the atmosphere : a course in theoretical

meteorology," Cambridge University Press, Cambridge, UK ; New York.

Zeller, K. A., Bowden, R. L., and Leslie, J. F. (2004). Population differentiation and

recombination in wheat scab populations of Gibberella zeae from the United States.

Molecular Ecology 13, 563-571.

12 CHAPTER 2

Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level

Binbin Lin1, Amir E. BozorgMagham2, Shane Ross2, David G. Schmale III1*.

1Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA;

2Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA;

*Corresponding author: David G. Schmale III

Email: [email protected];

Phone: (540) 231-6943;

Fax: (540) 231-7477

Note: The following chapter was formatted to facilitate publication in Aerobiologia. This work was originally published by Lin, Bozorgmagham, Ross, and Schmale in Volume

29, Issue 1 (March 2013) pp.45-54. (DOI 10.1007/s10453-012-9261-3) of Aerobiologia.

13 Abstract

The aerobiology of fungi in the genus Fusarium is poorly understood. Recent work has highlighted the role of Lagrangian coherent structures (LCSs) in the movement of fusaria in the lower atmosphere. Here, we extend this work by examining the relationship between the length of atmospheric sampling intervals with autonomous unmanned aerial vehicles (UAVs) and the recovery of fusaria. UAVs were equipped with an array of eight microbe-sampling devices with four ‘inner’ sampling arms and four ‘outer’ sampling arms. Each set of arms was used to collect consecutive aerobiological samples for periods of 10 minutes at 100 m above ground level at

Kentland Farm in Blacksburg, Virginia. Fifty-one flights (102 consecutive sampling intervals) were conducted in 2010 and 2011. A correlation analysis showed that counts of fusaria did not vary between the inner and outer sampling arms from consecutive sampling periods of 10 min (r

= 0.93, P < 0.001), and the frequency of colony counts had similar distributions for samples from the inner and outer sampling arms. An analysis of the temporal variation in collections of

Fusarium showed that the similarity between collections decreased over time. This work supports the idea that atmospheric populations of fusaria are well-mixed, and large changes in the recovery of fusaria in the lower atmosphere may be attributed to large-scale phenomena

(e.g., LCSs) operating across varying temporal and spatial scales. This work may contribute to effective control measures for diseases causes by fusaria in the future.

Keywords: Fungi; Aerobiological sampling; Pathogen; Unmanned aerial vehicles; UAV;

Lagrangian coherent structure; Long-distance transport; Atmospheric transport barrier; Selective medium; UAV

14 1 Introduction

Fusarium is one of the most important genera of fungi on Earth (Leslie and Summerell 2006).

Members of this genus cause a number of devastating plant diseases, and can threaten the health of both domestic animals and humans through the production of mycotoxins (Berek et al. 2001;

McMullen et al. 1997). Many fusaria are transported through the atmosphere from one habitat to another (Schmale et al. 2012; Tallapragada et al. 2011). Previous work has shown that large- scale atmospheric features known as Lagrangian coherent structures (LCSs) or atmospheric transport barriers (ATBs) are associated with the long-distance transport of Fusarium in the lower atmosphere (Schmale et al., 2012; Tallapragada et al., 2011). ATBs are moving boundaries that effectively separate air masses of qualitatively different dynamics and may play a significant role in the movement of microbes among habitats (Senatore and Ross, 2011). Tallapragada et al.

(2011) showed that LCSs (ATBs) were associated with changes in atmospheric counts of

Fusarium. Though the work by Tallapragada et al. (2011) was the first to demonstrate that large fluctuations in atmospheric counts of Fusarium could be attributed to the passage of ATBs, it was unable to account for small-timescale fluctuations that might explain natural fluctuations among collections of Fusarium.

Recently, members of our research team have developed technologies with autonomous unmanned aerial vehicles (UAVs) to track the movement and structure of populations of microbes such as Fusarium in the lower atmosphere (Schmale et al. 2008). The UAVs were equipped with microbe-sampling devices that contained a total of four Petri plates that were opened and closed by remote control from the ground once the UAV was aloft (Schmale et al.

2008). In the present study, we used a new array of sampling devices that contained a total of eight Petri plates, with four ‘inner’ sampling arms and four ‘outer’ sampling arms that were used

15 to collect consecutive aerobiological samples for periods of 10 minutes at 100 m above ground level. This method was used to test the null hypothesis that the recovery of fusaria would not vary across consecutive (a 10 min sample on the inner arms, immediately followed by a separate

10 min sample on the outer arms) aerobiological sampling intervals with UAVs 100 m above ground level. Thus, large fluctuations in the recovery of fusaria could be attributed to a suite of factors including the passage of LCSs (ATBs) and/or the contribution of local sources, and not random fluctuations in counts of Fusarium that would be representative of a ‘natural’ condition.

The specific objective of this study was to determine if collections of fusaria vary between the inner and outer sampling arms of a UAV from consecutive sampling periods of 10 min. This work is prerequisite for understanding if changes in the recovery of fusaria in the lower atmosphere may be attributed to large-scale phenomena (e.g., LCSs) operating across varying temporal and spatial scales and may contribute to effective control measures for diseases causes by fusaria in the future.

2 Materials and methods

2.1 Autonomous unmanned aerial vehicles (UAVs) for sampling

Autonomous (self-controlling) UAVs were used to collect Fusarium from the atmosphere above

Virginia Tech’s Kentland Farm in Blacksburg, VA, USA. The UAVs consisted of a Sig

Rascal© airframe equipped with an autopilot computer and a suite of onboard telemetry devices

(Schmale et al. 2008) and were programmed to fly a circular sampling pattern at a target altitude of 100 m above ground level and a nearly constant speed of 90km/h. Each UAV carried eight collection plates containing a Fusarium selective medium on the wings. The eight sampling plates were separated into ‘inner’ and ‘outer’ sampling arms (Fig. 1). For consecutive sampling

16 flights, a 10 min sample was collected using the inner arms (4 plates were exposed during this sampling interval), immediately followed by a separate 10 min sample using the outer arms (4 plates exposed were exposed during this sampling interval) (Fig. 1). Sampling flights were also conducted with the inner and outer sampling devices open at the same time (8 plates exposed during the sampling interval).

2.2 Culturing and identification of Fusarium

A Fusarium selective medium (FSM) (Schmale et al. 2006) was used to bias our atmospheric collections for fungi in the genus Fusarium. Immediately following a sampling flight, the exposed plates were removed from the UAV and placed in small plastic containers for transport to the laboratory. The plates were incubated for 5 to 7 days at room temperature to allow white, fuzzy colonies of Fusarium to develop. Colonies of Fusarium were counted and subcultured to plates of ¼-strength potato dextrose agar (PDA) medium for further identification.

2.3 Statistical analyses.

We hypothesized that the recovery of fusaria would typically not vary significantly across consecutive aerobiological sampling intervals of short duration (a 10-min sample on the inner arms, immediately followed by a separate 10-min sample on the outer arms). If we fail to reject this hypothesis, then large fluctuations in the recovery of fusaria over short to intermediate timescales could be attributed to a suite of factors, such as the passage of LCSs (ATBs) and/or the contribution of a strong local source. By ‘short’ timescale, we mean short compared with the

Lagrangian timescale, discussed below. It is also important to note that since the atmosphere is moving, short timescales are also related to short spatial scales. To test our hypothesis, colony

17 counts of Fusarium obtained from different flights were assembled to perform statistical analyses (Tables 1 and 2). For flights with simultaneous inner and outer arm sampling (Table

1), we estimated the variability in sampled colony counts of Fusarium, yielding an estimate of error for colony counts. For flights with consecutive inner and outer arm sampling (plates exposed during consecutive sampling periods of 10 minutes) (Table 2), a simple linear regression was used to determine the relationship between colony counts of Fusarium collected for the inner and outer sampling arms. A scatter plot and a frequency plot were also used to show this relationship. Statistical analyses were performed using JMP 4.0. The correlation between colony counts from the inner and outer sampling arms was also explored as a function of time lag between sampling intervals (i.e., comparisons of colony counts between consecutive flights separated by 10 minutes, and between other flights separated by longer periods throughout a sampling day).

3 Results

3.1 Simultaneous sampling with eight plates

In order to compare samples collected from inner and outer arms during different time periods, it is essential to show that samples do not vary significantly between inner and outer arms during the same time period. In other words, we must examine the potential role (if any) that plate position on the UAV has on the recovery of fusaria. To do this, we conducted 21 simultaneous sampling flights in which all eight sampling devices (inner and outer sampling arms opened at the same time) were exposed during the same sampling interval (Table 1). For these 21 flights, 433 colonies were recovered across all 21 sampling intervals; 234 colonies were collected across the inner arms, and 199 colonies were collected across the outer arms.

18 Results of our correlation analysis for this sampling method showed that counts from the plates on the inner arms were positively correlated with counts from plates on the outer arms (r = 0.89,

P < 0.001, n = 21). Thus, the location of the plates (inner versus outer sampling arms) did not impact the collection of fusaria.

We also used samples from this method to estimate the variation in colony counts for the inner and outer sampling arms. Considering only the 15-minute samples of Table 1, we calculated the total colony count, c, and the magnitude of the difference between the inner and outer plates, which is the variation in colony counts, c. In Fig. 2, we plot the fractional variation, c/c, versus c, and notice a trend. The curve corresponds to 1/ c , the fractional standard deviation for a Poisson distribution. Thus, the probability of a viable airborne Fusarium spore impacting the samplers is well approximated as an inhomogenous Poisson process with an arrival rate varying on a timescale long compared to the sampling duration. Thus, when a colony count, c, is obtained, the margin of error can be approximated as  c .

3.2 Consecutive sampling with four inner plates and four outer plates

To determine if collections of fusaria varied between consecutive sampling periods of 10 min, we conducted 102 consecutive sampling intervals (51 flights) 100 m above ground level in 2010 and 2011 (Table 2). Five hundred and ninety two colonies were recovered across all 102 sampling intervals; 275 colonies were collected across the inner arms, and 312 colonies were collected across the outer arms (excluding flights F207 and F208, which were clear outliers in the dataset). A significant positive correlation was observed for colony counts of Fusarium between the inner plates and the outer plates (r = 0.93, P < 0.001, n = 98). Scatter plots and a simple linear regression of consecutive sampling intervals are shown in Fig. 3. Two flights

19 however, F207 and F208 (Table 2), were excluded from the scatter plot, since these flights were

considered outliers and are the subject of additional discussion below. It should still be noted,

however, that when these flights were included in the correlation analysis, a significant positive

correlation was still observed (r = 0.38, P < 0.01, n = 102). A frequency plot showed that the

distribution of colony counts was similar for the inner and outer sampling arms over the range

of colony counts (Fig. 4).

The correlation between colony counts from the inner and outer sampling arms was also

explored as a function of time lag, , between sampling intervals. This approach allowed us to

examine the temporal variation of colony counts. From Table 2 (excluding F207 and F208),

pairwise comparisons of colony counts were determined for five time intervals: 0.17 h (n = 49

pairs), 0.5 h to 1.5 h (n = 83 pairs), 1.5 h to 3 h (n = 94 pairs), 3 h to 6 h (n = 84 pairs), and 6 h to

9 h (n = 16 pairs). An autocorrelation coefficient was determined as follows (autocorrelation

coefficient for zero time-lag is defined as 1):

Ect  ct    R   2

where ct is the colony count at time t , ct  is the colony count at time t ,  represents the

 mean value,  represents the standard deviation of the colony counts, and E represents     expectation value. The results of this analysis are shown in Fig. 5; the similarity between

collections of Fusarium decreases over time. Error bars were calculated using results from

section 3.1 with the assumption that colony counts are Poisson distributed. A Gaussian

distribution weighted method was used to obtain the error bars with sufficient number of

simulations converging to a constant limit.

20 3.3 Anomalous punctuated changes in colony counts for two consecutive flights.

In flights F207 and F208, we observed a significant departure from the usual 10-minute time-lag correlation. Flight 207 started sampling at 12:00 PM on 25 October, 2011. Eighty colonies were recovered from the inner arms, but only 31 colonies were recovered from the outer arms. Flight

208 started sampling at 1:16 PM on the same day. Twelve colonies were recovered from the inner arms, but 120 colonies were recovered from the outer arms. The inner and outer samples from these flights were not correlated, and cannot be explained by the statistics of a slowly varying inhomogeneous Poisson process. We view these two flights as anomalies that are in need of further explanation. We hypothesized that an ATB could have contributed to the observed changes in colony counts (e.g., Tallapragada et al. 2011), but archived weather-based computations did not reveal the presence of any strong LCSs (data not shown). Furthermore,

HYSPLIT back trajectories for these samples suggested that all of these samples originated from a similar location in West Virginia (within the scale of accuracy of the computations, on the order of 10-100km) (Fig. 6).

4 Discussion

Recent work has highlighted the role of Lagrangian coherent structures (LCSs) in the movement of fusaria in the lower atmosphere (Schmale et al. 2012; Tallapragada et al. 2011). Here, we extend this work by examining the relationship between the length of atmospheric sampling intervals with autonomous unmanned aerial vehicles (UAVs) and the recovery of fusaria. UAVs were equipped with an array of eight microbe-sampling devices with four ‘inner’ sampling arms and four ‘outer’ sampling arms. Each set of arms was used to collect consecutive aerobiological samples for periods of 10 minutes at 100 m above ground level at Kentland Farm in Blacksburg,

21 Virginia. A total of 102 consecutive sampling intervals (51 flights) was conducted in 2010 and

2011. Results showed that counts of fusaria did not vary across consecutive aerobiological

sampling intervals. This work supports the idea that atmospheric populations of fusaria are well-

mixed, and large changes in the recovery of fusaria in the lower atmosphere may be attributed to

large-scale phenomena (e.g., LCSs) operating across varying temporal and spatial scales.

Counts of Fusarium were not significantly different between plates located on inner and

outer sampling arms in which all eight sampling devices were exposed during the same sampling

interval. Thus, collections of Fusarium with UAVs were not influenced by the position of the

plates. Random collections of Fusarium across all of the sampling surfaces is consistent with the

idea that atmospheric populations of Fusarium are well-mixed (Schmale et al. 2006). The

fractional variation in colony counts revealed that the statistical distribution of colony counts

across the inner and outer sampling arms is well approximated by a slowly varying

inhomogeneous Poisson process. Colony counts from consecutive sampling intervals separated

by 10 minutes did not vary significantly, but the correlation drops to nearly zero for flights

separated by 9 hours. The Lagrangian (autocorrelation) timescale,

 T  Rd, L 0

is approximately 3 hours, which is on the order (~10,000s) estimated for velocity

 autocorrelations in atmospheric turbulence (Gifford 1987), and is also the Lagrangian timescale

for layer (stratus) clouds. The time TL provides the timescale for the variation of the arrival rate

for the slowly varying inhomogeneous Poisson process assumption, and we note that this is

indeed long compared with the sampling duration (10 minutes), further justifying the Poisson

assumption. For purely stochastic motion, the autocorrelation is an exponential,

R  exp( /TL ) (Csanady 1973; Dosio et al. 2005). With horizontal winds on the scale of 2-

 22 10 m/s, this timescale suggests that there are coherent ‘clouds’ of Fusarium with horizontal dimensions on the scale of 20-100 km. This idea is consistent with the observations of

Tallapragada et al. (2011) based on mesoscale atmospheric simulations, who found that the typical size for a coherent air mass was on a similar scale (50-150 km), based on the average passage of an LCS over the sampling location every 5 to 7 hours.

Tallapragada et al. (2011) showed that LCSs (atmospheric transport barriers or ATBs) were correlated with changes in atmospheric counts of Fusarium. Schmale et al. (2012) suggested that LCSs were likely to influence the population structure of F. graminearum. With the exception of flights 207 and 208, we did not observe any significant variation in colony counts among consecutive sampling flights. Thus, we are now able to exclude fluctuations over short periods of time as potential contributors to changes in the atmospheric counts of Fusarium.

Thus, large changes in populations of Fusarium in the lower atmosphere may be attributed in part to large-scale phenomena (such as LCSs) or strong local sources operating across varying temporal and spatial scales.

The inner and outer samples from flights F207 and F208 were not correlated, and represented a significant departure from the usual 10-minute time-lag correlation. Archived weather-based computations did not reveal the presence of any strong LCSs, and HYSPLIT back trajectories for these samples suggested that they both originated from a similar same location in West Virginia (Fig. 6). Less than 90 minutes separated the start of F207 and the end of F208, but there was significant variation over a timescale of 10 minutes during both flights.

This suggests a patchy (heterogeneous) distribution of Fusarium in the atmosphere (Okubo and

Levin 2001). With the horizontal wind speeds at that time being approximately 2 m/s at ground level, the patchiness spatial scale was at most 1 km over a cloud on the order of 10-20 km

23 (bracketed by the more typical flights F206 and F209). It is possible that these high values were triggered by a local, and possibly temporally non-uniform, source. Future work aimed at identifying the species recovered in these flight populations may provide clues about the approximate origin and mixing of these populations.

Future work by our research team aims to examine meteorological events that might provide signatures for the life history of populations of Fusarium in the lower atmosphere. Such work may contribute to an increased understanding of the spread of plant diseases in the future

(Aylor 2003).

Acknowledgements

We thank John Cianchetti for his excellent technical assistance with the construction, maintenance, and operation of the UAVs described in this work. We also thank Zolton Bair for his help with fungal cultures and Pavlos Vlachos for helpful discussions. This material is based upon work supported by the National Science Foundation under Grant Numbers DEB-0919088

(Atmospheric transport barriers and the biological invasion of toxigenic fungi in the genus

Fusarium) and CMMI-1100263 (Dynamical mechanisms influencing the population structure of airborne pathogens: Theory and observations). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

24 Literature Cited

Aylor, D. E. (2003). Spread of plant disease on a continental scale: role of aerial dispersal of

pathogens. Ecology, 84, 1989-1997.

Berek, L., Petri, I. B., Mesterházy, Á., Téren, J., & Molnár, J. (2001). Effects of mycotoxins on

human immune functions in vitro. Toxicology in Vitro, 15, 25-30.

Csanady, G.T. (1973). Turbulent diffusion in the environment. D. Reidel Publishing Company,

Dordrecht, Holland.

Dill-Macky, R., & Jones, R. K. (2000). The effect of previous crop residues and tillage on

Fusarium head blight of wheat. Plant Disease, 84, 71-76.

Dosio, A., Vila-Guerau De Arellano, J., Holtslag, A. M., & Builtjes, P. J. H. (2005). Relating

Eulerian and Lagrangian statistics for the turbulent dispersion in the atmospheric

convective boundary layer. Journal of the Atmospheric Sciences, 62, 1175-1191.

Gifford, F. A. (1987). The time-scale of atmospheric diffusion considered in relation to the

universal diffusion function f1. Atmospheric Environment, 21, 1315–1320.

Lekien, F., & Ross, S. D. (2010). The computation of finite-time Lyapunov exponents on

unstructured meshes and for non-Euclidean manifolds. Chaos, 20, 017505.

Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell

Publishing, Ames, Iowa.

McMullen, M., Jones, R., & Gallenberg, D. (1997). Scab of wheat and barley: A re-emerging

disease of devastating impact. Plant Disease, 81, 1340-1348.

Okubo, A., & Levin, S.A. (2001). Diffusion and ecological problems: modern perspectives.

Springer, New York.

25 Schmale, D. G., Ross, S. D., Fetters, T., Tallapragada, P., Wood-Jones, A., & Dingus, B. (2012).

Isolates of Fusarium graminearum collected 40–320 meters above ground level cause

Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, 28,

1-11.

Schmale, D. G., Dingus, B. R., & Reinholtz, C. (2008). Development and application of an

autonomous unmanned aerial vehicle for precise aerobiological sampling above

agricultural fields. Journal of Field Robotics, 25, 133-147.

Schmale, D. G., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C.

(2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology,

96, 1021-1026.

Senatore, C., & Ross, S. D. (2011). Detection and characterization of transport barriers in

complex flows via ridge extraction of the finite time Lyapunov exponent field.

International Journal for Numerical Methods in Engineering, 86, 1163-1174.

Tallapragada, P., Ross, S. D., & Schmale, D. G. (2011). Lagrangian coherent structures are

associated with fluctuations in airborne microbial populations. Chaos, 21, 033122.

26 Table 1. Colony counts of Fusarium from simultaneous sampling (inner arms and outer arms

were opened at the same time) with UAVs 100 m above ground level at Virginia Tech’s

Kentland Farm.

Time Open Time Closed Time Sampling

Flights Date (In & out) (In & out) Counts In a Counts Out b (min) F137 10-Mar-10 0929 0944 3 1 15 F138 10-Mar-10 1035 1042 1 8 7 F139 10-Mar-10 1130 1145 7 4 15 F140 10-Mar-10 1300 1315 5 2 15 F141 10-Mar-10 1400 1415 4 9 15 F142 11-Mar-10 1005 1020 3 3 15 F143 15-Jul-10 0950 1005 23 16 15 F144 15-Jul-10 1155 1210 35 37 15 F145 16-Jul-10 0925 0940 20 26 15 F146 16-Jul-10 1045 1100 27 23 15 F147 28-Sep-10 0959 1014 2 3 15 F148 28-Sep-10 1118 1133 6 2 15 F149 28-Sep-10 1412 1427 17 8 15 F150 28-Sep-10 1532 1540 9 6 8 F151 29-Sep-10 0915 0926 3 7 11 F152 29-Sep-10 1029 1044 4 1 15 F153 29-Sep-10 1323 1338 7 6 15 F154 01-Oct-10 0908 0923 8 3 15 F155 01-Oct-10 1203 1218 9 8 15 F156 01-Oct-10 1428 1443 31 20 15 F157 01-Oct-10 1700 1708 10 6 8

a Counts from plates on the inner sampling arms of the UAV b Counts from plates on the outer sampling arms of the UAV

27 Table 2. Colony counts of Fusarium from consecutive (a 10 min sample on the inner arms, immediately followed by a separate 10 min sample on the outer arms) aerobiological sampling intervals with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm in 2010 and

2011.

Time Time Closed Open Closed Counts Counts Sampling Sampling Flights Date Open (In) (In) (Out) (Out) In a Out b Out (min) In (min) F158 06-Apr-11 0913 0923 0923 0933 6 10 10 10 F159 06-Apr-11 1027 1037 1037 1046 14 12 10 9 F160 06-Apr-11 1557 1607 1607 1616 18 26 10 9 F161 07-Apr-11 0952 1002 1002 1012 27 33 10 10 F162 07-Apr-11 1344 1354 1354 1404 16 13 10 10 F163 07-Apr-11 1514 1524 1524 1534 15 11 10 10 F164 07-Apr-11 1611 1621 1621 16:31 9 13 10 10 F167 08-Apr-11 1407 1422 1422 1435 5 9 15 13 F168 08-Apr-11 1510 1520 1520 1530 4 5 10 10 F169 11-Apr-11 0952 1002 1002 1012 22 21 10 10 F171 16-May-11 1449 1459 1459 1509 7 7 10 10 F173 18-May-11 1426 1436 1436 1446 2 1 10 10 F174 18-May-11 1600 1610 1610 1620 4 2 10 10 F175 19-May-11 0943 0953 0953 1003 4 5 10 10 F176 19-May-11 1045 1055 1055 1105 2 3 10 10 F177 19-May-11 1152 1202 1202 1212 1 2 10 10 F178 19-May-11 1312 1322 1322 1332 3 2 10 10 F179 19-May-11 1435 1445 1445 1455 6 3 10 10 F180 22-Aug-11 1000 1010 1010 1020 1 3 10 10 F181 22-Aug-11 1224 1234 1234 1244 3 2 10 10 F182 23-Aug-11 0942 0952 0952 1002 2 2 10 10 F183 23-Aug-11 1040 1050 1050 1100 2 2 10 10 F184 23-Aug-11 1149 1159 1159 1209 2 3 10 10 F185 23-Aug-11 1309 1319 1319 1329 4 5 10 10 F186 23-Aug-11 1424 1434 1434 1444 2 2 10 10 F187 23-Aug-11 1601 1611 1611 1621 4 5 10 10 F188 24-Aug-11 0915 0925 0925 0935 2 2 10 10 F189 24-Aug-11 1031 1041 1041 1051 4 5 10 10 F190 24-Aug-11 1159 1209 1209 1219 4 6 10 10 F191 24-Aug-11 1314 1324 1324 1334 4 5 10 10 F192 24-Aug-11 1426 1436 1436 1446 5 7 10 10 F193 25-Aug-11 0914 0924 0924 0934 1 2 10 10 F195 25-Aug-11 1200 1210 1210 1220 2 5 10 10 F197 26-Aug-11 1115 1125 1125 1135 3 2 10 10 F198 26-Aug-11 1313 1323 1323 1333 3 5 10 10 F199 26-Aug-11 1419 1429 1429 1439 7 12 10 10

28 F200 24-Oct-11 1018 1028 1028 1018 3 3 10 10 F201 24-Oct-11 1133 1143 1143 1153 4 5 10 10 F202 24-Oct-11 1303 1313 1313 1323 6 5 10 10 F203 24-Oct-11 1418 1428 1428 1438 5 4 10 10 F204 24-Oct-11 1530 1540 1540 1550 6 7 10 10 F205 25-Oct-11 0915 0925 0925 0935 1 2 10 10 F206 25-Oct-11 1031 1041 1041 1051 3 6 10 10 F207 25-Oct-11 1200 1210 1210 1220 80 31 10 10 F208 25-Oct-11 1316 1326 1326 1336 12 120 10 10 F210 25-Oct-11 1543 1553 1553 1603 8 6 10 10 F211 26-Oct-11 0956 1006 1006 1016 3 3 10 10 F212 26-Oct-11 1205 1215 1215 1225 1 2 10 10 F213 26-Oct-11 1316 1326 1326 1336 8 9 10 10 F214 26-Oct-11 1432 1442 1442 1452 4 4 10 10 F215 27-Oct-11 0858 0908 0908 0918 3 3 10 10

a Counts from plates on the inner sampling arms of the UAV b Counts from plates on the outer sampling arms of the UAV

29 Fig. 1. An autonomous unmanned aerial vehicle (UAV) equipped with an array of eight microbe- sampling devices with four inner sampling arms and four outer sampling arms. Each arm carries two Petri plates containing a Fusarium selective medium. During takeoff and landing, the sampling devices are closed (a). After reaching the target altitude of 100 m, the inner sampling arms are opened for 10 minutes (b). These inner arms are closed, and the outer arms are opened for 10 minutes immediately following the first collection (c). Colonies of Fusarium are recovered in the laboratory and recorded for each of the plates (shown here from flight F189) (d).

30 Fig. 2. Fractional variation in sampled colony counts of Fusarium (c is the total colony counts from inner and outer plates, and c is the variation in colony counts) based on simultaneous sampling using inner (4 plates) and outer (4 plates) arms of a UAV during sampling periods of

15 minutes. Flights were conducted 100 m above ground level during 2010 and 2011. The probability of a viable airborne Fusarium spore impacting the samplers is approximated as a slowly varying inhomogenous Poisson process.

31 Fig. 3. Scatter plot and simple linear regression of consecutive sampling of Fusarium with inner

(4 plates) and outer (4 plates) arms of a UAV. A significant correlation (r = 0.93, P < 0.001, n =

98) was observed between colony counts of Fusarium from the inner and outer arms. Flights were conducted 100 m above ground level during 2010 and 2011. Flights F207 and F208 were outliers and were removed from the analysis.

32 Fig. 4. Frequency plot of colony counts of Fusarium from consecutive sampling periods of 10 mins. Flights were conducted 100 m above ground level during 2010 and 2011. The plot shows that the distribution of colony counts was similar for the inner and outer sampling arms over the range of colony counts.

33 Fig. 5. The colony count autocorrelation coefficient versus the time lag between sampling intervals. A high correlation is observed for a small time lag. The similarity between collections decreases over time; typical behavior for Lagrangian trajectories of particles (spores) in atmospheric turbulence.

34 Fig. 6. HYSPLIT backward trajectories for flights 207 and 208 on based on 25 Oct 2011.

Trajectories were calculated hourly for 1600-1900 UTC and suggest that trajectories suggest that all of the samples originated from a similar location in West Virginia (within the scale of accuracy of the computations, on the order of 10-100km).

35 CHAPTER 3

Diverse assemblages of fusaria collected with unmanned aircraft 100 m above ground level suggest contribution of multiple sources across broad geographical regions

Binbin LINa, Amir E. BOZORGMAGHAMb, John G. JELESKOa, Shane D. ROSSb, David G.

SCHMALE IIIa,*.

aDepartment of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA

24061, USA;

bDepartment of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061,

USA;

*Corresponding author: David G. Schmale III

Email: [email protected];

Phone: (540) 231-6943;

Fax: (540) 231-7477

Note: The following chapter was formatted to facilitate publication in Fungal Biology.

36 ABSTRACT

Fungi in the genus Fusarium may be transported over long distances in the atmosphere. Little is known about the structure, composition, and potential origin of atmospheric populations of

Fusarium. We hypothesized that (1) atmospheric populations of Fusarium are diverse and dynamic across large-scale temporal and spatial gradients and (2) potential sources of atmospheric populations of Fusarium extend across broad geographical regions. To test these hypotheses, autonomous unmanned aerial vehicles (UAVs) equipped with microbe-sampling devices were used to collect viable spores of Fusarium 100 m above the ground level at the

Kentland Farm in Blacksburg, Virginia. One hundred and thirty five isolates of Fusarium were collected during 11 sampling flights on three days within a four day period in September and

October, 2010. A portion of the translation elongation factor 1-alpha gene (TEF-1) was used to assist in the identification of the Fusarium isolates to species. FusariumID and GenBank BLAST queries, coupled with model-based phylogenetic analyses, revealed at least 12 species of

Fusarium in our atmospheric collections. Two of the reference Fusarium species together with many of the isolates collected with UAVs comprised a poorly resolved basal region of the

Fusarium phylogeny. This poorly-resolved region may represent new species of Fusarium.

Species richness, evenness, and diversity varied within and among our flight populations. Back trajectory analyses conducted 6 to 24 hours prior to our collections suggested the contribution of multiple sources of Fusarium across broad geographical regions. The actual contribution of these hypothesized source regions to the atmospheric populations of Fusarium remains unclear, but the diverse atmospheric populations of Fusarium suggest that inoculum may originate from multiple locations over large geographic distances. There was a positive correlation between trajectory distances over 24 hours and the number of species of Fusarium with the best fit given by a power

37 law, analogous to the species-area relationship in ecology. This work contributes to an increased knowledge of the life history of Fusarium and how patterns in the species diversity depend on geographic scale.

Keywords: Fungi, Plant pathogen, Ascomycete, Genetic diversity, Inoculum source,

Aerobiology, Aerobiological sampling, Unmanned aerial vehicles, UAV, Long-distance transport, Unresolved turbulence

38 Introduction

Fusarium is one of the most economically important genera of fungi worldwide (Leslie and

Summerell 2006). Some species of Fusarium are important plant pathogens, causing significant crop losses and resulting mycotoxin contamination that may threaten human and domestic animal health (Berek et al. 2001; McMullen et al. 1997). The genus contains at least 80 biological species, and 100 or more proposed phylogenetic species (Leslie and Summerell 2006;

O’Donnell 1996). Some of these species cause wilts, blights, root rots and cankers in agriculturally important crops worldwide (Leslie and Summerell 2006). Many species of

Fusarium may be transported over long distances in the atmosphere from one habitat to another

(Fernando et al. 2000; Katan et al. 1997; Maldonado-Ramirez et al. 2005; Schmale et al. 2005), posing a significant threat to crop and animal biosecurity with the potential to traverse county, state, and country borders.

There are a number of ways to identify unknown isolates of Fusarium to the level of species. First, isolates of Fusarium may be identified using morphological species concepts, in which species delimitation is based largely on the morphology of asexual and sexual spores produced on standard culture medium (Leslie et al. 2001). Second, unknown isolates of

Fusarium may be identified by biological species concepts, in which species delimitation is based on reproductive assays that can define mating populations, such as within the F. fujikuroi complex (Kerényi et al. 1999). Third, unknown isolates of Fusarium may be identified to species using phylogenetic species concepts, based largely on DNA sequence similarity (Geiser et al.

2004; Nirenberg and O'Donnell 1998). This last approach has gained considerable traction in recent years because of the ease of DNA isolation and sequencing technologies.

39 Population genetic analyses may be used to develop predictions about potential sources of fungal populations (Bennett et al. 2005), and may contribute to develop strategies for disease management and control (Bissegger et al. 1997). To date, population genetic analyses have been applied to only a few species of Fusarium. Previous population genetic analyses have reported high levels of genetic diversity of F. graminearum (G. zeae) (Astolfi et al. 2012; Gale et al.

2007; Lee et al. 2010; Schmale et al. 2006; Talas et al. 2011; Zeller et al. 2004), F. pseudograminearum (Bentley et al. 2008), F. verticillioides (Reynoso et al. 2009), F. solani

(Mohammadi and Mofrad 2009), F. circinatum (Wikler and Gordon 2000) and F. oxysporum

(Bayraktar 2010). However, few studies have examined phylogenetic relationships among

Fusarium species, particularly for those species that may be transported over long distances through the atmosphere.

Previous work has shown that atmospheric populations of Fusarium are influenced by large-scale atmospheric features known as Lagrangian coherent structures (LCSs) that may serve as atmospheric transport barriers (ATBs) (Schmale et al. 2012; Tallapragada et al. 2011). In these studies, LCSs/ATBs were associated with punctuated changes in colony forming units

(CFUs) of Fusarium recovered from a series of collections with autonomous unmanned aerial vehicles (UAVs). Though these studies observed fluctuations in CFUs of Fusarium across varying temporal scales, they did not address the identity (i.e., species composition) or potential origin of atmospheric populations of Fusarium. We hypothesized that (1) atmospheric populations of Fusarium are diverse and dynamic across large-scale temporal and spatial gradients and (2) potential sources of Fusarium extend across broad geographical regions. To test these hypotheses, autonomous unmanned aerial vehicles (UAVs) equipped with microbe- sampling devices were used to collect viable spores of Fusarium 100 m above the ground level at

40 the Kentland Farm in Blacksburg, Virginia. A portion of the translation elongation factor 1- alpha gene (TEF-1) was used to assist in the identification of the Fusarium isolates to species.

FusariumID (Geiser et al. 2004) and GenBank BLAST queries, coupled with phylogenetic analyses leveraging maximum likelihood and Bayesian methods, were used to identify isolates of

Fusarium recovered from our collections. Back trajectory analyses were conducted for time periods prior to our collections to determine the potential geographic source areas of Fusarium.

One could in principle geographically constrain the source regions for Fusarium species and determine correlations with species groupings and their probable geographic source regions. An increased understanding of the structure, composition, and potential source regions of atmospheric populations of Fusarium may aid in the development of disease management strategies in the future.

Materials and methods

Autonomous unmanned aerial vehicles (UAVs)

Autonomous (self-controlling) UAVs were used to collect Fusarium in the lower atmosphere

100 m above Virginia Tech’s Kentland Farm in Blacksburg, VA, USA as described by Lin et al.

(2013). Briefly, the UAVs flew defined sampling altitudes (100 m above ground level), sampling speeds (90km/h) and sampling patterns (circle), and carried eight collection plates containing a

Fusarium selective medium on the wings. Once the UAV reached the target altitude of 100 m, the sampling devices were opened by remote control from the ground and exposed to the atmosphere for durations of 8-15 min (Table 1). Following each sampling mission, the exposed

41 plates were removed from the UAV and stored in small plastic containers for transport to the laboratory.

Culturing and storage of Fusarium

Methods for culturing Fusarium were described by Lin et al. (2013). Briefly, colonies recovered from the sampling missions on the Fusarium selective medium were subcultured in the laboratory on new plates and single-spored. All single-spored cultures were transferred to plates of one quarter-strength potato dextrose agar (PDA) (BD Difco, Franklin Lakes, NJ, USA) medium containing a small piece of sterile filter paper (Fisher Scientific, Pittsburgh, PA, USA) cut to about half the size of the plate. Cultures were grown for 7 days at room temperature, and the colonized pieces of filter paper were removed and dried in a laminar flow hood (NuAire, Inc.

Plymouth, MN, USA) overnight. Dried pieces of filter paper were placed in sterile coin envelopes and placed in refrigerated storage at 4°C. Spore suspensions were prepared from the other half of the plates (not containing the filter paper) by washing the plates with a sterile 20% glycerol aqueous (Fisher Scientific, Pittsburgh, PA, USA) solution for redundant long-term storage at minus 80C (Leslie and Summerell 2006).

DNA extraction, PCR, and sequencing

Single-spored isolates of Fusarium were grown in 75 mL of potato dextrose broth (BD Difco,

Franklin Lakes, NJ, USA) for 5 to 7 days on a rotating shaker at 100 rpm (Barnstead/Lab-Line

MaxQ™ 3000, Champaign, IL, USA). The suspensions were filtered through four layers of cheesecloth and the resulting mycelium was lyophilized for 24 hr to remove water (FreeZone

2.5, Labconco, Kansas, MO, USA). The lyophilized mycelium was homogenized using 0.1-0.3 g

42 0.5 mm zirconia-silica beads with a Mini-Beadbeater (3110BX, BioSpec Products, Bartlesville,

OK, USA) for1.5 min at 2,500 rpm. DNA was extracted from the homogenized mycelium using the Thermo/BioSprint15 workstation (Qiagen, Valencia, CA, USA) and the Biosprint 15 DNA

Plant Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s protocols.

A portion of the translation elongation factor 1-alpha gene (TEF-1) was amplified from each of the 135 isolates and from 69 vouchered Fusarium strains obtained from the Leslie laboratory. PCRs were conducted using the Fusarium-specific primers ef1 (forward primer; 5’-

ATGGGTAAGGA(A/G)GACAAGAC-3’) and ef2 (reverse primer; 5’-

GGA(G/A)GTACCAGT(G/C)ATCATGTT-3’) (O'Donnell et al. 1998) yielding a product of around 600-700 bp (Geiser et al. 2004). Reactions were performed using the following conditions: an initial long denaturation (94°C for 10 min), thermal cycler for 10 cycles (94°C for

30 s, 55°C for 45 s, 72°C for 1 min) and 20 cycles (94°C for 30 s, 52°C for 45 s, 72°C for 1 min), and a final extension (72°C for 10 min), followed by cooling at 4°C until recovery of the samples. The resulting amplification products were verified by electrophoresis in a 0.9% agarose gel containing ethidium bromide and visualized on a UV transilluminator (Universal hood II,

BIO-RAD, Hercules, CA, USA). PCR products were sequenced directly in both directions at the

University of Kentucky Advanced Genetic Technologies Center (UK-AGTC, Lexington, KY,

USA). Sequences were trimmed and aligned using Lasergene 9.1 software (DNASTAR, Inc.,

Madison, WI, USA). Each consensus sequence served as an individual BLAST query against both FUSARIUM-ID (Geiser et al., 2004) and GenBank databases. Isolates with over 95% DNA sequence identity with vouchered Fusarium specimens were assigned to the respective known species (Geiser et al. 2004).

43 Phylogenetic analyses

Model-oriented phylogenetic analyses leveraging Maximum Likelihood (ML) and Bayesian methods were used to assist in the identification of specific Fusarium species and identify the phylogenetic relationships between the species. The Fusarium and fungal out group (GenBank accession number: HM626644.1, AB373728.1, HM626649.1, HM626647.1 and DQ247616.1) translation elongation factor DNA sequences were aligned using MAFFT (Katoh et al. 2005;

Katoh et al. 2002). Modeltest v3.7 was used to identify the optimal evolutionary model

(TrN+I+G) for use in the subsequent ML and Bayesian phylogenetic analyses. One hundred ML bootstrap replicates were performed using GARLI v1.0 (Zwickl 2006). The non-parametric bootstrap values were assigned using Consense from the PHYLIP package (Felsenstein 1989) enforcing consensus type Ml = 0.80. Thus, furcations showing less than 80% consensus non- parametric bootstrap support were collapsed into a polytomy. Six independent 10 million generation MrBayes v3.1.2 (Ronquist and Huelsenbeck 2003) runs, each with eight heated chains (temp=0.05), were performed. The parameter probability files from each of the MrBayes runs were analyzed using Tracer v1.5.0 (Rambaut and Drummond 2003). The resulting skyline plots did not show obvious signs of non-convergence. The ESS values for the LnL parameter ranged from 526-659 and the ESS values for the TL parameter ranged from 402-633. The ESS values for the other model parameters ranged in the thousands. The six independent Bayesian runs showed good evidence for both independent sampling and apparent convergence.

Therefore, a single joint Bayesian analysis was generated using the sump and sumt commands using 25% burn in. The ML and Bayesian consensus trees were visualized using Figtree v1.3.1

(Rambaut 2009).

44 Analysis of species diversity

Species diversity was assessed using Simpson’s Index, a composite measure of species richness and evenness (Magurran 2004; Simpson 1949):

where P is the proportion of number of individuals of one particular species found (n) divided by the total number of individuals found of all species (N) of each flight, Σ is the sum of the calculations, and s is the number of species of each flight. Simpson’s index is heavily weighted towards the most abundant species in the sample while being less sensitive to species richness

(Khan 2006).

Back trajectories and unresolved turbulence to identify potential source regions

Potential source regions were identified by calculating the back trajectories of the passive particles (spores) moving in the lower atmosphere. The trajectory of sampled particles was numerically integrated backward in time, using the available velocity data for past time steps:

Where is the time when sampled spores are collected and is the integration duration. The result of this integration was used to generate hypotheses about the potential source region for each of the sample collections. The available velocity data were used for interpolation to find the unknown velocity at arbitrary points inside the domain of the field. If sub-grid scale turbulent velocity component is considered, then back-trajectories provide a single trajectory and the source “point” for sampled particles (spores). However, for the meteorological data which are available, the deterministic assumption is considered no longer valid, and the true motion of the

45 particles could not be determined by this interpolation technique. Consequently, we incorporated unresolved (i.e., sub-grid scale) turbulent motion to assist in the calculations of the trajectories and the identification of potential source regions, which will in general no longer be single geographic points, but extended geographic regions. Unresolved turbulence is defined as the components of the velocity that cannot be described as a deterministic function of the grid point data; consequently, stochastic models must be used to obtain a reasonable estimate. This refers to the probabilistic motion of particles that could occur with respect to the constraints imposed from the existing velocity data at each node and at discrete time step. For the calculation of the probabilistic source regions, we used stochastic models suitable for atmospheric flows which describe the time varying unresolved velocity components as a random number based on available data on each grid point (background velocity data was based on the NAM-218 model which covers the North America and its spatiotemporal resolution is about 12 km and 3 hours, respectively):

Where shows the background deterministic velocity and is the unresolved turbulent velocity which is a function of background velocity field as well as the position and time. The stochastic model for our simulation was based on Fay et al. (1995) and Draxler and

Hess (1998). Due to the stochasticity of this model, we simulated the trajectories of many individual and independent particles (i.e., a Monte Carlo approach) to obtain an approximately converged probability distribution. The resulting position of those particles was considered the probabilistic source region, as integration was performed in the backward time direction. Ideally, one could determine the source region from where a back-trajectory intersects the ground. But

46 the vertical wind component is difficult to resolve, and so three representative times are used: 6,

12, and 24 hours.

Trajectory distances were calculated as the arc length of the path traveled, approximated by summing all the 3-minute segments. Starting from the sampling point, a back-trajectory was calculated using a deterministic model similar to HYSPLIT. This trajectory is close to the mean location of the probability distribution when stochastic turbulent effects are included. The position of the trajectory was recorded every 3 minutes for a period of 24 hours.

Results

Collections of Fusarium

We collected a total of 135 isolates of Fusarium on 11 separate UAV flights 100 m above ground level in September and October, 2010 (Table 1). All eight sampling devices on the UAV were exposed to the atmosphere for durations of 8-15 min. The 11 flights were conducted on three different calendar dates: 28-Sep-2010 (flights F147-F150), 29-Sep-2010 (flights F151-

F153), and 01-Oct-2010 (flights F154-F157) (Table 1). The fungal colony forming units (CFUs) from each of the collections across all eight plates ranged from 2 to 37 (Table 1).

Identification of Fusarium to the level of species

Two complementary approaches were used to assign the Fusarium isolates to previously characterized Fusarium species. The first approach queried the isolated Fusarium sequences against both the FusariumID and GenBank databases. The top BLAST pairwise hits were used to identify the closest Fusarium species. Based on this pairwise similarity approach at least 12 species of Fusarium were identified in our collections (Table 2). Pairwise DNA similarity

47 matches are effective at identifying previously characterized genes; however, they do not reveal the inferred evolutionary relationships between the assigned Fusarium species. Therefore, phylogenetic analyses were also performed to understand the phylogenetic relationships between the Fusarium isolates and vouchered reference Fusarium species.

Complementary ML and Bayesian phylogenetic analyses revealed considerable phylogenetic diversity in the Fusarium isolated from the air over Kentland Farm. Sequences for the phylogenetic analyses included 69 voucher Fusarium specimens, five fungal outgroups, and

135 unknown isolates from 11 UAV flights (Table S1). Five fungal outgroups included

Geejayessia cicatricum: HM626644.1, Cylindrocarpon sp. TBT-1: AB373728.1, Cyanonectria buxi: HM626649.1, Nectria cyanostoma: HM626647.1 and Neocosmospora sp. NRRL 22498:

DQ247616.1, some randomly chose fungal species that belong to the same family as Fusarium,

Nectriaceae, but represent different genera. And also these outgroups were identified using the same single DNA sequence marker, TEF-1.). The overarching phylogenetic results from the

ML and Bayesian analyses were largely concordant. Sixty five of 135 unknown isolates formed well supported clades with 66 of 69 vouchered Fusarium species. This is illustrated in Figure 1 and annotated as the “high density reference Fusarium region”. This region was typified by clades comprised of both Fusarium isolates from the air and vouchered Fusarium strains, showing strong bootstrap (ML analyses) and Bayesian posterior probability (Bayesian analyses) support for most nodes. Well supported clades of Fusarium isolates with a vouchered Fusarium species provided high-confidence species determination (Supplemental Fig S2 and S3). For example, isolates F156N1, F156N9, and F157N3 form a well-supported sister group with

FIDN33 F. lateritium (100 bootstrap and 0.99 posterior probability supports). These species

48 assignments were concordant with the pairwise similarity results obtained in the BLAST analyses (Table 2).

On the other hand, only three reference Fusarium strains (F. babinda, F. equiseti, and F. scripi) clustered with the remaining 70 Fusarium isolates. This region is described as the low density reference Fusarium region (Fig 1). The low density reference Fusarium region is typified by two characteristics. The first characteristic is that both the ML and Bayesian consensus analyses showed overall poor support for the relative branch order within this region.

Not surprisingly, there was also inconsistent branch ordering within this region between the ML and Bayesian analyses (Supplemental Fig S1 and S2). Given the overall poorly supported topology in this region it was not possible to confidently assign these isolates to any one of the three reference Fusarium strains located in this region. Therefore, these Fusarium isolates were assigned the species designation of F. babina/equiseti-like. The second feature of this low density reference Fusarium region was that it comprised the basal region of the overall Fusarium phylogeny as evidenced by the proximity to the non-Fusarium fungal outgroup. The positioning of the outgroup was consistent in both the ML and the Bayesian consensus analyses, showing good bootstrap (100%) and posterior probability (1.0) support, respectively. Moreover, a phylogram of the Bayesian consensus analysis (Supplemental Fig 1) showed relatively short F. babinda/equiseti-like branch lengths proximal to the fungal outgroup. This argues against the hypothesis of a long branch artifact causing the inaccurate positioning of the fungal outgroup.

Taken together, these phylogenetic results suggest that basal F. babina/equiseti-like isolates are closer to the inferred ancestral lineage that gave rise to the more derived high density reference

Fusarium region.

49 Measurements of species richness and diversity

A detailed analysis of the species diversity across these flights was performed using Simpson’s

Index, which incorporates both species richness (the number of species in a flight) and evenness

(the relative abundance of individuals per species within a flight) into a single measure

(Tuomisto 2010). The results of this analysis are shown in Table 1; the relative abundance of individuals per species for each flight shown in Table 2. Species richness (the number of species) of an individual sampling mission varied from one to eight, and the species diversity across all of the flights ranged from 0 to 3.60 (Table 1). Flight populations with more species or greater evenness were considered to be more diverse. For example, flight F156 (8 species) was more diverse than flight F147 (1 species). Though the species richness of two flights may be equal

(flights F148 and F155 had a species richness of 4 in each flight population), flight F155 was considered to be less diverse than F148, because all four species in F148 were more even, whereas there was greater variation in the abundance across the four species in F155 (Table 2).

Species distribution, back trajectories and potential source regions

We observed some variation in the distribution of Fusarium species among flight populations

(Fig 2). This variability extended to flight populations collected during the same sampling date but at different times, and also between flights conducted on different sampling dates. For example, one species (F. babina/equiseti-like) was collected on F147, but on the next flight F148 we collected 4 different species (F. fujikuroi, F. proliferatum, F. sporotrichioides, F. babinda/equiseti-like). Some species were relatively abundant across most of the flights (e.g., F. babinda/equiseti-like was collected on 10/11 of the flights, F. fujikuroi (7/11), F. sporotrichioides (7/11), and F. graminearum (6/11)), and yet other species were only collected

50 on certain sampling dates (e.g., F. circinatum was only collected on a single flight, F149 on 28-

Sep-2010, F. lactis and F. sambucinum were collected only on 29-Sep-2010, and F. armeniacum, F. avenaceum, and F. lateritium were collected only on 01-Oct-2010) (Fig 2).

Numerical Monte Carlo simulations with 106 individual particles and based on stochastic models for unresolved turbulence revealed some important observations. First, the probabilistic potential source regions were not Gaussian distributions. Second, the distance between the centroid of the probabilistic source regions and the deterministic solution increased with time.

Third, the stretch and spread of potential source regions depended on the background flow field and for different sampling times, different potential source configurations are expected. Figure 3 shows the potential source regions for 28, 29 Sep and 1 Oct 2010 respectively. The sampling location is shown by the green mark (Virginia Tech’s Kentland Farm). For each figure, three backward integration times were considered (6, 12 and 24 hours), each represented by different shades of gray. Note that all the data corresponding to daily sampling flights are presented in these three figures (for the first and the last day we had four and for the second day we had three sampling flights).

Trajectory distances over 24h ranged from 394 km to 1,115 km (Fig 4). There was a positive correlation (R2 = 0.477, P = 0.027) between trajectory distance, x, and number of species, S, with the best fit given by a power law with exponent 0.668 (Fig 4).

Discussion

Previous work has shown that Lagrangian coherent structures (LCSs), also known as atmospheric transport barriers (ATBs), were associated with punctuated changes in atmospheric populations of Fusarium (Schmale et al. 2012; Tallapragada et al. 2011). Little is known about

51 the structure, composition, and potential origin of atmospheric populations of Fusarium. We used UAVs to collect viable spores of Fusarium 100 m above the ground level to test the hypotheses that (1) atmospheric populations of Fusarium are diverse and dynamic across large- scale temporal and spatial gradients and (2) potential sources of Fusarium extend across broad geographical regions. This study contributes to an increased understanding of the life history of

Fusarium.

FusariumID and GenBank BLAST queries, coupled with model-oriented phylogenetic analyses leveraging maximum likelihood and Bayesian statistical methods, revealed at least 12 species of Fusarium in our collections. Two of these species F. babinda and F. equiseti formed a large poorly resolved (i.e. polytomy) with a large number of flight isolates that together comprised the more basal regions of the Fusarium phylogeny. These F. babinda/equiseti-like strains may represent the more ancestral state of the Fusarium species complex present in these analyses. This poorly resolved region was not an artifact of fast evolving species, but rather many closely related isolates that likely diverged very rapidly from one another. Additional phylogenetic analyses evaluating multiple loci will be required to resolve these Fusarium isolates into one or more distinct species in the future.

Some of the species recovered from our collections were expected (e.g., F. avenaceum,

F. graminearum, F. oxysporum, F. sporotrichioides, etc.), since these species have been reported in agroecosystems (Fernando et al. 2000; Katan et al. 1997; Martin 1988; Schmale et al. 2005).

Previous work by Schmale et al. (2012) reported that isolates of F. graminearum collected 40 to

320 m above ground level were pathogens on wheat and produced trichothecene mycotoxins.

Other species recovered in our populations were unexpected (e.g., F. lactis and F. circinatum).

Isolates of F. lactis have been reported from California, but to our knowledge have not been

52 reported in the state of Virginia (Leslie and Summerell 2006). An isolate of F. circinatum, causal agent of pitch canker disease of pine, was collected on F149. Though the first report of F. circinatum in the U.S. was on Pinus virginiana in the state of North Carolina (Nirenberg and

O'Donnell 1998), this has not been reported previously in the state of Virginia. Recent greenhouse studies (Hill, Lin, and Schmale, unpublished observations) have demonstrated that the isolate of F. circinatum collected on F149 can cause pitch canker on a susceptible greenhouse-grown pine host (Pinus echinata). The potential source region for this isolate of F. circinatum is unknown, but modeling efforts conducted as part of this work suggest the contribution of multiple potential sources across broad geographical regions west and northwest of our sampling site, including Virginia, West Virginia, Kentucky, Ohio, and Indiana (see Fig

3(a)).

Species richness, evenness, and diversity varied within and among our flight populations, supporting our hypothesis that atmospheric populations of Fusarium are diverse and dynamic.

We used an index combining both species richness and abundance to provide an indication of

Fusarium species diversity for each individual sampling flight. This diversity is likely influenced by many factors, including potential inoculum sources and source regions (Bennett et al. 2005;

Leslie and Summerell 2006; Ma et al. 2004; Schmale et al. 2006). Based on the information reviewed in Leslie and Summerell (2006), some Fusarium species have specific plant hosts (e.g.,

F. lactis and fig) while other have broad host ranges (e.g., F. oxysporum). Some species appears to be associated with specific geographic areas (e.g., F. lactis has mostly been observed in

California, USA) (Leslie and Summerell 2006), while others are ubiquitous (e.g., F. graminearum, F. fujikuroi, F. oxysporum, etc.). It is interesting that we collected species of

Fusarium which represent so many different variations of the life history of Fusarium; species

53 representing both broad and narrow host ranges, and species representing both broad and narrow source regions worldwide.

Back trajectory analyses conducted 6 to 24 hours prior to our collections suggested the contribution of multiple sources of Fusarium across broad geographical regions. Fortuitously, the wind was coming from a significantly different direction each day, which provides a means to geographically constrain the corresponding source regions for the Fusarium species sampled:

F. circinatum, F. proliferatum, and F. verticillioides were only collected on 28-Sep-2010, which came primarily from west-northwest of the sampling site; F. lactis and F. sambucinum were only collected on 29-Sep-2010, primarily from east-southeast of the sampling site; and F. armeniacum, F. avenaceum, and F. lateritium were only collected on 01-Oct-2010, primarily from north of the sampling site. F. babina/equiseti-like, F. fujikuroi, and F. sporotrichioides were collected in large numbers on 28-Sep-2010 and 01-Oct-2010, but not 29-Sep-2010, suggesting source regions to the west and north of the sampling site. Similarly, the collection pattern for F. oxysporum suggests source regions to the east, north, and south, but not from the west. The most ubiquitous species are those categorized as F. babinda/equiseti-like, which was collected in large numbers on each day, suggesting a large geographic range including the eastern U.S. Interestingly, the geographic pattern for F. babinda/equiseti-like matched F. equiseti, which 75% of the spores coming on 01-Oct-2010, from the north (similar to 70% for F. equiseti), suggesting host plants with a common geographic range. Overall, we notice that the fewest spores were collected on 29-Sep-2010, where back-trajectory analysis indicates that at 24 hours, the source region includes a significant fraction in the Atlantic Ocean. As no host plants are present in the ocean, this may provide an explanation for the smaller spore numbers on 29-

54 Sep-2010, i.e., the spores contributing to the sample would be limited to only the potential source area over dry land.

Based on the assumptions of back trajectory analyses, the area of the potential source region increases with time. On 28-Sep-2010, source regions were as follows: at 6 hours the west of Virginia, at 12 hours the central part of Kentucky, at 24 hours the eastern part of Indiana, south and western portions of Ohio, and the southwest of West Virginia. On 29-Sep-2010, source regions were as follows: at 6 hours the central part of Virginia, at 12 hours Virginia and North

Carolina, and at 24 hours the South-West of Virginia and West Virginia, central part of North

Carolina, East of South Carolina, and the Atlantic Ocean. On 01-Oct-2010, source regions were as follows: at 6 hours the central part of West Virginia, at 12 hours the North-West Pennsylvania,

North-East Ohio, and Lake Erie, at 24 hours the North Michigan, Lake Huron, and North of Lake

Michigan. Thus, as the potential source region expands over time, there may be additional opportunity for differential source contributions from distinct geographic areas (Bowers et al.

2011). However, we found no correlation of species richness with potential source region area, which was consistent with the previous research demonstrating no strong influence of spatial structure on species richness (Harrison et al. 2006). The size of the potential source region area may be more a reflection of modeling uncertainty than an estimate of the size of the actual contributing region, i.e., the actual source area is a small subset of the potential source region, but is hard to pinpoint using the currently limited spatiotemporal resolution of meteorological models. Association analyses of species and/or genotypes from the potential source regions with our flight collections could be one of the direct results of this study. Though the actual contribution of these hypothesized source regions to the atmospheric populations of Fusarium

55 remains unclear, the diverse atmospheric populations of Fusarium suggest that inoculum may originate from multiple locations over large geographic distances.

An increased understanding of the structure, composition, and potential source regions of atmospheric assemblages of Fusarium may aid in the development of disease management strategies in the future. Future research aims to link to local (collected near the ground) and regional (collected in the lower atmosphere with UAVs) collections of Fusarium across different sampling times, dates, and seasons. The careful dissection of these linkages may provide additional clues about the life history of the Fusarium and how patterns in the species diversity depend on geographic scale.

Acknowledgments

This research was supported by the National Science Foundation under Grant Numbers DEB-

0919088 (Atmospheric transport barriers and the biological invasion of toxigenic fungi in the genus Fusarium) and CMMI-1100263 (Dynamical mechanisms influencing the population structure of airborne pathogens: Theory and observations). The Advanced Research Computing center at Virginia Tech provided parallel computing resources used in the phylogenetic analyses.

We thank J. Cianchetti for his excellent technical assistance with the construction, maintenance, and operation of the UAVs described in this work. We also thank Z. Bair for his help with transferring and maintaining fungal cultures described in this work.

56 Literature Cited

Astolfi P, Reynoso MM, Ramirez ML, Chulze SN, Alves TCA, Tessmann DJ, Del Ponte EM,

2012. Genetic population structure and trichothecene genotypes of Fusarium graminearum

isolated from wheat in southern Brazil. Plant Pathology 61: 289–295.

Bayraktar H, 2010. Genetic Diversity and Population Structure of Fusarium oxysporum f. sp

cepae, the Causal Agent of Fusarium Basal Plate Rot on Onion, using RAPD Markers.

Journal of Agricultural Sciences 16:139-149.

Bennett RS, Milgroom MG, Bergstrom GC, 2005. Population structure of seedborne

Phaeosphaeria nodorum on New York wheat. Phytopathology 95: 300-305.

Bentley AR, Leslie JF, Liew ECY, Burgess LW, Summerell BA, 2008. Genetic structure of

Fusarium pseudograminearum populations from the Australian grain belt. Phytopathology

98: 250-255.

Berek L, Petri IB, Mesterházy Á, Téren J, Molnár J, 2001. Effects of mycotoxins on human

immune functions in vitro. Toxicology in Vitro 15: 25-30.

Bissegger M, Rigling D, Heiniger U, 1997. Population structure and disease development of

Cryphonectria parasitica in European chestnut forests in the presence of natural

hypovirulence. Phytopathology 87: 50-59.

Bowers RM, McLetchie S, Knight R, Fierer N, 2011. Spatial variability in airborne bacterial

communities across land-use types and their relationship to the bacterial communities of

potential source environments. ISME J 5: 601-612.

Draxler RR, Hess GD, 1998. An overview of the Hysplit-4 modeling system for trajectories,

dispersion, and deposition. Austrian Meteorology Magazine 47: 295-308.

Fay B, Glaab H, Jacobsen I, and Schrodin R, 1995. Evaluation of Eulerian and Lagrangian

57 atmospheric transport models at the Deutscher Wetterdienst using ANATEX surface tracer

data. Atmospheric Environment 29: 2485-2497.

Felsenstein J, 1989. PHYLIP -- Phylogeny Inference Package (Version 3.2). Cladistics 5: 164-

166.

Fernando WGD, Miller JD, Seaman WL, Seifert K, Paulitz TC, 2000. Daily and seasonal

dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled

over wheat plots. Canadian Journal of Botany 78: 497-505.

Gale LR, Ward TJ, Balmas V, Kistler HC, 2007. Population subdivision of Fusarium

graminearum sensu stricto in the upper Midwestern United States. Phytopathology 97: 1434-

1439.

Geiser DM, Jimenez-Gasco MD, Kang SC, Makalowska I, Veeraraghavan N, Ward TJ, Zhang

N, Kuldau GA, O'Donnell K, 2004. FUSARIUM-ID v. 1.0: A DNA sequence database for

identifying Fusarium. European Journal of Plant Pathology 110: 473-479.

Harrison S, Safford HD, Grace JB, Viers JH, Davies KF, 2006. Regional and local species

richness in an insular environment: Serpentine plants in California. Ecological Monographs

76: 41-56.

Katan T, Shlevin E, Katan J, 1997. Sporulation of Fusarium oxysporum f. sp. lycopersici on

Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum. Phytopathology 87:

712-719.

Katoh K, Kuma K, Toh H, Miyata T, 2005. MAFFT version 5: improvement in accuracy of

multiple sequence alignment. Nucleic Acids Research 33: 511-518.

Katoh K, Misawa K, Kuma K, Miyata T, 2002. MAFFT: a novel method for rapid multiple

sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.

58 Kerényi Z, Zeller K, Hornok L, Leslie JF, 1999. Molecular standardization of mating type

terminology in the Gibberella fujikuroi species complex. Applied and Environmental

Microbiology 65: 4071-4076.

Khan AS, 2006. Methodology for Assessing Biodiversity, Centre of Advanced Study in Marine

Biology. Annamalai University.

Lee T, Lee SH, Lee J, Nam YJ, Lee S, Ryu JG, 2010. Population Structure of Fusarium

graminearum from Maize and Rice in 2009 in Korea. Plant Pathology Journal 26: 321-327.

Leslie JF, Summerell BA, 2006. The Fusarium Laboratory Manual, Blackwell Publishing,

Ames, Iowa.

Leslie JF, Zeller KA, Summerell BA, 2001. Icebergs and species in populations of Fusarium.

Physiological and Molecular Plant Pathology 59: 107-117.

Lin, B., Bozorgmagham, A., Ross, S. D., and Schmale, D. G. (2013). Small fluctuations in the

recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m

above ground level. Aerobiologia 29, 45-54.

Ma Z, Luo Y, Michailides TJ, 2004. Spatiotemporal Changes in the Population Structure of

Botryosphaeria dothidea from California Pistachio Orchards. Phytopathology 94: 326-332.

Magurran AE, 2004. Measuring Biological Diversity. African Journal of Aquatic Science 29:

285-286.

Maldonado-Ramirez SL, Schmale DG, Shields EJ, Bergstrom GC, 2005. The relative abundance

of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-

distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest

Meteorology 132: 20-27.

59 Martin RA, 1988. Use of a high-through-put jet sampler for monitoring viable airborne

propagules of Fusarium in wheat. Canadian Journal of Plant Pathology 10: 359-360.

McMullen M, Jones R, Gallenberg D, 1997. Scab of Wheat and Barley: A Re-emerging Disease

of Devastating Impact. Plant Disease 81; 1340-1348.

Mohammadi A, Mofrad NN, 2009. Genetic diversity in population of Fusarium solani from

cumin in Iran. Journal of Plant Protection Research 49: 283-286.

Nirenberg HI, O'Donnell K, 1998. New Fusarium species and combinations within the

Gibberella fujikuroi species complex. Mycologia 90: 434-458.

O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC, 1998. Multiple evolutionary origins of the

fungus causing Panama disease of banana: concordant evidence from nuclear and

mitochondrial gene genealogies. Proceedings of the National Academy of Sciences 95: 2044-

2049.

O’Donnell K, 1996. Progress towards a phylogenetic classification of Fusarium. Sydowia 48: 57-

70.

Rambaut A, 2009. Fig.Tree. Tree Figure Drawing Tool, Version 1.2.2. Available from:

http://tree.bio.ed.ac.uk/software/figtree/.

Rambaut A, Drummond AJ, 2003. Tracer. Version 1.5.0. Available from:

http://beast.bio.ed.ac.uk.

Reynoso M, Chulze S, Zeller K, Torres A, Leslie J, 2009. Genetic structure of Fusarium

verticillioides populations isolated from maize in Argentina. European Journal of Plant

Pathology 123: 207-215.

Ronquist F, Huelsenbeck JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed

models. Bioinformatics 19: 1572-1574.

60 Schmale DG, Ross SG, Fetters T, Tallapragada P, Wood-Jones A, Dingus B, 2012. Isolates of

Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head

blight in wheat and produce trichothecene mycotoxins. Aerobiologia 28: 1-11.

Schmale DG, Arntsen QA, Bergstrom GC, 2005. The forcible discharge distance of ascospores

of Gibberella zeae. Canadian Journal of Plant Pathology 27: 376–382.

Schmale DG, Leslie JF, Zeller KA, Saleh AA, Shields EJ, Bergstrom GC, 2006. Genetic

structure of atmospheric populations of Gibberella zeae. Phytopathology 96: 1021-1026.

Simpson EH, 1949. Measurement of diversity. Nature 163: 688.

Talas F, Parzies H, Miedaner T, 2011. Diversity in genetic structure and chemotype composition

of Fusarium graminearum sensu stricto populations causing wheat head blight in individual

fields in Germany. European Journal of Plant Pathology 131: 39-48.

Tallapragada P, Ross SD, Schmale DG, 2011. Lagrangian coherent structures are associated with

fluctuations in airborne microbial populations. Chaos 21: 033122.

Tuomisto H, 2010. A consistent terminology for quantifying species diversity? Yes, it does exist.

Oecologia 164: 853-860.

Wikler K, Gordon TR, 2000. An initial assessment of genetic relationships among populations of

Fusarium circinatum in different parts of the world. Canadian Journal of Botany 78: 709-

717.

Zeller KA, Bowden RL, Leslie JF, 2004. Population differentiation and recombination in wheat

scab populations of Gibberella zeae from the United States. Molecular Ecology 13: 563-571.

Zwickl DJ, 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological

sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The

University of Texas at Austin.

61 Supplemental Table 1. Comparisons of GenBank, Fusarium-ID, and phylogenetic analyses for all of the isolates collected 100 m above ground level during September and October, 2010.

Isolate Flight Date Genbank Identification based on Fusarium-ID Query Fusarium-ID Identification based on GenBank Query Genbank Identification Identification Accession Number (%) (%) using Garli using method Bayesian method F147N F147 28-Sep- KC874683 F. incarnatum-equiseti species complex isolate NRRL 610 / 612 Fusarium sp. NRRL 5537 627/632 F. F. 1 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F147N F147 28-Sep- KC874684 F. incarnatum-equiseti species complex isolate NRRL 609 / 610 Fusarium sp. NRRL 45996 632/637 F. F. 5 10 45996, MLST1-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F148N F148 28-Sep- KC874685 FD_01857_EF-1a [Fusarium sp.] 608 / 608 Gibberella fujikuroi isolate V95 619/621 F. fujikuroi F. fujikuroi 2 10 (100%) (99%)

F148N F148 28-Sep- KC874686 FD_01389_EF-1a_2 [Fusarium proliferatum] 609 / 610 Fusarium proliferatum isolate 2-91 626/630 F. F. 3 10 (99%) (99%) proliferatum proliferatum

F148N F148 28-Sep- KC874687 FD_01857_EF-1a [Fusarium sp.] 619 / 625 Gibberella fujikuroi partial tef-1 gene 639/645 F. fujikuroi F. fujikuroi 4 10 (99%) (99%)

F148N F148 28-Sep- KC874688 F. incarnatum-equiseti species complex isolate NRRL 607 / 621 Fusarium cf. incarnatum M03-11209S-1 636/640 F. F. 6 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F148N F148 28-Sep- KC874689 FD_01304_EF-1a [Fusarium sp.] 615 / 617 Fusarium sporotrichioides strain NRRL 628/632 F. F. 7 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F148N F148 28-Sep- KC874690 F. incarnatum-equiseti species complex isolate NRRL 596 / 604 Fusarium sp. NRRL 32997 621/635 F. F. 8 10 32997, MLST7-a (99%) (98%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874691 FD_01304_EF-1a [Fusarium sp.] 626 / 632 Fusarium sporotrichioides strain NRRL 643/648 F. F. 3 10 (99%) 52928 (99%) sporotrichioi sporotrichioi des des F149N F149 28-Sep- KC874692 FD_01857_EF-1a [Fusarium sp.] 601 / 602 Gibberella fujikuroi partial tef-1 gene 622/627 F. fujikuroi F. fujikuroi 6 10 (99%) (99%)

F149N F149 28-Sep- KC874693 GFSC isolate NRRL 25331, MLSTGibberella 615 / 624 Gibberella circinata strain NRRL25331 620/630 F. circinatum F. circinatum 7 10 fujikuroi species complex (99%) (99%)

F149N F149 28-Sep- KC874694 FD_01388_EF-1a [Fusarium verticillioides] 642 / 645 Gibberella moniliformis strain 651/656 F. F. 8 10 (99%) PUMCH10XB00173 (99%) verticillioides verticillioides

F149N F149 28-Sep- KC874695 F. incarnatum-equiseti species complex isolate NRRL 672 / 678 Fusarium sp. NRRL 5537 672/678 F. F. 9 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874696 F. incarnatum-equiseti species complex isolate NRRL 635 / 651 Fusarium cf. incarnatum M03-11209S-1 654/657 F. F. 11 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874697 F. incarnatum-equiseti species complex isolate NRRL 609 / 624 Fusarium cf. incarnatum M03-11209S-1 628/630 F. F. 12 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874698 F. incarnatum-equiseti species complex isolate NRRL 633 / 649 Fusarium cf. incarnatum M03-11209S-1 652/655 F. F. 13 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like

62 F149N F149 28-Sep- KC874699 FD_01857_EF-1a [Fusarium sp.] 602 / 604 Gibberella fujikuroi isolate V95 608/611 F. fujikuroi F. fujikuroi 17 10 (99%) (99%)

F149N F149 28-Sep- KC874700 FD_01119_EF-1a [Fusarium graminearum] 625 / 629 Gibberella zeae strain LMSA 1.09.107 614/615 F. F. 19 10 (99%) (99%) graminearum graminearum

F149N F149 28-Sep- KC874701 FD_01304_EF-1a [Fusarium sp.] 628 / 631 Fusarium sporotrichioides strain NRRL 651/655 F. F. 20 10 (99%) 52928 (99%) sporotrichioi sporotrichioi des des F149N F149 28-Sep- KC874702 F. incarnatum-equiseti species complex isolate NRRL 576 / 612 Fusarium cf. incarnatum H04-707S-4 626/631 F. F. 21 10 45996, MLST1-a (94%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874703 F. incarnatum-equiseti species complex isolate NRRL 614 / 614 Fusarium sp. NRRL 5537 629/632 F. F. 23 10 5537, MLST8-a (100%) (99%) babinda/equi babinda/equi seti-like seti-like F149N F149 28-Sep- KC874704 FD_01304_EF-1a [Fusarium sp.] 618 / 621 Fusarium sporotrichioides strain NRRL 624/627 F. F. 24 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F149N F149 28-Sep- KC874705 F. incarnatum-equiseti species complex isolate NRRL 606 / 621 Fusarium cf. incarnatum M03-11209S-1 637/642 F. F. 25 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874706 FD_01858_EF-1a [Fusarium sp.] 609 / 611 F. proliferatum isolate NL131-2 626/630 F. F. 1 10 (99%) (99%) proliferatum proliferatum

F150N F150 28-Sep- KC874707 F. incarnatum-equiseti species complex isolate NRRL 608 / 611 Fusarium cf. incarnatum M03-11241S-2 617/619 F. F. 2 10 32522, MLST18-b (99%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874708 F. incarnatum-equiseti species complex isolate NRRL 607 / 609 Fusarium cf. incarnatum DFH-2010 isolate 613/616 F. F. 3 10 32522, MLST18-b (99%) M02-7085S-4 (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874709 FD_01304_EF-1a [Fusarium sp.] 614 / 617 Fusarium sporotrichioides strain NRRL 623/627 F. F. 5 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F150N F150 28-Sep- KC874710 FD_01857_EF-1a [Fusarium sp.] 596 / 597 Gibberella fujikuroi isolate V22 610/613 F. fujikuroi F. fujikuroi 6 10 (99%) (99%)

F150N F150 28-Sep- KC874711 FD_01857_EF-1a [Fusarium sp.] 604 / 606 Gibberella fujikuroi isolate V22 607/609 F. fujikuroi F. fujikuroi 7 10 (99%) (99%)

F150N F150 28-Sep- KC874712 F. incarnatum-equiseti species complex isolate NRRL 610 / 613 Fusarium cf. incarnatum M03-11241S-2 626/630 F. F. 8 10 32522, MLST18-b (99%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874713 F. incarnatum-equiseti species complex isolate NRRL 602 / 618 Fusarium cf. incarnatum M03-11209S-1 626/630 F. F. 9 10 32993, MLST25-b (97%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874714 F. incarnatum-equiseti species complex isolate NRRL 606 / 621 Fusarium cf. incarnatum M03-11209S-1 628/631 F. F. 10 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874715 F. incarnatum-equiseti species complex isolate NRRL 610 / 625 Fusarium cf. incarnatum M03-11209S-1 627/629 F. F. 11 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874716 F. incarnatum-equiseti species complex isolate NRRL 591 / 605 Fusarium cf. incarnatum M03-11209S-1 627/632 F. F. 13 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F150N F150 28-Sep- KC874717 F. incarnatum-equiseti species complex isolate NRRL 606 / 620 Fusarium cf. incarnatum M03-11209S-1 633/636 F. F. 14 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like

63 F150N F150 28-Sep- KC874718 F. incarnatum-equiseti species complex isolate NRRL 591 / 605 Fusarium cf. incarnatum M03-11209S-1 610/611 F. F. 15 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F151N F151 29-Sep- KC874719 F. incarnatum-equiseti species complex isolate NRRL 604 / 619 Fusarium cf. incarnatum M03-11209S-1 623/625 F. F. 1 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F151N F151 29-Sep- KC874720 FD_00986_EF-1a [Fusarium graminearum] 618 / 619 Gibberella zeae strain NRRL 31084 622/624 F. F. 3 10 (99%) (99%) graminearum graminearum

F151N F151 29-Sep- KC874721 FD_01857_EF-1a [Fusarium sp.] 587 / 588 Gibberella fujikuroi isolate V22 607/611 F. fujikuroi F. fujikuroi 4 10 (99%) (99%)

F151N F151 29-Sep- KC874722 FD_00986_EF-1a [Fusarium graminearum] 511 / 535 Gibberella zeae isolate CS3005 531/555 F. F. 5 10 (96%) (96%) graminearum graminearum

F151N F151 29-Sep- KC874723 F. incarnatum-equiseti species complex isolate NRRL 599 / 599 Fusarium sp. NRRL 32522 610/612 F. F. 6 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F151N F151 29-Sep- KC874724 F. incarnatum-equiseti species complex isolate NRRL 611 / 612 Fusarium sp. NRRL 32522 618/621 F. F. 8 10 32522, MLST18-b (99%) (99%) babinda/equi babinda/equi seti-like seti-like F151N F151 29-Sep- KC874725 FD_01119_EF-1a [Fusarium graminearum] 546 / 554 Gibberella zeae isolate CS3005 622/668 F. F. 9 10 (99%) (94%) graminearum graminearum

F151N F151 29-Sep- KC874726 FD_01119_EF-1a [Fusarium graminearum] 625 / 628 Gibberella zeae isolate G5S 611/612 F. F. 10 10 (99%) (99%) graminearum graminearum

F152N F152 29-Sep- KC874727 F. oxysporum species complex isolate NRRL 28391, 618 / 619 Fusarium oxysporum strain NRRL 43431 618/619 F. F. 2 10 MLST103 (99%) (99%) oxysporum oxysporum

F152N F152 29-Sep- KC874728 GFSC isolate NRRL 25200, MLSTGibberella 620 / 634 Fusarium lactis strain NRRL25200 620/634 F. lactis F. lactis 4 10 fujikuroi species complex (98%) (98%)

F152N F152 29-Sep- KC874729 F. oxysporum species complex isolate NRRL 28391, 604 / 605 Fusarium oxysporum strain NRRL 26404 615/618 F. F. 5 10 MLST103 (99%) (99%) oxysporum oxysporum

F153N F153 29-Sep- KC874730 F. incarnatum-equiseti species complex isolate NRRL 580 / 605 Fusarium cf. incarnatum M03-11209S-1 604/617 F. F. 1 10 32993, MLST25-b (96%) PCNB (98%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874731 F. incarnatum-equiseti species complex isolate NRRL 601 / 616 Fusarium cf. incarnatum M03-11209S-1 614/615 F. F. 2 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874732 GFSC isolate NRRL 25200, MLSTGibberella 605 / 618 Fusarium lactis strain NRRL25200 613/628 F. lactis F. lactis 3 10 fujikuroi species complex (98%) (98%)

F153N F153 29-Sep- KC874733 F. incarnatum-equiseti species complex isolate NRRL 589 / 605 Fusarium cf. incarnatum M03-11209S-1 608/611 F. F. 4 10 32993, MLST25-b (97%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874734 FD_01853_EF-1a [Fusarium sp.] 630 / 633 Fusarium sporotrichioides strain F95 655/658 F. F. 5 10 (99%) (99%) sporotrichioi sporotrichioi des des F153N F153 29-Sep- KC874735 F. incarnatum-equiseti species complex isolate NRRL 602 / 603 Fusarium cf. incarnatum DFH-2010 isolate 609/610 F. F. 6 10 32522, MLST18-b (99%) M02-7033S-4 (99%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874736 F. incarnatum-equiseti species complex isolate NRRL 553 / 564 Fusarium cf. incarnatum M03-11209S-1 579/582 F. F. 8 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like

64 F153N F153 29-Sep- KC874737 FD_01119_EF-1a [Fusarium graminearum] 647 / 650 Gibberella zeae isolate G5S 613/613 F. F. 9 10 (99%) (100%) graminearum graminearum

F153N F153 29-Sep- KC874738 FD_01307_EF-1a [Fusarium sp.] 531 / 554 Fusarium sambucinum partial tef-1alpha 532/554 F. F. 10 10 (96%) gene (97%) sambucinum sambucinum

F153N F153 29-Sep- KC874739 F. incarnatum-equiseti species complex isolate NRRL 569 / 604 Fusarium cf. incarnatum H04-707S-4 622/625 F. F. 11 10 45996, MLST1-a (94%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874740 F. incarnatum-equiseti species complex isolate NRRL 609 / 610 Fusarium sp. NRRL 5537 624/628 F. F. 12 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F153N F153 29-Sep- KC874741 F. incarnatum-equiseti species complex isolate NRRL 634 / 651 Fusarium cf. incarnatum M03-11209S-1 651/654 F. F. 13 10 32993, MLST25-b (97%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F154N F154 1-Oct- KC874742 FD_01114_EF-1a [Fusarium graminearum] 613 / 616 Gibberella zeae strain LMSA 1.09.129 644/649 F. F. 1 10 (99%) (99%) graminearum graminearum

F154N F154 1-Oct- KC874743 FD_00986_EF-1a [Fusarium graminearum] 608 / 609 Gibberella zeae strain NRRL 31084 617/621 F. F. 2 10 (99%) (99%) graminearum graminearum

F154N F154 1-Oct- KC874744 F. incarnatum-equiseti species complex isolate NRRL 598 / 598 Fusarium sp. NRRL 32522 604/605 F. F. 3 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F154N F154 1-Oct- KC874745 F. incarnatum-equiseti species complex isolate NRRL 599 / 599 Fusarium sp. NRRL 32522 616/619 F. F. 4 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F154N F154 1-Oct- KC874746 FD_01119_EF-1a [Fusarium graminearum] 604 / 618 Gibberella zeae isolate CS3005 623/637 F. F. 5 10 (98%) (98%) graminearum graminearum

F154N F154 1-Oct- KC874747 F. oxysporum species complex isolate NRRL 40182, 629 / 629 Fusarium oxysporum strain NRRL28359 628/629 F. F. 6 10 MLST99 (100%) (99%) oxysporum oxysporum

F154N F154 1-Oct- KC874748 FD_01304_EF-1a [Fusarium sp.] 605 / 606 Fusarium sporotrichioides EF-1alpha gene, 624/624 F. F. 7 10 (99%) strain: CBS 119839 (100%) sporotrichioi sporotrichioi des des F154N F154 1-Oct- KC874749 F. incarnatum-equiseti species complex isolate NRRL 507 / 540 Fusarium cf. incarnatum DFH-2010 isolate 533/554 F. F. 8 10 36123, MLST4-b (94%) M02-7079S-5 (97%) babinda/equi babinda/equi seti-like seti-like F154N F154 1-Oct- KC874750 FD_01853_EF-1a [Fusarium sp.] 607 / 609 Fusarium sporotrichioides strain NRRL 613/615 F. F. 11 10 (99%) 53434 (99%) sporotrichioi sporotrichioi des des F155N F155 1-Oct- KC874751 F. incarnatum-equiseti species complex isolate NRRL 603 / 605 Fusarium sp. NRRL 34039 618/623 F. F. 1 10 34039, MLST1-b (99%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874752 FD_01857_EF-1a [Fusarium sp.] 584 / 587 Gibberella fujikuroi isolate V95 598/604 F. fujikuroi F. fujikuroi 2 10 (99%) (99%)

F155N F155 1-Oct- KC874753 FD_01119_EF-1a [Fusarium graminearum] 628 / 629 Gibberella zeae isolate CS3005 649/652 F. F. 3 10 (99%) (99%) graminearum graminearum

F155N F155 1-Oct- KC874754 F. incarnatum-equiseti species complex isolate NRRL 594 / 604 Fusarium sp. NRRL 32997 599/610 F. F. 4 10 32997, MLST7-a (98%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874755 F. incarnatum-equiseti species complex isolate NRRL 597 / 606 Fusarium sp. NRRL 32997 604/615 F. F. 5 10 32997, MLST7-a (98%) (99%) babinda/equi babinda/equi seti-like seti-like

65 F155N F155 1-Oct- KC874756 F. oxysporum species complex isolate NRRL 26962, 623 / 625 Fusarium oxysporum, strain ISPaVe1018 626/628 F. F. 6 10 MLST89 (99%) (99%) oxysporum oxysporum

F155N F155 1-Oct- KC874757 F. incarnatum-equiseti species complex isolate NRRL 599 / 599 Fusarium sp. NRRL 32522 610/612 F. F. 7 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874758 F. incarnatum-equiseti species complex isolate NRRL 598 / 599 Fusarium cf. incarnatum DFH-2010 isolate 610/612 F. F. 8 10 32522, MLST18-b (99%) M02-7033S-4 (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874759 F. incarnatum-equiseti species complex isolate NRRL 599 / 599 Fusarium sp. NRRL 32522 610/612 F. F. 10 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874760 F. incarnatum-equiseti species complex isolate NRRL 600 / 601 Fusarium cf. incarnatum DFH-2010 isolate 612/614 F. F. 11 10 32522, MLST18-b (99%) M02-7033S-4 (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874761 FD_01119_EF-1a [Fusarium graminearum] 573 / 580 Gibberella zeae strain LMSA 1.09.107 579/587 F. F. 12 10 (99%) (99%) graminearum graminearum

F155N F155 1-Oct- KC874762 F. incarnatum-equiseti species complex isolate NRRL 654 / 655 Fusarium sp. NRRL 5537 654/655 F. F. 13 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874763 F. incarnatum-equiseti species complex isolate NRRL 556 / 556 Fusarium sp. NRRL 5537 574/577 F. F. 14 10 5537, MLST8-a (100%) (99%) babinda/equi babinda/equi seti-like seti-like F155N F155 1-Oct- KC874764 F. incarnatum-equiseti species complex isolate NRRL 590 / 594 Fusarium sp. NRRL 45996 609/617 F. F. 15 10 45996, MLST1-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874765 FD_01345_EF-1a [Fusarium lateritium] 610 / 635 Fusarium lateritium isolate F0104 630/645 F. lateritium F. lateritium 1 10 (96%) (98%)

F156N F156 1-Oct- KC874766 F. oxysporum species complex isolate NRRL 40182, 605 / 606 Fusarium oxysporum strain NRRL 38361 619/623 F. F. 2 10 MLST99 (99%) (99%) oxysporum oxysporum

F156N F156 1-Oct- KC874767 FD_01857_EF-1a [Fusarium sp.] 596 / 600 Gibberella fujikuroi isolate V95 599/604 F. fujikuroi F. fujikuroi 3 10 (99%) (99%)

F156N F156 1-Oct- KC874768 FD_01857_EF-1a [Fusarium sp.] 545 / 546 Gibberella fujikuroi isolate V22 561/564 F. fujikuroi F. fujikuroi 4 10 (99%) (99%)

F156N F156 1-Oct- KC874769 F. incarnatum-equiseti species complex isolate NRRL 595 / 603 Fusarium equiseti EF-1alpha gene, strain: 611/615 F. F. 5 10 32997, MLST7-a (99%) MAFF 236723 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874770 FD_01304_EF-1a [Fusarium sp.] 615 / 617 Fusarium sporotrichioides strain NRRL 625/628 F. F. 6 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F156N F156 1-Oct- KC874771 FD_01345_EF-1a [Fusarium lateritium] 626 / 652 Fusarium lateritium isolate F0104 650/664 F. lateritium F. lateritium 9 10 (96%) (98%)

F156N F156 1-Oct- KC874772 F. incarnatum-equiseti species complex isolate NRRL 597 / 600 Fusarium cf. incarnatum DFH-2010 isolate 608/611 F. F. 10 10 32522, MLST18-b (99%) M02-7085S-4 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874773 FD_01843_EF-1a [Fusarium armeniacum] 594 / 597 Fusarium armeniacum strain NRRL 6227 603/604 F. F. 11 10 (99%) (99%) armeniacum armeniacum

F156N F156 1-Oct- KC874774 F. incarnatum-equiseti species complex isolate NRRL 576 / 611 Fusarium cf. incarnatum H04-707S-4 629/633 F. F. 13 10 45996, MLST1-a (94%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like

66 F156N F156 1-Oct- KC874775 FD_01857_EF-1a [Fusarium sp.] 602 / 604 Gibberella fujikuroi isolate V95 617/622 F. fujikuroi F. fujikuroi 14 10 (99%) (99%)

F156N F156 1-Oct- KC874776 F. incarnatum-equiseti species complex isolate NRRL 615 / 619 Fusarium cf. incarnatum DFH-2010 isolate 628/632 F. F. 15 10 32522, MLST18-b (99%) M02-7085S-4 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874777 GFSC isolate NRRL 44887, MLSTGibberella 600 / 601 Gibberella fujikuroi partial tef-1 gene 598/599 F. fujikuroi F. fujikuroi 16 10 fujikuroi species complex (99%) (99%)

F156N F156 1-Oct- KC874778 F. incarnatum-equiseti species complex isolate NRRL 601 / 621 Fusarium cf. incarnatum M03-11209S-1 628/637 F. F. 18 10 32993, MLST25-b (97%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874779 F. incarnatum-equiseti species complex isolate NRRL 614 / 615 Fusarium cf. incarnatum MLSTs 18-a and 624/627 F. F. 19 10 32522, MLST18-b (99%) 18-b clone spt134 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874780 FD_01853_EF-1a [Fusarium sp.] 591 / 623 Fusarium sporotrichioides strain NRRL 596/628 F. F. 20 10 (95%) 53434 (95%) sporotrichioi sporotrichioi des des F156N F156 1-Oct- KC874781 F. incarnatum-equiseti species complex isolate NRRL 618 / 628 Fusarium cf. incarnatum M03-11209S-1 631/635 F. F. 21 10 32997, MLST7-a (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874782 FD_00986_EF-1a [Fusarium graminearum] 619 / 620 Gibberella zeae strain NRRL 31084 623/625 F. F. 22 10 (99%) (99%) graminearum graminearum

F156N F156 1-Oct- KC874783 F. incarnatum-equiseti species complex isolate NRRL 612 / 612 Fusarium cf. incarnatum NRRL 43498 624/626 F. F. 24 10 5537, MLST8-a (100%) (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874784 FD_01857_EF-1a [Fusarium sp.] 603 / 604 Gibberella fujikuroi isolate V95 613/616 F. fujikuroi F. fujikuroi 27 10 (99%) (99%)

F156N F156 1-Oct- KC874785 F. incarnatum-equiseti species complex isolate NRRL 614 / 615 Fusarium cf. incarnatum MLSTs 18-a and 620/622 F. F. 28 10 32522, MLST18-b (99%) 18-b clone spt134 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874786 FD_01857_EF-1a [Fusarium sp.] 608 / 611 Gibberella fujikuroi isolate V22 614/617 F. fujikuroi F. fujikuroi 29 10 (99%) (99%)

F156N F156 1-Oct- KC874787 F. incarnatum-equiseti species complex isolate NRRL 641 / 643 Fusarium cf. incarnatum NRRL 43498 632/635 F. F. 30 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874788 FD_01857_EF-1a [Fusarium sp.] 614 / 616 Gibberella fujikuroi isolate V22 618/620 F. fujikuroi F. fujikuroi 32 10 (99%) (99%)

F156N F156 1-Oct- KC874789 FD_01317_EF-1a [Fusarium sp.] 607 / 623 Gibberella avenacea voucher FRC R-9369 618/622 F. F. 33 10 (97%) (99%) avenaceaum avenaceaum

F156N F156 1-Oct- KC874790 F. incarnatum-equiseti species complex isolate NRRL 610 / 626 Fusarium cf. incarnatum M03-11209S-1 636/641 F. F. 35 10 32993, MLST25-b (97%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874791 F. incarnatum-equiseti species complex isolate NRRL 620 / 622 Fusarium cf. incarnatum MLST 3-b clone 627/630 F. F. 36 10 28029, MLST3-b (99%) spt072 (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874792 FD_01304_EF-1a [Fusarium sp.] 614 / 617 Fusarium sporotrichioides strain NRRL 618/621 F. F. 37 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F156N F156 1-Oct- KC874793 F. incarnatum-equiseti species complex isolate NRRL 614 / 615 Fusarium cf. incarnatum MLSTs 18-a and 619/622 F. F. 39 10 32522, MLST18-b (99%) 18-b clone spt134 (99%) babinda/equi babinda/equi seti-like seti-like

67 F156N F156 1-Oct- KC874794 FD_01376_EF-1a [Fusarium oxysporum] 618 / 619 Fusarium oxysporum f. sp. ciceris strain 623/625 F. F. 40 10 (99%) NRRL 32158 (99%) oxysporum oxysporum

F156N F156 1-Oct- KC874795 FD_01304_EF-1a [Fusarium sp.] 628 / 631 Fusarium sporotrichioides strain NRRL 633/636 F. F. 41 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F156N F156 1-Oct- KC874796 F. incarnatum-equiseti species complex isolate NRRL 625 / 626 Fusarium cf. incarnatum NRRL 43498 629/631 F. F. 42 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874797 F. incarnatum-equiseti species complex isolate NRRL 574 / 609 Fusarium cf. incarnatum DFH-2010 isolate 609/631 F. F. 43 10 36123, MLST4-b (94%) M02-7079S-5 (97%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874798 F. oxysporum species complex isolate NRRL 26962, 619 / 620 Fusarium oxysporum,strain ISPaVe1018 623/625 F. F. 44 10 MLST89 (99%) (99%) oxysporum oxysporum

F156N F156 1-Oct- KC874799 F. incarnatum-equiseti species complex isolate NRRL 599 / 615 Fusarium cf. incarnatum MLSTs 18-a and 612/631 F. F. 45 10 32522, MLST18-b (97%) 18-b clone spt134 (97%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874800 F. incarnatum-equiseti species complex isolate NRRL 577 / 612 Fusarium cf. incarnatum DFH-2010 isolate 615/640 F. F. 47 10 36123, MLST4-b (94%) M02-7079S-5 (96%) babinda/equi babinda/equi seti-like seti-like F156N F156 1-Oct- KC874801 F. incarnatum-equiseti species complex isolate NRRL 569 / 606 Fusarium cf. incarnatum DFH-2010 isolate 597/621 F. F. 49 10 36123, MLST4-b (94%) M02-7079S-5 (96%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874802 F. incarnatum-equiseti species complex isolate NRRL 604 / 605 Fusarium cf. incarnatum M03-11345S-1 604/605 F. F. 1 10 34005, MLST24-a (99%) DCPA (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874803 FD_01857_EF-1a [Fusarium sp.] 584 / 594 Gibberella fujikuroi isolate V95 595/607 F. fujikuroi F. fujikuroi 2 10 (98%) (98%)

F157N F157 1-Oct- KC874804 FD_01345_EF-1a [Fusarium lateritium] 624 / 651 Fusarium lateritium isolate F0104 635/650 F. lateritium F. lateritium 3 10 (96%) (98%)

F157N F157 1-Oct- KC874805 F. incarnatum-equiseti species complex isolate NRRL 610 / 624 Fusarium cf. incarnatum M03-11209S-1 629/630 F. F. 4 10 32993, MLST25-b (98%) PCNB (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874806 FD_01857_EF-1a [Fusarium sp.] 611 / 614 Gibberella fujikuroi isolate V22 614/617 F. fujikuroi F. fujikuroi 5 10 (99%) (99%)

F157N F157 1-Oct- KC874807 F. oxysporum species complex isolate NRRL 26962, 577 / 577 Fusarium oxysporum 580/580 F. F. 6 10 MLST89 (100%) (100%) oxysporum oxysporum

F157N F157 1-Oct- KC874808 FD_01304_EF-1a [Fusarium sp.] 620 / 623 Fusarium sporotrichioides strain NRRL 621/623 F. F. 7 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F157N F157 1-Oct- KC874809 FD_00929_EF-1a [Fusarium sp.] 535 / 539 Fusarium sporotrichioides strain NRRL 541/544 F. F. 8 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des F157N F157 1-Oct- KC874810 F. incarnatum-equiseti species complex isolate NRRL 499 / 500 Fusarium cf. incarnatum MLSTs 18-a and 503/505 F. F. 9 10 32522, MLST18-b (99%) 18-b clone spt134 (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874811 F. incarnatum-equiseti species complex isolate NRRL 475 / 480 Fusarium cf. incarnatum DFH-2010 isolate 477/480 F. F. 10 10 32522, MLST18-b (99%) M02-7085S-4 (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874812 FD_01853_EF-1a [Fusarium sp.] 600 / 602 Fusarium sporotrichioides strain NRRL 600/602 F. F. 11 10 (99%) 29977 (99%) sporotrichioi sporotrichioi des des

68 F157N F157 1-Oct- KC874813 F. incarnatum-equiseti species complex isolate NRRL 612 / 613 Fusarium cf. incarnatum DFH-2010 isolate 628/631 F. F. 12 10 32522, MLST18-b (99%) M02-7033S-4 (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874814 F. incarnatum-equiseti species complex isolate NRRL 602 / 604 Fusarium cf. incarnatum NRRL 43498 606/609 F. F. 13 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874815 F. incarnatum-equiseti species complex isolate NRRL 336 / 336 Fusarium sp. NRRL 32522 339/340 F. F. 14 10 32522, MLST18-b (100%) (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874816 F. incarnatum-equiseti species complex isolate NRRL 534 / 536 Fusarium cf. incarnatum NRRL 43498 540/543 F. F. 15 10 5537, MLST8-a (99%) (99%) babinda/equi babinda/equi seti-like seti-like F157N F157 1-Oct- KC874817 FD_01376_EF-1a [Fusarium oxysporum] 623 / 624 Fusarium oxysporum f. sp. ciceris strain 630/633 F. F. 16 10 (99%) NRRL 32158 (99%) oxysporum oxysporum

69 Supplemental Fig S1. Phylogram of Bayesian phylogenetic analysis. Red branches are reference Fusarium strains, and black branches are Fusarium strains sampled during the flights.

Grey branches indicate non-Fusarium fungal strains used as an out group to root the tree.

Branch lengths indicate the posterior nucleotide substitution rate.

70 Supplemental Fig S2. Cladogram of Bayesian phylogenetic analysis. Branch colors are described in Supplemental Fig S1. Node labels indicate posterior probabilities for each node.

71 Supplemental Fig S3. Maximum Likelihood phylogenetic analysis cladogram. Branch colors are described in Supplemental Fig S1. Node labels indicate non-parametric bootstrap support values.

72 Table 1: Colony forming units (CFUs) of Fusarium collected with UAVs 100 m above ground level at Virginia Tech’s Kentland Farm during September and October, 2010. The UAVs were equipped with eight microbe-sampling devices that were opened by remote control from the ground once the UAV reached its target altitude of 100 m, and exposed to the atmosphere for durations of 8-15 min. A portion of the translation elongation factor 1-alpha gene (TEF-1) was amplified and sequenced to assist in the identification of the isolates to species. The Simpson index was used to provide a measure of species richness, evenness, and diversity within and among our flight populations.

Flights Dates Start Stop Sampling Number of Number of Simpson Time Time Time (min) isolates (N) species (s) Index (Ds)*

Flight147 28-Sep- 0959 1014 15 2 1 0 10 Flight148 28-Sep- 1118 1133 15 6 4 3.60 10 Flight149 28-Sep- 1412 1427 15 15 6 3.46 10 Flight150 28-Sep- 1532 1540 8 13 4 1.94 10 Flight151 29-Sep- 0915 0926 11 8 3 2.46 10 Flight152 29-Sep- 1029 1044 15 3 2 1.80 10 Flight153 29-Sep- 1323 1338 15 12 5 2.12 10 Flight154 01-Oct- 0908 0923 15 9 4 3.52 10 Flight155 01-Oct- 1203 1218 15 14 4 1.85 10 Flight156 01-Oct- 1428 1443 15 37 8 3.38 10 Flight157 01-Oct- 1700 1708 8 16 5 3.12 10 * Species diversity:

Where Pi = ni/N N = the total number of individuals found of all species of each flight ni = number of individuals of one particular species found (Table 2) s = the number of species of each flight

73 Table 2: Relative abundance of different species of Fusarium collected during 11 UAV sampling flights 100 m above ground level in September and October, 2010. At least 12 species of Fusarium were recovered during these sampling flights. Two of these species may represent new species of Fusarium, and are referred to as ‘F. babinda-like’ and ‘F. equiseti-like’, since these fungi appear to be phylogenetically close to the known species F. babinda and F. equiseti.

Information for potential plant hosts and geographic distribution is included as reviewed by

Leslie and Summerell (2006).

Number of isolates (ni)

28-Sep-2010 29-Sep-2010 01 - Oct -2010

Fusarium species Plant host Continent

F147 F148 F149 F150 F151 F152 F153 F154 F155 F156 F157 F. armeniacum Soybean South America 0 0 0 0 0 0 0 0 0 1 0

F. avenaceum Legumes, carnations, North and South America, 0 0 0 0 0 0 0 0 0 1 0 cereals Europe, Africa, Asia, and Australia F. babinda Wheat, corn, barley, Australia, South Africa, Asia, 0 0 0 0 0 0 0 0 0 0 0 and and Europe F. circinatum Pinus species and North and South America, 0 0 1 0 0 0 0 0 0 0 0 other coniferous South Africa, and Asia genera F. equiseti Cereal grains, Europe, North America, Africa 0 0 0 0 0 0 0 0 0 0 0 especially maize and and Australia barley F. fujikuroi Maize, rice, sorghum Europe, North and South 0 2 2 2 1 0 0 0 1 7 2 America, Africa and Asia F. graminearum Maize, wheat and Europe, North and South 0 0 1 0 4 0 1 3 2 1 0 barley America, Africa and Asia F. lactis Fig South America 0 0 0 0 0 1 1 0 0 0 0 F. lateritium Hazelnut North and South America, 0 0 0 0 0 0 0 0 0 2 1 Africa, Australia, and Asia F. oxysporum Tomato, tobacco, North and South America, 0 0 0 0 0 2 0 1 1 3 2 legumes, cucurbits, Europe, Africa, Asia, and sweet potatoes and Australia banana F. proliferatum Maize, sorghum, North America, Africa, Asia 0 1 0 1 0 0 0 0 0 0 0 mango, asparagus and Australia F. sambucinum potato and corn North and South America, 0 0 0 0 0 0 1 0 0 0 0 Europe, Africa, Asia, and Australia F. sporotrichioides Wheat, barley, rice, North and South America, 0 1 3 1 0 0 1 2 0 4 3 and oat Europe, Africa, Asia, and Australia F. verticillioides Maize Throughout the world 0 0 1 0 0 0 0 0 0 0 0 wherever maize is cultivated F. babinda/equiseti-like unknown 2 2 7 9 3 0 8 3 10 18 8

74 Fig 1. Cladogram of Bayesian phylogenetic analysis of Fusarium strains. Red branches are reference Fusarium strains, and black branches are Fusarium strains sampled during the flights.

Grey indicates non-Fusarium fungal strains used as an out group to root the tree. Flights were conducted 100 m above ground level during September and October, 2010. Node labels are posterior probabilities of the basal nodes. For more detailed visualizations of this phylogenetic analysis see Supplemental Figures S1 and S2.

75 Fig 2. Comparison of different species of Fusarium collected during 11 UAV sampling flights

100 m above ground level in September and October, 2010. Different shades of grey represent different species of Fusarium. The number of species was normalized as a function of sampling time (individuals of one particular species from an individual sampling mission (n) divided by the sampling interval (min), N/min).

76 Fig 3. Identification of potential source areas through back trajectory analyses conducted 6 to 24 hours prior to our 11 UAV sampling flights for Fusarium. (a) Flights conducted on 28-Sep-2010

(F147-F150), (b) flights conducted on 29-Sep-2010 (flights F151-F153), and (c) flights conducted on 01-Oct-2010 (flights F154-F157). The 6 hour back-trajectory source region is shown as the darkest region, the 12 hour is medium gray, and 24 hour is the lightest gray. The source regions were mostly to the west-northwest on 28-Sep-2010, the east-southeast on 29-Sep-

2010, and the north on 01-Oct-2010. Notice the source region grows with time, representing greater uncertainty over long periods of time. The x and y axes give the distances east and north in km with respect to the sampling location at Kentland Farm in Blacksburg, VA.

77 Fig 4. Trajectory distance (24 h), x, and the number of species of Fusarium, S, were positively correlated (R2 = 0.477, P = 0.027) with the best fit regression line given by a power law, S =

0.0512x0.668, which appears as a straight line on log-log axes. Trajectory distances were calculated as the arc length of the path traveled, approximated by summing all the 3-minute segments. Starting from the sampling point, a back-trajectory was calculated using a deterministic model similar to HYSPLIT. This trajectory is very close to the mean location of the probability distribution when stochastic turbulent effects are included. The position of the trajectory was recorded every 3 minutes for a period of 24 hours. F147 is not included in the figure, since only one species was recovered on this flight.

78 CHAPTER 4

Seasonal associations between atmospheric assemblages of Fusarium collected

1 meter and 100 meters above crop fields

Binbin Lin1, Shane D. Ross2, Aaron J. Prussin, II1, David G. Schmale III1*,

1Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA;

2Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA;

*Corresponding author: David G. Schmale III

Email: [email protected];

Phone: (540) 231-6943;

Fax: (540) 231-7477

Note: The following chapter was formatted to facilitate publication in Aerobiologia.

79 Abstract

Spores of fungi in the genus Fusarium may be transported through the atmosphere over long distances. We hypothesized that assemblages of Fusarium collected 1 m and 100 m above crop fields would vary with height and season. To test this hypothesis, Fusarium was collected from the atmosphere using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. A total of 2,218 colony forming units (CFUs) of Fusarium (615 CFUs from 104 BVS sampling periods, and 1603

CFUs from 112 UAV flights) were collected over crop fields in Blacksburg, VA over four calendar years (2009-2012). Spore concentrations ranged from 0 to 13.48 and 0 to 6.41 for the

BVS and the UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. A Gaussian plume transport model used to estimate the distance to the sampled source during the seasons suggested that the most distant sources (> 4 km) were sampled during winter. This work engenders hypotheses about the contribution of inoculum sources across local (farm) and regional (state) scales. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for crop diseases causes by fusaria in the future.

Keywords: fungi, plant pathogen, inoculum source, aerobiology, aerobiological sampling,

Burkard volumetric sampler, BVS, unmanned aerial vehicle, UAV, long-distance transport

80 1 Introduction

Fungi in the genus Fusarium cause devastating diseases in humans, animals, and plants (Berek et al., 2001; Bush et al., 2004; Leslie and Summerell, 2006; McMullen et al., 1997). These fungi produce asexual (conidia) and sexual (ascospores) spores that may be transported through the atmosphere from one location to another (Fernando et al., 2000; Katan et al., 1997; Maldonado-

Ramirez et al., 2005; Schmale et al., 2005). The atmospheric transport of Fusarium is governed by processes of liberation, horizontal transport, and deposition (Isard and Gage, 2001). This transport is linked to different boundary layers in the atmosphere, including the surface boundary layer (SBL) and planetary boundary layer (PBL) (Isard and Gage, 2001). Liberation and deposition take place in the SBL, which is characterized by strong vertical gradients in wind speed, temperature, and humidity (Balsley et al., 2003). Horizontal transport takes place in the

PBL, where biota can be transported long distances due to well mixed turbulence (Isard and

Gage, 2001; Maldonado-Ramirez et al., 2005; Schmale et al., 2005).

The atmospheric transport distances of fungal spores range from millimeters to hundreds of kilometers (Aylor, 1998, 1999). Long distance transport has been investigated for some pathogens, for example sporangia of Pseudoperonospora cubensis, causal agent of tobacco blue mold, may be transported across states and even oceans (Aylor, 1986; Aylor et al., 1982).

Though many fungi (and some oomycetes) of relevance to plants, domestic animals, and humans may be transported over long distances in the atmosphere, it is often difficult to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales.

Little is known about the aerobiological linkages between populations of Fusarium transported in the SBL and the PBL. Such knowledge could assist in predicting the movement of these fungi and prevent the spread of those individuals that can cause disease (Strange and Scott,

81 2005). Recently, an autonomous unmanned aerial vehicle (UAV) platform was developed to collect populations of Fusarium in the lower atmosphere (Schmale et al., 2008; Techy et al.,

2010). These UAVs were used to characterize fluctuations in populations of Fusarium over short time intervals (Lin et al., 2013), and to establish that isolates of single species of Fusarium (F. graminearum) collected 40 to 320 meters above ground level cause disease and produce mycotoxins (Schmale et al., 2012). Ground-based technologies have also been developed to collected microbes near the surface of the earth, such as the Burkard volumetric sampler (BVS)

(Kennedy et al., 2000). Here, we leverage technologies with UAVs and a BVS to examine associations between colony forming units (CFUs) of Fusarium collected 1 m and 100 m above crop fields. Previous work suggests that spore concentrations generally decrease with increasing height above ground level (Aylor, 1998; Dasgupta, 1988; de Jong et al., 2002; Khattab and

Levetin, 2008). We hypothesized that CFUs of Fusarium collected 1 m and 100 m above crop fields would vary with height and season. To test this hypothesis, Fusarium was collected from the atmosphere using a Burkard volumetric sampler (BVS) 1 m above ground level and autonomous unmanned aerial vehicles (UAVs) 100 m above ground level. These collections were performed across multiple seasons over four calendar years. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for crop diseases causes by fusaria in the future.

2 Materials and methods

2.1 Sample collection procedures

Two sampling devices were used in this study: an autonomous (self-controlling) unmanned aerial vehicle (UAV) (Schmale et al., 2008) and a Burkard volumetric sampler (BVS) (Burkard

82 Manufacturing Co. Ltd., Rickmansworth, Hertfordshire, England) (Kennedy et al., 2000). The

BVS was used to collect Fusarium 1 m above ground level (AGL) for sampling intervals of 60-

120 min and the UAVs were used to collect Fusarium 100 m AGL for sampling intervals of 10-

20 min (Figure 1). Most of the UAV samples were collected within a Burkard sampling interval, such that both samplers were operating simultaneously and thus the resulting collections could be compared. Each sampling device contained large (9 cm diameter) plates of Fusarium selective medium (FSM) as described by Schmale et al. 2006 and Lin et al. 2013. All samples were collected at Virginia Tech’s Kentland Farm in Blacksburg, VA across multiple seasons over four calendar years (2009, 2010, 2011, and 2012) (Figure 2 and Table 3).

2.2 Culturing and identification of Fusarium

Colonies of Fusarium were cultured and identified as described by Lin et al. (2013). Following each sampling mission, sampling plates were returned to the laboratory and incubated for 7-15 days at ambient room temperature. White, fluffy colonies of Fusarium were counted on each of the sampling plates. Each individual colony of Fusarium was subcultured onto new plates of

FSM and single-spored into small plates of ¼ potato dextrose agar to assist in downstream identification and to prepare for cryogenic storage.

2.3 Collection efficiencies of UAVs and BVS

Spore concentrations were divided by collection efficiencies of UAVs and the BVS to get corrected aerial spore concentrations. Collection efficiencies were calculated using published methods (Aylor, 1993; Aylor et al., 2006; Chamberlain, 1975; McCartney et al., 1993). Spore sizes were determined for Fusarium species previously reported to be present in the atmospheric

83 assemblages (Lin et al. unpublished observations) by measuring the length and width of three randomly selected spores as reported by Leslie and Summerell (2006) (Table 1). This information was used to calculate the aerodynamical diameter, da, of each spore described as

(Chamberlain, 1975; McCartney et al., 1993),

(1)

(2) where sd is the spore diameter and sl is the spore length. The da of each spore can be used to estimate the settling velocity, vs, and is calculated as a function of Stokes’ drag defined by

(Chamberlain, 1975; McCartney et al., 1993),

(3) where g is the gravitational acceleration (9.8 m s-2), µ is the dynamic viscosity of the air

-5 -1 -1 -3 (1.81 10 kg m s at STP), ρ is the density of the spore (assumed to be 1000 kg m ), and ρa is density of the air (assumed to be 1.2 kg m-3).

UAV Finally, sampling efficiency of the UAV, Epp , can be calculated as previously described

(Aylor et al., 2006),

(4) where the Stokes number relevant for UAV sampling, SUAV, is given by:

84 (5) where U0 is the flight speed (Table 2), DP is the diameter of the petri plate sampler, and τR is the particle relaxation time described by,

(6)

Sampling efficiency of the BVS was calculated as previously described (Aylor, 1993),

(7)

-1 where Ua is the undisturbed airflow upwind of spore sampler (estimated to be ~0.1 m s (Aylor,

-1 1993)), Us is the flow speed of the BVS (12 m s ), and f(s) is given by,

(8) where the Stokes number relevant for BVS sampling, SBVS, is given by,

(9) where L is the width of the sample entrance on the BVS (estimated to be 9 cm). Table 1 shows

UAV BVS the sl, sd, da, vs, Epp , and Epp for each Fusarium spp. we collected during sampling.

2.4 Calculations of spore concentrations

The number of colonies (spores) collected was converted to counts per unit volume of air sampled (spores/m3). Fusarium spore concentrations, C (spores/m3) were calculated as previously described (Aylor et al., 2011) from the number of spore deposited on the samplers, NP 3 -1 (colony forming units or CFUs), the volumetric flow rate of air sampling, VR (m min ), the

85 efficiency of spore collection by the samplers, , and the duration of the sampling period, TD (min) using,

(10)

where is the raw (uncorrected) concentration. The VR of the sampling device is 0.02 m3min-1 for the BVS and 9.6 m3min-1 per petri plate for the UAV (up to 8 plates were used per flight), and TD was 10-205 min for the BVS and 5-28 min for the UAV (Table 2).

2.5 Gaussian Plume Model

For the case of a steady, continuous release of spores from a point source at a height above ground level, C can be represented by an equation for a Gaussian plume (Aylor, 1999), which varies with the height of the sampler, according to

(11) where is the effective height of the plume (in m) which changes with the horizontal downwind distance, , of the sampler from the source and parameters a and b are a function of meteorological conditions (Prussin et al. unpublished observations). From relationship (11), we can obtain an approximation to the horizontal distance of the sampled sources. If we assume that the BVS (at a height 1 m AGL) and the UAV (at a height 100 m AGL) samplers are simultaneously sampling from a common source, then the ratio in concentration, , which would be sampled is approximately,

(12)

86 This equation can be used to estimate the distance, , to the source using and an assumed height for the source, . In fact, only the relative height between the source and each sampler is important. Since is unknown, we can assume it is close to ground level, in which case, , and (12) simplifies further.

2.6 Data analysis methods

JMP Pro 10 (SAS Institute Inc.) was used to conduct statistical analyses. Linear regression analyses were performed with sampling time intervals (0900-1100, 1100-1300, 1300-1500,

1500-1700), altitude (1 m and 100 m), and season (spring, summer, fall, and winter), with the response variable as corrected spore concentrations. ANOVA was used to analyze the differences between species and spore types that were associated with the calculations of UAV collection efficiencies.

3 Results

Collection efficiencies for UAV and BVS samplers are shown in Table 1. Results indicated that the collection efficiency of the BVS (99.97%) was much higher than the UAVs (1.34%), when considering macroconidia. UAV collection efficiencies were significantly different for different species (P = 0.02) and spore types (P < 0.01) of Fusarium. Since sample Fusarium populations obtained via both the UAVs and BVS are not further resolved down to the species level, it is

UAV BVS necessary to determine an effective average efficiency for each method, Eeff and Eeff .

Using 11 UAV flight populations (Lin et al., unpublished observations) which were resolved down to the species level, we were able to divide the uncorrected concentration for each flight population by the corrected concentration C (see eq. (10)), and obtain an effective

87 efficiency for each flight population. Taking the average efficiency fore these 11 species- resolved flights, we obtain an average effective efficiency, essentially a weighted average of the

UAV efficiencies given in Table 1. The effective efficiencies range from 0.16% to 4.06%, with a mean of 1.34% and a standard error of the mean of 0.39%. For BVS sampling, the efficiencies are all 99.9% or above (Table 1), with an unweighted average of 99.97%, very close to perfect

UAV BVS efficiency. Thus, we used Eeff = 1.34% and Eeff = 100%.

A total of 2,218 CFUs of Fusarium (615 CFUs from 104 BVS sampling periods, and

1603 CFUs from 112 UAV flights) were collected over crop fields in Blacksburg, VA over four calendar years (2009-2012) (Table 3). Corrected spore concentrations will be given in what follows. Spore concentrations ranged from 0 to 13.48 and 0 to 6.41 spores m-3 for the BVS and the UAVs, respectively. Multiple linear regression analyses indicated that there were significant differences in season (P < 0.01) and height (P < 0.01), but not time of day (P = 0.54). There were 30 BVS sampling intervals during which two UAV samples were obtained, in order to check for consistency in the BVS/UAV comparisons. These thirty pairs of UAV samples, which were separated in time by between 0.83 and 2.92 hours (average 1.27 h and standard deviation

0.38 h) showed a high correlation (r=0.798) in spore concentrations, consistent with earlier results which considered spore concentration correlations as a function of the time between sample flights (Lin et al. 2013).

Seasonal trends in spore concentrations are shown in Figure 2. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter (Figure 2). For 104

BVS sampling periods, mean spore concentrations ranged from 0.11 to 2.93 spores m-3 across all seasons (sampling intervals: spring 35, summer 16, fall 44, and winter 9). For 112 UAV flights, mean spore concentrations ranged from 0.19 to 1.13 spores m-3 for all seasons (sampling

88 intervals: spring 33, summer 24, fall 43, and winter 12). The lowest spore concentrations were observed in BVS samples in the winter. The highest spore concentrations were observed in BVS samples in the spring. Moreover, spore concentrations were generally higher with BVSs than those with UAVs for both seasonal and hourly data (Table 3, Figure 2, and Figure 3).

For BVS sampling, there were 30 sampling periods with zero collections across all seasons (no data sampling intervals: spring 9/35, summer 1/16, fall 14/44, and winter 6/9). For

UAV flights, there were 9 sampling periods with zero collections across all seasons (no data sampling intervals: spring 3/33, summer 1/24, fall 2/43, and winter 3/12). In spring, there were

30 simultaneous BVS-UAV sampling intervals, during which 1 or more CFU was collected by the UAV. Of those simultaneous sample intervals, 83% (25/30) included times during which 1 or more CFU was collected by the BVS. The ratios for the other seasons are: summer 96% (22/23), fall 80% (33/41), and winter 22% (2/9). Only twice were zero CFUs collected with both the BVS and UAV.

For those times when both BVS and UAV had non-zero collections, we formed the ratio

, and used a Gaussian plume transport model, eq. (12), to estimate the average distance to the sampled source during the seasons, which are as follows: spring (2.1 km), summer (1.6 km), fall (1.2 km), and winter (4.1 km).

4 Discussion

Though many fungi (and some oomycetes) of relevance to plants, domestic animals, and humans may be transported over long distances in the atmosphere, it is often difficult to pinpoint the source(s) of inoculum at both local (farm) and regional (state or country) scales. We leveraged technologies with autonomous unmanned aerial vehicles (UAVs) and a Burkard volumetric sampler (BVS) to examine associations between assemblages of Fusarium collected 1 m and 100

89 m above crop fields. A total of 2,218 colony forming units (CFUs) of Fusarium (615 CFUs from

104 BVS sampling periods, and 1603 CFUs from 112 UAV flights) was collected over crop fields in Blacksburg, VA over four calendar years (2009-2012). This is the first multiyear study reporting the simultaneous collection of Fusarium at multiple heights in the atmosphere over crop fields, and extends the work of others that have examined spore concentrations of different biological agents at different heights in the atmosphere (Aylor, 1998; Dasgupta, 1988; De Jong et al., 2002; Khattab and Levetin, 2008).

Many factors need to be considered when trying to determine how spore collections varies with height (1 m vs. 100 m AGL), including changes in local source strengths of

Fusarium, variations due to weather patterns, and the biophysical processes that control disease spread (Aylor, 1999, 2003; Isard and Gage, 2001). To collect such complete information may never be feasible, so it is important to consider how to interpret the recovered data from simpler measurements. Therefore, the number of spores counted was converted to spore concentrations

(spores/m3) by dividing the spore count by the amount of air sampled in cubic meters and the collection efficiency (related to inertial effects of spores relative to the air), which were then related to variations in environmental and biological data obtained in the sampling field (Morris et al., 2011). Measurements of spore concentration near the earth’s surface (1 m AGL) and in the lower atmosphere (100 m AGL) can be made complementary. The BVS was able to show something of the extent and movement of spore clouds in the SBL, while the UAVs were able to sample horizontal spore profiles quickly in the PBL (Hirst and Stedman, 1967; Jones and

Harrison, 2004).

The average collection efficiency of the BVS sampler (99.97%) is much higher than

UAV samplers (1.34%), when considering different sizes of macroconidia, which is consistent

90 with previous reports demonstrating UAVs have a much lower sampling efficiency than BVSs

(Aylor, 1993; Aylor et al., 2006). In order to get an accurate estimate of aerial spore concentrations, it is important to consider sampling efficiency, as approximately 99% of the spores in the atmosphere are not collected by the UAV samplers used in this study. Additionally, in order to have a fair comparison between spore concentrations at 1 m AGL and 100 m AGL, one must consider collection efficiency due to the large differences between the two types of samplers. Sampling efficiencies varied with spore size. This is due to differences in spore sizes and shapes, which ultimately affect collection efficiencies (Aylor, 1993; Aylor et al., 2006;

Leslie and Summerell, 2006). If collection efficiency was not considered, it is possible to get false results indicating one species is more prevalent when in actuality it could just have a higher collection efficiency. Collection efficiency is defined as the number of spores collected by the sampling device compared to the total number of spores present in the same unit area of the sampler. Additionally, since collection efficiency is a function of settling velocity and spore size, collection efficiency is dependent on Fusarium spp. with each species having unique collection efficiency (Aylor, 1993; Aylor et al., 2006). Unfortunately, the methods we presented here did not allow us to differentiate the type of spore that was collected, and thus we can only speculate on the potential spore type that was recovered for each CFU recovered. Future work should address the development of a method to determine the fraction of each spore type being collected, which will ultimately increase estimates of spore concentrations.

Spore concentrations ranged from 0 to 13.48 and 0 to 6.41 spores m-3 for the BVS and the

UAVs, respectively. Spore concentrations were generally higher in the fall, spring, and summer, and lower in the winter. The seasonal patterns in the spore concentrations of Fusarium are diverse with BVSs and UAVs. Seasonal climate changes, such as temperature, rainfall, humidity,

91 ultraviolet (UV) light and wind, are thought to play an important role in spore release, survival, and dispersal (Dill-Macky and Jones, 2000; Jones and Harrison, 2004; Lyon et al., 1984). These are dictated in part by favorable environmental conditions (Dill-Macky and Jones, 2000;

Schmale et al., 2005). Overall, we observed dramatic decreases (95% for BVS and 78% for the

UAVs) in the winter. Environmental conditions in Blacksburg, VA are considered to be unfavorable for spore production, and might explain the decreased number of spores observed in the winter.

Spore concentrations from the BVS were generally higher than those from the UAVs for both seasonal and hourly collections. This is consistent with previous reports demonstrating a general decrease in spore concentrations with increasing height from ground level (Bergamini et al., 2004; Chakraborty et al., 2001; Hirst and Stedman, 1967; Khattab and Levetin, 2008).

However, in the winter, spore concentrations of Fusarium with BVSs were lower than those with

UAVs. Since the atmospheric transport processes were performed in different boundary layers

(Isard and Gage, 2001; Maldonado-Ramirez et al., 2005), we speculate that BVS samples are more likely to come from local sources, while the UAV samples are more likely to come from distance sources. So, perhaps local inoculum sources were inoperative in Blacksburg in the winter and thus were unable to contribute to local collections. Though the actual contribution of local and more distant sources to atmospheric assemblages of Fusarium remains unclear, ground level (1m AGL) had significantly higher concentrations of Fusarium than 100 m AGL, suggesting that sampling height is one of the many variables that influence bioaerosol levels

(Khattab and Levetin, 2008).

However, from the ratio in concentration, , we can use a Gaussian plume transport model to approximately determine whether what is sampled is from a distant or local

92 source. The estimated average distance to a ground-level source during the seasons, based on the concentrations from the 1 m AGL and 100 m AGL samplers, is as follows: spring (2.1 km), summer (1.6 km), fall (1.2 km), and winter (4.1 km). In addition, winter was the season with the highest percentage of simultaneous sampling periods, 78%, during which something was collected with the UAV but nothing was collected by the BVS. Thus, there is good evidence that the samples collected during the winter are coming from more distant sources than during the other seasons, and in addition, the UAV samples are more likely to come from distant sources.

This work engenders hypotheses about the contribution of inoculum sources across local

(farm) and regional (state) scales. An increased understanding of the aerobiology of Fusarium may contribute to new and improved control strategies for crop diseases caused by fusaria in the future.

Acknowledgments

This research was supported by the National Science Foundation under Grant Numbers DEB-

0919088 (Atmospheric transport barriers and the biological invasion of toxigenic fungi in the genus Fusarium) and CMMI-1100263 (Dynamical mechanisms influencing the population structure of airborne pathogens: Theory and observations). We thank J. Cianchetti for his excellent technical assistance with the construction, maintenance, and operation of the UAVs described in this work. We also thank Z. Bair and Z. Upchurch for his help with transferring and maintaining fungal cultures described in this work.

93 Literature Cited

Aylor, D. E. (1986). A framework for examining inter-regional aerial transport of fungal spores.

Agricultural and Forest Meteorology 38, 263-288.

Aylor, D. E. (1993). Relative collection efficiency of Rotorod and Burkard spore samplers for

airborne Venturia inaequalis ascospores. Phytopathology 83, 1116-1119.

Aylor, D. E. (1998). The Aerobiology of Apple Scab. Plant Disease 82, 838-849.

Aylor, D. E. (1999). Biophysical scaling and the passive dispersal of fungus spores: relationship

to integrated pest management strategies. Agricultural and Forest Meteorology 97, 275-

292.

Aylor, D. E. (2003). Spread of Plant Disease on a Continental Scale: Role of Aerial Dispersal of

Pathogens. Ecology 84, 1989-1997.

Aylor, D. E., Boehm, M. T., and Shields, E. J. (2006). Quantifying aerial concentrations of maize

pollen in the atmospheric surface layer using remote-piloted airplanes and Lagrangian

stochastic modeling. Journal of Applied Meteorology and Climatology 45, 1003-1015.

Aylor, D. E., Schmale, D. G., Shields, E. J., Newcomb, M., and Nappo, C. J. (2011). Tracking

the potato late blight pathogen in the atmosphere using unmanned aerial vehicles and

Lagrangian modeling. Agricultural and Forest Meteorology. 151, 251-260.

Aylor, D. E., Taylor, G. S., and Raynor, G. S. (1982). Long-range transport of tobacco blue mold

spores. Agricultural Meteorology 27, 217-232.

Balsley, B. B., Frehlich, R. G., Jensen, M. L., Meillier, Y., and Muschinski, A. (2003). Extreme

Gradients in the Nocturnal Boundary Layer: Structure, Evolution, and Potential Causes.

Journal of the Atmospheric Sciences 60, 2496-2508.

94 Berek, L., Petri, I. B., Mesterházy, Á., Téren, J., and Molnár, J. (2001). Effects of mycotoxins on

human immune functions in vitro. Toxicology in Vitro 15, 25-30.

Bergamini, B. M., Grillenzoni, S., Andreoni, A. D., Natali, P., Ranzi, A., and Bertolani, M. F.

(2004). Alternaria spores at different heights from the ground. Allergy 59, 746-752.

Bush, B. J., Carson, M. L., Cubeta, M. A., Hagler, W. M., and Payne, G. A. (2004). Infection and

Fumonisin Production by Fusarium verticillioides in Developing Maize Kernels.

Phytopathology 94, 88-93.

Chakraborty, P., Gupta-Bhattacharya, S., Chowdhury, I., Majumdar, M. R., and Chanda, S.

(2001). Differences in concentrations of allergenic pollens and spores at different heights

on an agricultural farm in West Bengal, India. Ann Agric Environ Med 8, 123-130.

Chamberlain, A. (1975). The movement of particles in plant communities. Vegetation and the

Atmosphere 1, 155-203.

Dasgupta, K. (1988). "Principles of Plant Pathology," Allied Publishers.

De Jong, M. D., Bourdôt, G. W., Powell, J., and Goudriaan, J. (2002). A model of the escape of

Sclerotinia sclerotiorum ascospores from pasture. Ecological Modelling 150, 83-105.

Dill-Macky, R., and Jones, R. K. (2000). The effect of previous crop residues and tillage on

fusarium head blight of wheat. Plant Disease 84, 71-76.

Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., and Paulitz, T. C. (2000). Daily

and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium

species sampled over wheat plots. Canadian Journal of Botany 78, 497-505.

Hirst, J. M., and Stedman, O. J. (1967). Long-distance spore transport: methods of measurement,

vertical spore profiles and the detection of immigrant spores. Journal of General

Microbiology 48, 329-55.

95 Isard, S. A., and Gage, S. H. (2001). "Flow of Life in the Atmosphere. ," Michigan State

University Press, East Lansing.

Jones, A. M., and Harrison, R. M. (2004). The effects of meteorological factors on atmospheric

bioaerosol concentrations--a review. Science of the Total Environment 326, 151-80.

Katan, T., Shlevin, E., and Katan, J. (1997). Sporulation of Fusarium oxysporum f. sp.

lycopersici on Stem Surfaces of Tomato Plants and Aerial Dissemination of Inoculum.

Phytopathology 87, 712-9.

Kennedy, R., Wakeham, A. J., Byrne, K. G., Meyer, U. M., and Dewey, F. M. (2000). A new

method to monitor airborne inoculum of the fungal plant pathogens Mycosphaerella

brassicicola and Botrytis cinerea. Applied and Environmental Microbiology 66, 2996-

3003.

Khattab, A., and Levetin, E. (2008). Effect of sampling height on the concentration of airborne

fungal spores. Annals of Allergy, Asthma and Immunology 101, 529-34.

Leslie, J. F., and Summerell, B. A. (2006). "The Fusarium Laboratory Manual," Blackwell

Publishing, Ames, Iowa.

Lin, B., Bozorgmagham, A., Ross, S. D., and Schmale, D. G. (2013). Small fluctuations in the

recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m

above ground level. Aerobiologia 29, 45-54.

Lyon, F. L., Kramer, C. L., and Eversmeyer, M. G. (1984). Variation of airspora in the

atmosphere due to weather conditions. Grana 23, 177-181.

Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., and Bergstrom, G. C. (2005). The

relative abundance of viable spores of Gibberella zeae in the planetary boundary layer

96 suggests the role of long-distance transport in regional epidemics of Fusarium head

blight. Agricultural and Forest Meteorology 132, 20-27.

McCartney, H., Schmechel, D., and Lacey, M. (1993). Aerodynamic diameter of conidia of

Alternaria species. Plant Pathology 42, 280-286.

McMullen, M., Jones, R., and Gallenberg, D. (1997). Scab of Wheat and Barley: A Re-emerging

Disease of Devastating Impact. Plant Disease 81, 1340-1348.

Morris, C. E., Sands, D. C., Bardin, M., Jaenicke, R., Vogel, B., Leyronas, C., Ariya, P. A., and

Psenner, R. (2011). Microbiology and atmospheric processes: research challenges

concerning the impact of airborne micro-organisms on the atmosphere and climate.

Biogeosciences 8, 17-25.

Schmale, D. G., Ross, S. D., Fetters, T., Tallapragada, P., Wood-Jones, A., and Dingus, B.

(2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level

cause Fusarium head blight in wheat and produce trichothecene mycotoxins.

Aerobiologia 28, 1-11.

Schmale, D. G., Arntsen, Q. A., and Bergstrom, G. C. (2005). The forcible discharge distance of

ascospores of Gibberella zeae. Canadian Journal of Plant Pathology 27, 376–382.

Schmale, D. G., Dingus, B. R., and Reinholtz, C. (2008). Development and application of an

autonomous unmanned aerial vehicle for precise aerobiological sampling above

agricultural fields. Journal of Field Robotics 25, 133-147.

Strange, R. N., and Scott, P. R. (2005). Plant disease: a threat to global food security. Annual

Review of Phytopathology 43, 83-116.

97 Techy, L., Schmale, D. G., and Woolsey, C. A. (2010). Coordinated aerobiological sampling of a

plant pathogen in the lower atmosphere using two autonomous unmanned aerial vehicles.

Journal of Field Robotics 27, 335-343.

98 Table 1. Estimates of collection efficiencies with unmanned aerial vehicles (UAVs) and a

Burkard volumetric sampler (BVS) for different spore types (macroconidia, mesoconidia,

microconidia, and ascospores) from 14 species of Fusarium. The species listed were identified

from flight collections reported in Lin et al., unpublished observations.

UAV BVS Species Spore type Spore Spore da vs Epp Epp Diameter Length (µm) (mm/s) D E (µm) A (µm) A B C F. armeniacum Macroconidium 2.9 56 5.47 0.90 1.34% 99.98% F. avenaceaum Macroconidium 2.9 59 5.48 0.90 1.35% 99.98% Ascospore 4.5 16 6.95 1.45 2.75% 99.97% F. babinda Macroconidium 3.7 38 6.75 1.37 2.52% 99.97% Microconidium 2.9 15 4.82 0.70 0.92% 99.98% F. circinatum Macroconidium 2.9 29 5.27 0.84 1.20% 99.98% Microconidium 2.9 9 4.35 0.57 0.67% 99.99% Ascospore 5 14 7.32 1.61 3.21% 99.96% F. equiseti Macroconidium 1.5 85 2.72 0.22 0.16% 99.99% Ascospore 5 27 8.37 2.11 4.75% 99.95% F. fujikuroi Macroconidium 2.9 41 5.41 0.88 1.30% 99.98% Microconidium 2.9 15 4.82 0.70 0.92% 99.98% Ascospore 5 15 7.44 1.67 3.37% 99.96% F. graminearum Macroconidium 4.4 56 8.16 2.00 4.41% 99.95% Ascospore 3.5 21 5.96 1.07 1.74% 99.98% F. lactis Macroconidium 2.9 38 5.39 0.87 1.28% 99.98% Microconidium 2.9 9 4.35 0.57 0.67% 99.99% F. lateritium Macroconidium 4.4 56 8.16 2.00 4.41% 99.95% Ascospore 7 17 9.91 2.96 7.71% 99.93% F. oxysporum Macroconidium 3.7 44 6.83 1.40 2.61% 99.97% Microconidium 2.9 9 4.35 0.57 0.67% 99.99% F. proliferatum Macroconidium 2.9 41 5.41 0.88 1.30% 99.98% Microconidium 2.2 6 3.2 0.31 0.26% 99.99% Ascospore 5 16 7.55 1.71 3.51% 99.96% F. sambucinum Macroconidium 5.1 44 9.13 2.51 6.10% 99.94% Ascospore 8 24 11.91 4.26 12.75% 99.90% F. sporotrichioides Macroconidium 2.9 32 5.32 0.85 1.24% 99.98% Mesoconidium 2.9 25 5.19 0.81 1.15% 99.98% Microconidium 4.4 7 5.59 0.94 1.43% 99.98% F. verticillioides Macroconidium 2.9 62 5.48 0.90 1.35% 99.98% Microconidium 2.9 10 4.45 0.60 0.72% 99.99%

99 A Spore dimensions (length and width) were estimated by measuring three spores for each species as listed in Leslie and Summerell (2006).

B Calculated using eq. 1.

C Calculated using eq. 3.

D Calculated using eq. 4. The flight speed of the UAVs was 90 km hr-1 and each sampling plate was 90 mm wide.

E Calculated using eq. 7. The flow rate of the BVS was 20 L/min with an opening of 9 cm.

100 Table 2. Parameters involved in estimating the aerial concentration and collection efficiency of Fusarium spores. Parameter Value Source g 9.8 m s-2 Physical constant µ 1.81 x 10-5 kg m-1s-1 Physical constant ρ 1000 kg m-3 (Chamberlain, 1975) -3 ρa 1.2 kg m Physical constant -1 U0 90 km hr UAV onboard measurement DP 9 cm Diameter of petri dish L 9 cm Length of BVS opening -1 Ua 0.1 m s (Aylor, 1993) -1 Us 12 m s (Aylor, 1993) 3 -1 ) BVS flow rate 0.02 m min (Kennedy et al., 2000 UAV flow rate 9.6 m3 min-1 (Aylor et al., 2011) UAV Eeff 1.34 % Derived parameter

101 Table 3. Colony forming units (CFUs) of Fusarium collected with a Burkard volumetric sampler

(BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level. Samples were collected at Virginia Tech’s Kentland Farm in Blacksburg, VA over four calendar years (2009, 2010, 2011, & 2012). CFUs were converted to concentrations (number of viable spores/m3 of air sampled).

Year Number of CFUs Number of CFUs Mean spore Mean spore UAV from BVS from concentrations concentrations flights UAV intervals BVS from UAVs from BVS flights (spores/m3)* (spores/m3)* 2009 14 70 10 87 0.52 1.81 2010 24 441 18 163 1.28 2.56 2011 60 1028 62 354 0.86 2.43 2012 14 64 14 11 0.23 0.27

*Spore concentrations from UAVs and BVSs were calculated using eq. 10 in the text.

102 Figure 1: Illustration of sampling plan for Fusarium using a Burkard volumetric sampler (BVS)

1 m above ground level (right) and an unmanned aerial vehicle (UAV) 100 m above ground level

(left). The BVS collected samples for 120 minutes, and the UAVs collected samples for 20 minutes. Both samplers were operated concurrently.

103 Figure 2: Seasonal collections of Fusarium with a Burkard volumetric sampler (BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level. Samples were collected at Virginia Tech’s Kentland Farm in Blacksburg, VA over four calendar years (2009,

2010, 2011, & 2012). CFUs were converted to concentrations (number of viable spores/m3 of air sampled). Mean spore concentrations (spores/m3) across seasons between UAV and BVS are reported. Error bars represent the standard error of the mean. The number of collections contributing to each mean is denoted above each bar.

104 Figure 3. Mean spore concentrations (number of viable spores/m3 of air sampled) of Fusarium collected with a Burkard volumetric sampler (BVS) 1 m above ground level and an unmanned aerial vehicle (UAV) 100 m above ground level across four different sampling intervals (0900-

1100, 1100-1300, 1300-1500, and 1500-1700). Samples were collected at Virginia Tech’s

Kentland Farm in Blacksburg, VA over four calendar years (2009, 2010, 2011, & 2012).

105

CHAPTER 5

Conclusions and Future Directions

This work has expanded our knowledge on the movement and structure of atmospheric populations of Fusarium. The main results of this work indicated that (1) consecutive collections of Fusarium at 100 m demonstrated small variations in counts, and the similarity between collections decreased as the time between sampling intervals increased, (2) diverse atmospheric populations of Fusarium appeared to be associated with multiple source regions, and the number of Fusarium species collected with UAVs increased back-trajectory distance of the sampled air,

(3) the distribution of spore concentrations was similar for both samplers over different times of the day, spore concentrations for both samplers varied with season, and spore concentrations were generally higher with BVS samplers than those with UAVs for both hourly and seasonal data, and (4) the three different isolates tested were able to cause plant diseases in three different hosts (wheat, corn, and pine), confirming that these were potential agents of disease.

Future studies should systematically investigate the influence of various factors contributing to the atmospheric collections: (1) sampling Fusarium with UAVs from multiple geographic locations at the same time, (2) investigating the relationship of the host ranges and structure of atmospheric populations of Fusarium, (3) assessing the source regions of Fusarium and its transport distances in the atmosphere, (4) determining the seasonal pattern of the structure of atmospheric populations of Fusarium, and (5) examining the association of atmospheric transport barriers (ATBs) and populations of specific Fusarium species.

Our research has demonstrated that collections of Fusarium in the lower atmosphere that are sampled over small time scales are likely to be more similar, in terms of bulk concentration, than those sampled over large time scales (Lin et al., 2013) dropping to nearly zero correlation

106 after ~9 hours. In other words, the correlation in concentration decreases with increasing time between flights. This work supports the idea that atmospheric populations of Fusaria are well mixed, and large changes in the recovery of Fusaria in the lower atmosphere may be attributed to large-scale phenomena (e.g., ATBs) operating across varying temporal and spatial scales (Lin et al., 2013; Miedaner et al., 2001; Tallapragada et al., 2011). Future work may include sampling

Fusarium with UAVs at multiple geographic locations, which may help resolve the spatial variations in the punctuated changes. UAVs can be flown at well-spaced, distinct geographic locations simultaneously. Fusarium samples collected with UAVs from multiple locations at the same time will provide opportunities to investigate the geographic origin of Fusarium species using the methods based on population genetics, coalescence, and phylogenetic analysis

(Stukenbrock and McDonald, 2008). These future studies will increase our understanding of the ecological processes leading to the emergence of new pathogens that may be potential risks in future agricultural systems (Stukenbrock and McDonald, 2008).

Results from Chapter 3 suggested that diverse atmospheric populations of Fusarium appeared to be associated with multiple sources from different regions. We collected species of

Fusarium with UAVs which represent so many different elements of the life history of

Fusarium; species representing both broad and narrow host ranges, and species representing both broad and narrow source regions worldwide. This work offered a promising hypothesis to the relationship of the host ranges and structure of atmospheric populations of Fusarium, which can be tested using molecular technologies coupled with phylogenetic analysis (Morris et al., 2008).

The atmospheric transport processes of Fusarium may be similar to the water cycle, which plays an important role in the dissemination of the plant pathogen Pseudomonas syringae (Morris et al., 2007; Morris et al., 2008). This future work may provide a thorough understanding of the

107 ecology and life history of pathogens by evaluating the importance of non-agricultural habitats

(e.g., soil, cloud, wild plant, and animal) in the evolution of a plant pathogen and the emergence of virulence (Morris et al., 2009).

Differences between Fusarium samples collected with BVSs 1 m and UAVs 100 m AGL are currently focused on spore concentrations. Significant differences in the concentrations of

Fusarium spores with both samplers were observed for both hourly and seasonal data (Lin and

Schmale, unpublished observations). We speculate that spores collected with UAVs (100 m

AGL), have been transported long distances in the planetary boundary, where spores can be transported long distances due to well mixed turbulence (Isard and Gage, 2001; Maldonado-

Ramirez et al., 2005), and are more likely to come from regional sources. However, it is currently unknown whether the sources of Fusarium for BVSs (1 m AGL) are from either local or distant sources or both, since spore release (local sources) and deposition (distant sources) take place in the surface boundary layer (Isard and Gage, 2001). Future studies should be focused on the development of ways to assess the sources regions of Fusarium and to identify realistic transport distances in the lower atmosphere. One approach would be to combine sequence and structure information of atmospheric populations of Fusarium with effective transport Models to assess and validate spread (Bowers et al., 2011; Knights et al., 2011).

It is also important for future work to focus on the seasonal motion and structure of atmospheric populations of Fusarium. Understanding seasonal patterns can assist with understanding the impact of climate change on disease dynamics (Doohan et al., 2003; Fernando et al., 2000; Inch et al., 2005). Future work should be focused on further investigating trends in species composition/diversity and trying to determine what kind of species can be carried in the atmosphere throughout all of the seasons and which are only common in a specific season.

108 Previous research has demonstrated that large-scale atmospheric features (e.g., ATBs) are associated with the long-distance transport of Fusarium in the lower atmosphere (Schmale et al.,

2012; Tallapragada et al., 2011). However, they were unable to account for the fluctuations that have taken place in the structure of atmospheric populations of Fusarium. These fluctuations likely occur on a spatial scale smaller than the large-scale atmospheric features, something more on the scale (< 10 km) of a Gaussian plume (Aylor, 1999). Further analyses should be focused on identifying the population structure of the Fusarium collected on both sides of ATBs. Moreover, the future work can examine patterns of genetic diversity within and between species of atmospheric populations of Fusarium associated with ATBs.

Understanding the biota that inhabits our atmosphere enhances our ability to predict its influence on agricultural crops, the water cycle, weather patterns, and climate. On-going research is attempting to answer some of the many questions that still remain on the importance of microbial communities in the atmosphere (DeLeon-Rodriguez et al., 2013; Després et al.,

2012; Giongo et al., 2013). Our research contributes to the overall knowledge of the role the genus Fusarium plays in these microbial communities.

109 Literature Cited

Aylor, D. E. (1999). Biophysical scaling and the passive dispersal of fungus spores: relationship

to integrated pest management strategies. Agricultural and Forest Meteorology 97, 275-

292.

Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Jr., Knight, R., and Fierer, N.

(2011). Sources of bacteria in outdoor air across cities in the midwestern United States.

Applied and Environmental Microbiology 77, 6350-6356.

DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E.,

Beyersdorf, A. J., Ziemba, L. D., Bergin, M., Nenes, A., and Konstantinidis, K. T.

(2013). Microbiome of the upper troposphere: Species composition and prevalence,

effects of tropical storms, and atmospheric implications. Proceedings of the National

Academy of Sciences 110, 2575-2580.

Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Fröhlich-

Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., and Jaenicke, R. (2012). Primary

biological aerosol particles in the atmosphere: a review. Tellus B, DOI:

10.3402/tellusb.v64i0.15598.

Doohan, F. M., Brennan, J., and Cooke, B. M. (2003). Influence of Climatic Factors on Fusarium

Species Pathogenic to Cereals. European Journal of Plant Pathology 109, 755-768.

Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., and Paulitz, T. C. (2000). Daily

and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium

species sampled over wheat plots. Canadian Journal of Botany 78, 497-505.

Giongo, A., Favet, J., Lapanje, A., Gano, K., Kennedy, S., Davis-Richardson, A., Brown, C.,

Beck, A., Farmerie, W., Cattaneo, A., Crabb, D., Aung, Y., Kort, R., Brumsack, H.,

110 Schnetger, B., Broughton, W., Gorbushina, A., and Triplett, E. (2013). Microbial

hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in

small sand samples. Aerobiologia 29, 71-84.

Inch, S., Fernando, W. G. D., and Gilbert, J. (2005). Seasonal and daily variation in the airborne

concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of

Plant Pathology 27, 357-363.

Isard, S. A., and Gage, S. H. (2001). "Flow of Life in the Atmosphere. ," Michigan State

University Press, East Lansing.

Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G.,

Bushman, F. D., Knight, R., and Kelley, S. T. (2011). Bayesian community-wide culture-

independent microbial source tracking. Nature Methods 8, 761-763.

Lin, B., Bozorgmagham, A., Ross, S. D., and Schmale, D. G. (2013). Small fluctuations in the

recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m

above ground level. Aerobiologia, 29, 45-54.

Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., and Bergstrom, G. C. (2005). The

relative abundance of viable spores of Gibberella zeae in the planetary boundary layer

suggests the role of long-distance transport in regional epidemics of Fusarium head

blight. Agricultural and Forest Meteorology 132, 20-27.

Miedaner, T., Reinbrecht, C., Lauber, U., Schollenberger, M., and Geiger, H. H. (2001). Effects

of genotype and genotype—environment interaction on deoxynivalenol accumulation and

resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breeding 120, 97-

105.

111 Morris, C. E., Bardin, M., Kinkel, L. L., Moury, B., Nicot, P. C., and Sands, D. C. (2009).

Expanding the Paradigms of Plant Pathogen Life History and Evolution of Parasitic

Fitness beyond Agricultural Boundaries. PLoS Pathogens 5, e1000693.

Morris, C. E., Kinkel, L. L., Xiao, K., Prior, P., and Sands, D. C. (2007). Surprising niche for the

plant pathogen Pseudomonas syringae. Infection, Genetics and Evolution 7, 84-92.

Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffiere, A., Yan, S.,

Dominguez, H., and Thompson, B. M. (2008). The life history of the plant pathogen

Pseudomonas syringae is linked to the water cycle. ISME J 2, 321-34.

Schmale, D. G., Ross, S. D., Fetters, T., Tallapragada, P., Wood-Jones, A., and Dingus, B.

(2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level

cause Fusarium head blight in wheat and produce trichothecene mycotoxins.

Aerobiologia 28, 1-11.

Stukenbrock, E. H., and McDonald, B. A. (2008). The origins of plant pathogens in agro-

ecosystems. Annual Review of Phytopathology 46, 75-100.

Tallapragada, P., Ross, S. D., and Schmale, D. G. (2011). Lagrangian coherent structures are

associated with fluctuations in airborne microbial populations. Chaos 21, 033122.

112

APPENDIX A

Journal Permission for Chapter 2

113

114

APPENDIX B BVS and UAV sampling information

115 Table 1. Sampling intervals with a Burkard volumetric sampler (BVS) 1 m above ground level across all seasons over four calendar years (2009, 2010, 2011, & 2012).

Burk# Date Season Start time Stop time Time (min) B1 09-Nov-09 Fall 2009 9:10 AM 12:00 PM 170.0 B2 09-Nov-09 Fall 2009 12:02 PM 3:00 PM 178.0 B3 10-Nov-09 Fall 2009 9:00 AM 12:00 PM 180.0 B4 10-Nov-09 Fall 2009 12:02 PM 1:00 PM 58.0 B5 13-Nov-09 Fall 2009 9:00 AM 12:00 PM 180.0 B6 13-Nov-09 Fall 2009 12:02 PM 3:00 PM 178.0 B7 16-Nov-09 Fall 2009 9:02 AM 12:00 PM 178.0 B8 16-Nov-09 Fall 2009 12:02 PM 3:05 PM 183.0 B9 17-Nov-09 Fall 2009 9:00 AM 12:05 PM 185.0 B10 17-Nov-09 Fall 2009 12:07 PM 3:01 PM 174.0 B11 14-Jan-10 Winter2010 9:25 AM 12:00 PM 155.0 B12 14-Jan-10 Winter2010 12:01 PM 3:02 PM 181.0 B13 15-Jan-10 Winter2010 9:50 AM 12:10 PM 140.0 B14 09-Mar-10 Spring 2010 9:15 AM 11:55 AM 160.0 B15 09-Mar-10 Spring 2010 11:57 AM 3:00 PM 183.0 B16 10-Mar-10 Spring 2010 9:00 AM 11:58 AM 178.0 B17 10-Mar-10 Spring 2010 12:00 PM 3:00 PM 180.0 B18 11-Mar-10 Spring 2010 8:58 AM 11:00 AM 122.0 B19 15-Jul-10 Summer 2010 8:59 AM 12:20 PM 201.0 B20 16-Jul-10 Summer 2010 9:03 AM 12:05 PM 182.0 B21 28-Sep-10 Fall 2010 9:20 AM 12:03 PM 163.0 B22 28-Sep-10 Fall 2010 12:04 PM 3:02 PM 178.0 B23 28-Sep-10 Fall 2010 3:04 PM 4:00 PM 56.0 B24 29-Sep-10 Fall 2010 9:00 AM 12:01 PM 181.0 B25 29-Sep-10 Fall 2010 12:02 PM 2:00 PM 118.0 B26 01-Oct-10 Fall 2010 9:00 AM 12:25 PM 205.0 B27 01-Oct-10 Fall 2010 12:25 PM 2:57PM 152.0 B28 01-Oct-10 Fall 2010 2:58 PM 6:15 PM 197.0 B29 04-Apr-11 Spring 2011 9:30 AM 11:53 AM 143.0 B30 06-Apr-11 Spring 2011 9:00 AM 10:57 AM 57.0 B31 06-Apr-11 Spring 2011 11:00 AM 12:28 PM 88.0 B32 06-Apr-11 Spring 2011 3:00 PM 5:00 PM 120.0 B33 07-Apr-11 Spring 2011 9:00 AM 10:58 AM 118.0 B34 07-Apr-11 Spring 2011 11:00 AM 12:58 PM 118.0 B35 07-Apr-11 Spring 2011 1:00 PM 2:58 PM 118.0 B36 07-Apr-11 Spring 2011 3:00 PM 5:00 PM 120.0

116 B37 08-Apr-11 Spring 2011 8:30 AM 10:27 AM 117.0 B38 08-Apr-11 Spring 2011 10:30 AM 12:43 PM 133.0 B39 08-Apr-11 Spring 2011 12:45 PM 2:47 PM 122.0 B40 08-Apr-11 Spring 2011 2:49 PM 3:58 PM 69.0 B41 11-Apr-11 Spring 2011 9:00 AM 10:59 AM 119.0 B42 16-May-11 Spring 2011 9:07 AM 11:12 AM 125.0 B43 16-May-11 Spring 2011 11:15 AM 1:11 PM 116.0 B44 16-May-11 Spring 2011 1:11 PM 3:16 PM 125.0 B45 17-May-11 Spring 2011 9:08 AM 11:06 AM 118.0 B46 17-May-11 Spring 2011 11:08 AM 11:56 AM 48.0 B47 18-May-11 Spring 2011 9:03 AM 10:59 AM 116.0 B48 18-May-11 Spring 2011 11:00 AM 1:02 PM 122.0 B49 18-May-11 Spring 2011 1:05 PM 3:10 PM 125.0 B50 18-May-11 Spring 2011 3:12PM 4:56 PM 104.0 B51 19-May-11 Spring 2011 9:18 AM 11:15 AM 117.0 B52 19-May-11 Spring 2011 11:18 AM 1:40 PM 142.0 B53 19-May-11 Spring 2011 1:42 PM 3:24 PM 102.0 B54 22-Aug-11 Summer 2011 9:00 AM 11:00 AM 120.0 B55 22-Aug-11 Summer 2011 11:01 AM 2:00 PM 119.0 B56 23-Aug-11 Summer 2011 9:15 AM 11:00 AM 105.0 B57 23-Aug-11 Summer 2011 11:01 AM 1:00PM 119.0 B58 23-Aug-11 Summer 2011 1:00 PM 3:00 PM 120.0 B59 23-Aug-11 Summer 2011 3:00 AM 5:00 AM 120.0 B60 24-Aug-11 Summer 2011 9:00 AM 11:00 AM 120.0 B61 24-Aug-11 Summer 2011 11:05 AM 1:00 PM 115.0 B62 24-Aug-11 Summer 2011 1:00PM 3:00 PM 120.0 B63 25-Aug-11 Summer 2011 8:55 AM 11:00 AM 125.0 B64 25-Aug-11 Summer 2011 11:01 AM 1:00 PM 119.0 B65 26-Aug-11 Summer 2011 9:05 AM 11:00 AM 115.0 B66 26-Aug-11 Summer 2011 11:01 AM 1:00 PM 119.0 B67 26-Aug-11 Summer 2011 1:01 PM 3:00 PM 119.0 B68 24-Oct-11 Fall 2011 9:15 AM 11:00 AM 105.0 B69 24-Oct-11 Fall 2011 11:01 AM 1:00 PM 119.0 B70 24-Oct-11 Fall 2011 1:01 PM 3:05 PM 124.0 B71 24-Oct-11 Fall 2011 3:06 PM 4:35PM 89.0 B72 25-Oct-11 Fall 2011 9:15 AM 9:35 AM 20.0 B73 25-Oct-11 Fall 2011 9:36 AM 10:30 AM 54.0 B74 25-Oct-11 Fall 2011 10:31 AM 10:51 AM 20.0 B75 25-Oct-11 Fall 2011 10:52 AM 12:00 PM 68.0 B76 25-Oct-11 Fall 2011 12:01PM 12:21 PM 20.0 B77 25-Oct-11 Fall 2011 12:22 PM 1:15 PM 53.0

117 B78 25-Oct-11 Fall 2011 1:16 PM 1:36 PM 20.0 B79 25-Oct-11 Fall 2011 1:37 PM 2:30 PM 53.0 B80 25-Oct-11 Fall 2011 2:31 PM 2:41 PM 10.0 B81 25-Oct-11 Fall 2011 2:42 PM 3:42 PM 60.0 B82 25-Oct-11 Fall 2011 3:43 PM 4:03 PM 20.0 B83 26-Oct-11 Fall 2011 9:00 AM 9:55 AM 55.0 B84 26-Oct-11 Fall 2011 9:56 AM 10:16 AM 20.0 B85 26-Oct-11 Fall 2011 10:16 AM 12:05PM 109.0 B86 26-Oct-11 Fall 2011 12:05 PM 12:25 AM 20.0 B87 26-Oct-11 Fall 2011 12:26 PM 1:15 PM 49.0 B88 26-Oct-11 Fall 2011 1:16 PM 1:36 PM 20.0 B89 26-Oct-11 Fall 2011 1:36 PM 2:30 PM 54.0 B90 26-Oct-11 Fall 2011 2:32PM 2:52 PM 20.0 B91 26-Oct-11 Fall 2011 2:52 PM 3:30 PM 38.0 B92 27-Oct-11 Fall 2011 9:00 AM 9:30 AM 30.0 B93 28-Oct-11 Fall 2011 9:00 AM 11:00 AM 120.0 B94 10-Jan-12 Winter 2012 9:00 AM 11:00 AM 120.0 B95 10-Jan-12 Winter 2012 11:00 AM 1:00 PM 120.0 B96 10-Jan-12 Winter 2012 1:00 PM 3:00 PM 120.0 B97 10-Jan-12 Winter 2012 3:00 PM 4:30 PM 90.0 B98 12-Jan-12 Winter 2012 9:00 AM 11:00 AM 120.0 B99 12-Jan-12 Winter 2012 11:00 AM 1:00 PM 120.0 B100 02-Apr-12 Spring 2012 9:15 AM 11:00 AM 105.0 B101 02-Apr-12 Spring 2012 11:00 AM 1:00 PM 120.0 B102 02-Apr-12 Spring 2012 1:00 PM 3:00 PM 120.0 B103 03-Apr-12 Spring 2012 9:00 AM 11:00 AM 120.0 B104 03-Apr-12 Spring 2012 11:00 AM 1:00 PM 120.0 B105 03-Apr-12 Spring 2012 1:00 PM 3:00 PM 120.0 B106 03-Apr-12 Spring 2012 3:00 PM 4:15 PM 75.0 B107 04-Apr-12 Spring 2012 9:00 AM 11:00 AM 120.0

118 Table 2. Sampling intervals with an unmanned aerial vehicle (UAV) 100 m above ground level across all seasons over four calendar years (2009, 2010, 2011, & 2012).

Flight# Date Season Start time Stop time Time (min) F116 09-Nov-09 Fall 2009 10:30 AM 10:38 AM 8.0 F117 09-Nov-09 Fall 2009 12:35 PM 12:43 PM 8.0 F118 10-Nov-09 Fall 2009 9:45 AM 9:50 AM 5.0 F119 13-Nov-09 Fall 2009 9:46 AM 9:55 AM 9.0 F120 13-Nov-09 Fall 2009 10:57 AM 11:07 AM 10.0 F121 13-Nov-09 Fall 2009 12:46 PM 12:56 PM 10.0 F122 13-Nov-09 Fall 2009 2:09 PM 2:29 PM 10.0 F123 16-Nov-09 Fall 2009 9:41 AM 9:56 AM 15.0 F124 16-Nov-09 Fall 2009 10:45 AM 11:00 AM 15.0 F125 16-Nov-09 Fall 2009 1:23 PM 1:38 PM 15.0 F126 16-Nov-09 Fall 2009 2:45 PM 3:00 PM 15.0 F127 17-Nov-09 Fall 2009 10:50 AM 11:05 AM 15.0 F128 17-Nov-09 Fall 2009 11:45 AM 12:00 PM 15.0 F129 17-Nov-09 Fall 2009 12:45 PM 1:00 PM 15.0 F130 14-Jan-10 Winter2010 1:30 PM 1:45 PM 15.0 F131 14-Jan-10 Winter2010 2:45 PM 3:00 PM 15.0 F132 15-Jan-10 Winter2010 10:35 AM 10:50 AM 15.0 F133 15-Jan-10 Winter2010 11:40 AM 11:55 PM 15.0 F134 09-Mar-10 Spring 2010 11:11 AM 11:26 AM 15.0 F135 09-Mar-10 Spring 2010 12:53 PM 1:06 PM 13.0 F136 09-Mar-10 Spring 2010 2:06 PM 2:21 PM 15.0 F137 10-Mar-10 Spring 2010 9:29 AM 9:44 AM 15.0 F138 10-Mar-10 Spring 2010 10:35 AM 10:42 AM 7.0 F143 15-Jul-10 Summer 2010 9:50 AM 10:05 AM 15.0 F144 15-Jul-10 Summer 2010 11:55 AM 12:10 PM 15.0 F145 16-Jul-10 Summer 2010 9:25 AM 9:40 AM 15.0 F146 16-Jul-10 Summer 2010 10:45 AM 11:00 AM 15.0 F147 28-Sep-10 Fall 2010 9:59AM 10:14AM 15.0 F148 28-Sep-10 Fall 2010 11:18AM 11:33AM 15.0 F149 28-Sep-10 Fall 2010 2:12PM 2:27PM 15.0 F150 28-Sep-10 Fall 2010 3:32PM 3:47PM 15.0 F151 29-Sep-10 Fall 2010 9:15AM 9:26AM 11.0 F152 29-Sep-10 Fall 2010 10:29AM 10:44AM 15.0 F153 29-Sep-10 Fall 2010 1:23PM 1:38PM 15.0

119 F154 01-Oct-10 Fall 2010 9:08AM 9:23AM 15.0 F155 01-Oct-10 Fall 2010 12:03PM 12:18PM 15.0 F156 01-Oct-10 Fall 2010 2:28PM 2:43PM 15.0 F157 01-Oct-10 Fall 2010 5:00PM 5:08PM 8.0 F158 06-Apr-11 Spring 2011 9:13AM 9:33AM 20.0 F159 06-Apr-11 Spring 2011 10:27AM 10:47AM 20.0 F160 06-Apr-11 Spring 2011 3:57PM 4:17PM 20.0 F161 07-Apr-11 Spring 2011 9:52AM 10:12AM 20.0 F162 07-Apr-11 Spring 2011 1:44PM 2:04PM 20.0 F163 07-Apr-11 Spring 2011 3:14PM 3:34PM 20.0 F164 07-Apr-11 Spring 2011 4:11PM 4:31PM 20.0 F165 08-Apr-11 Spring 2011 9:00AM 9:10AM 10.0 F166 08-Apr-11 Spring 2011 9:41AM 9:51AM 10.0 F167 08-Apr-11 Spring 2011 2:07PM 2:35PM 28.0 F168 08-Apr-11 Spring 2011 3:10PM 3:30PM 20.0 F169 11-Apr-11 Spring 2011 9:52AM 10:12AM 20.0 F170 16-May-11 Spring 2011 1:26PM 1:46PM 20.0 F171 16-May-11 Spring 2011 2:49PM 3:09PM 20.0 F172 18-May-11 Spring 2011 12:45PM 1:05PM 20.0 F173 18-May-11 Spring 2011 2:26PM 2:46PM 20.0 F174 18-May-11 Spring 2011 4:00PM 4:20PM 20.0 F175 19-May-11 Spring 2011 9:43AM 10:03AM 20.0 F176 19-May-11 Spring 2011 10:45AM 11:05AM 20.0 F177 19-May-11 Spring 2011 11:52AM 12:12PM 20.0 F178 19-May-11 Spring 2011 1:12PM 1:32PM 20.0 F179 19-May-11 Spring 2011 2:35PM 2:55PM 20.0 F180 22-Aug-11 Summer 2011 10:00AM 10:20AM 20.0 F181 22-Aug-11 Summer 2011 12:24PM 12:44PM 20.0 F182 23-Aug-11 Summer 2011 9:42AM 10:02AM 20.0 F183 23-Aug-11 Summer 2011 10:40AM 11:00AM 20.0 F184 23-Aug-11 Summer 2011 11:49AM 12:09PM 20.0 F185 23-Aug-11 Summer 2011 1:09PM 1:29PM 20.0 F186 23-Aug-11 Summer 2011 2:24PM 2:44PM 20.0 F187 23-Aug-11 Summer 2011 4:01PM 4:21PM 20.0 F188 24-Aug-11 Summer 2011 9:15AM 9:35AM 20.0 F189 24-Aug-11 Summer 2011 10:31AM 10:51AM 20.0 F190 24-Aug-11 Summer 2011 11:59AM 12:19PM 20.0 F191 24-Aug-11 Summer 2011 1:14PM 1:34PM 20.0 F192 24-Aug-11 Summer 2011 2:26PM 2:46PM 20.0

120 F193 25-Aug-11 Summer 2011 9:14AM 9:34AM 20.0 F194 25-Aug-11 Summer 2011 10:28AM 10:48AM 20.0 F195 25-Aug-11 Summer 2011 12:00PM 12:20PM 20.0 F196 26-Aug-11 Summer 2011 10:05AM 10:25AM 20.0 F197 26-Aug-11 Summer 2011 11:15AM 11:35AM 20.0 F198 26-Aug-11 Summer 2011 1:13PM 1:33PM 20.0 F199 26-Aug-11 Summer 2011 2:19PM 2:39PM 20.0 F200 24-Oct-11 Fall 2011 10:08AM 10:28AM 20.0 F201 24-Oct-11 Fall 2011 11:33AM 11:53AM 20.0 F202 24-Oct-11 Fall 2011 1:03PM 1:23PM 20.0 F203 24-Oct-11 Fall 2011 2:18PM 2:38PM 20.0 F204 24-Oct-11 Fall 2011 3:30PM 3:50PM 20.0 F205 25-Oct-11 Fall 2011 9:15AM 9:35AM 20.0 F206 25-Oct-11 Fall 2011 10:31AM 10:51AM 20.0 F207 25-Oct-11 Fall 2011 12:00PM 12:20PM 20.0 F208 25-Oct-11 Fall 2011 1:16PM 1:36PM 20.0 F209 25-Oct-11 Fall 2011 2:31PM 2:41PM 10.0 F210 25-Oct-11 Fall 2011 3:43PM 4:03PM 20.0 F211 26-Oct-11 Fall 2011 9:56AM 10:16AM 20.0 F212 26-Oct-11 Fall 2011 12:05PM 12:25PM 20.0 F213 26-Oct-11 Fall 2011 1:16PM 1:36PM 20.0 F214 26-Oct-11 Fall 2011 2:32PM 2:52PM 20.0 F215 27-Oct-11 Fall 2011 8:58AM 9:18AM 20.0 F216 28-Oct-11 Fall 2011 9:15AM 9:35AM 20.0 F217 28-Oct-11 Fall 2011 10:29AM 10:39AM 10.0 F218 10-Jan-12 Winter 2012 9:19AM 9:39AM 20.0 F219 10-Jan-12 Winter 2012 10:16AM 10:36AM 20.0 F220 10-Jan-12 Winter 2012 11:14AM 11:34AM 20.0 F221 10-Jan-12 Winter 2012 12:28PM 12:48PM 20.0 F222 10-Jan-12 Winter 2012 1:29PM 1:49PM 20.0 F223 10-Jan-12 Winter 2012 2:30PM 2:50PM 20.0 F224 12-Jan-12 Winter 2012 11:36AM 11:56AM 20.0 F225 12-Jan-12 Winter 2012 12:26PM 12:46PM 20.0 F226 02-Apr-12 Spring 2012 12:25PM 12:35PM 10.0 F227 03-Apr-12 Spring 2012 9:22AM 9:32AM 10.0 F228 03-Apr-12 Spring 2012 1:30PM 1:50PM 20.0 F229 03-Apr-12 Spring 2012 2:35PM 2:55PM 20.0 F230 03-Apr-12 Spring 2012 3:38PM 3:58PM 20.0 F231 04-Apr-12 Spring 2012 9:47AM 10:07AM 20.0

121 Table 3. Comparisons of Fusarium-ID and GenBank for the isolates of Fusarium collected with a Burkard volumetric sampler (BVS)

1 m above ground level across all seasons over four calendar years (2009, 2010, 2011, & 2012).

Genbank Season Isolate Identification based on Fusarium-ID Query Fusarium-ID (%) Identification based on GenBank Query (%) Spring B30N1 FD_01317_EF-1a [Fusarium sp.] 643 / 644 (99.84%) Fusarium avenaceum strain CC39 647/649 (99%) Spring B34N1 FD_01276_EF-1a [Fusarium commune] 636 / 637 (99.84%) Fusarium commune strain NRRL 22903 652/654 (99%) Spring B36N1 FD_00805_EF-1a [Fusarium sp.] 648 / 650 (99.69%) Fusarium oxysporum strain LYF025 650/655 (99%) Spring B38N1 FD_01315_EF-1a [Fusarium sp.] 618 / 633 (97.63%) Fusarium acuminatum strain NRRL 54218 642/642 (100%) Spring B38N5 FD_01317_EF-1a [Fusarium sp.] 643 / 647 (99.38%) Fusarium avenaceum strain LMSA 1.09.142 650/652 (99%) Spring B42N2 FD_01119_EF-1a [Fusarium graminearum] 627 / 630 (99.52%) Gibberella zeae isolate G5S 638/640 (99%) Spring B42N1 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium sporotrichioides strain NRRL 53434/2616/11 642/644 (99%) Spring B42N3 FD_01317_EF-1a [Fusarium sp.] 612 / 617 (99.18%) Fusarium avenaceum isolate 9.7 618/621 (99%) Spring B43N1 FD_01304_EF-1a [Fusarium sp.] 627 / 630 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 643/646 (99%) Spring B43N2 FD_01304_EF-1a [Fusarium sp.] 628 / 630 (99.68%) Fusarium sporotrichioides strain LMSA 1.09.114 641/643 (99%) Spring B43N3 FD_01304_EF-1a [Fusarium sp.] 627 / 630 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 640/643 (99%) Spring B43N4 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 641/644 (99%) Spring B43N5 FD_01304_EF-1a [Fusarium sp.] 630 / 633 (99.52%) Fusarium sporotrichioides strain NRRL 53434/2616/11 642/644 (99%) Spring B43N6 FD_01304_EF-1a [Fusarium sp.] 630 / 633 (99.52%) Fusarium sporotrichioides strain NRRL 53434/2616/11 643/645 (99%) Spring B44N1 FD_01304_EF-1a [Fusarium sp.] 631 / 634 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 642/645 (99%) Spring B44N2 FD_01304_EF-1a [Fusarium sp.] 629 / 632 (99.52%) Fusarium langsethiae strain NRRL 53422/2321/2 644/648 (99%) Spring B44N3 FD_01304_EF-1a [Fusarium sp.] 629 / 632 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 641/644 (99%) Spring B44N4 FD_01304_EF-1a [Fusarium sp.] 630 / 632 (99.68%) Fusarium sporotrichioides strain LMSA 1.09.114 644/646 (99%) Spring B44N7 FD_01304_EF-1a [Fusarium sp.] 630 / 632 (99.68%) Fusarium sporotrichioides strain LMSA 1.09.114 640/642 (99%) Spring B44N5 FD_01321_EF-1a [Fusarium sp.] 567 / 612 (92.64%) Fusarium cf. incarnatum H04-707S-4 PCNB 625/630 (99%) Spring B44N6 FD_01321_EF-1a [Fusarium sp.] 600 / 649 (92.44%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 648/650 (99%) Spring B46N2 FD_01119_EF-1a [Fusarium graminearum] 612 / 615 (99.51%) Gibberella zeae strain ATCC 60309 619/621 (99%) Spring B47N2 FD_00986_EF-1a [Fusarium graminearum] 638 / 638 (100%) Gibberella zeae isolate M02-7035S-2 DCPA 654/654 (100%) Spring B47N4 FD_00986_EF-1a [Fusarium graminearum] 617 / 618 (99.83%) Gibberella zeae strain NRRL 31084 617/618 (99%) Spring B47N5 FD_00986_EF-1a [Fusarium graminearum] 635 / 636 (99.84%) Gibberella zeae isolate M02-7035S-2 DCPA 647/648 (99%) Spring B47N6 FD_00986_EF-1a [Fusarium graminearum] 628 / 629 (99.84%) Gibberella zeae isolate M02-7035S-2 DCPA 645/647 (99%)

122 Spring B47N1 FD_01119_EF-1a [Fusarium graminearum] 628 / 630 (99.68%) Gibberella zeae isolate G5S 643/644 (99%) Spring B47N3 FD_01119_EF-1a [Fusarium graminearum] 629 / 630 (99.84%) Gibberella zeae isolate G5S 643/643 (100%) Spring B47N7 FD_01119_EF-1a [Fusarium graminearum] 614 / 615 (99.83%) Gibberella zeae isolate G5S 615/615 (100%) Spring B47N8 FD_01119_EF-1a [Fusarium graminearum] 611 / 613 (99.67%) Gibberella zeae isolate G5S 612/613 (99%)

Spring B48N1 FD_00986_EF-1a [Fusarium graminearum] 629 / 632 (99.52%) Gibberella zeae isolate CS3005 648/652 (99%)

Spring B48N2 FD_00986_EF-1a [Fusarium graminearum] 633 / 638 (99.21%) Gibberella zeae isolate M02-7035S-2 DCPA 647/652 (99%)

Spring B49N1 FD_01304_EF-1a [Fusarium sp.] 634 / 637 (99.52%) Fusarium langsethiae strain NRRL 53422/2321/2 671/677 (99%)

Spring B50N1 FD_01389_EF-1a_2 [Fusarium proliferatum] 625 / 626 (99.84%) Gibberella intermedia isolate C33 651/655 (99%)

Spring B50N2 FD_01304_EF-1a [Fusarium sp.] 630 / 631 (99.84%) Fusarium langsethiae strain NRRL 53422/2321/2 657/661 (99%)

Spring B50N3 F. incarnatum-equiseti species complex isolate NRRL 28714, MLST26-b 589 / 613 (96.08%) Fusarium cf. incarnatum M03-11209S-1 PCNB 608/623 (98%)

Spring B50N4 FD_01389_EF-1a_2 [Fusarium proliferatum] 649 / 663 (97.88%) Gibberella intermedia isolate C33 656/669 (98%)

Spring B51N1 FD_00986_EF-1a [Fusarium graminearum] 623 / 623 (100%) Gibberella zeae strain NRRL 31084 633/636 (99%)

Spring B51N2 FD_01119_EF-1a [Fusarium graminearum] 618 / 619 (99.83%) Gibberella zeae strain LMSA 1.09.106 646/649 (99%

Spring B51N3 FD_00986_EF-1a [Fusarium graminearum] 627 / 643 (97.51%) Gibberella zeae isolate CS3005 650/668 (97%)

Spring B51N4 FD_00986_EF-1a [Fusarium graminearum] 626 / 628 (99.68%) Gibberella zeae strain NRRL 31084 642/645 (99%)

Spring B51N5 FD_01119_EF-1a [Fusarium graminearum] 627 / 630 (99.52%) Gibberella zeae isolate G5S 641/643 (99%)

Spring B51N6 FD_00986_EF-1a [Fusarium graminearum] 607 / 611 (99.34%) Gibberella zeae isolate M02-7035S-2 DCPA 644/651 (99%)

Spring B51N7 FD_01119_EF-1a [Fusarium graminearum] 618 / 621 (99.51%) Gibberella zeae isolate G5S 639/644 (99%)

Spring B51N8 FD_00986_EF-1a [Fusarium graminearum] 641 / 646 (99.22%) Gibberella zeae isolate CS3005 669/675 (99%)

Spring B51N9 FD_01119_EF-1a [Fusarium graminearum] 627 / 629 (99.68%) Gibberella zeae isolate CS3005 645/648 (99%)

Spring B51N10 FD_00986_EF-1a [Fusarium graminearum] 626 / 628 (99.68%) Gibberella zeae isolate CS3005 652/658 (99%)

Spring B51N11 FD_00986_EF-1a [Fusarium graminearum] 640 / 643 (99.53%) Gibberella zeae isolate CS3005 674/678 (99%)

Spring B51N12 FD_01119_EF-1a [Fusarium graminearum] 627 / 629 (99.68%) Gibberella zeae strain LMSA 1.09.105 636/638 (99%)

Spring B51N13 FD_01119_EF-1a [Fusarium graminearum] 627 / 629 (99.68%) Gibberella zeae isolate CS3005 654/659 (99%)

Spring B51N14 FD_00986_EF-1a [Fusarium graminearum] 642 / 646 (99.38%) Gibberella zeae isolate CS3005 676/680 (99%)

Spring B51N15 FD_00986_EF-1a [Fusarium graminearum] 642 / 643 (99.84%) Gibberella zeae isolate CS3005 678/680 (99%)

123 Spring B52N1 FD_01304_EF-1a [Fusarium sp.] 630 / 631 (99.84%) Fusarium langsethiae strain NRRL 53422/2321/2 657/661 (99%)

Spring B52N2 FD_01119_EF-1a [Fusarium graminearum] 640 / 644 (99.37%) Gibberella zeae isolate 152 662/665 (99%)

Spring B52N3 FD_01304_EF-1a [Fusarium sp.] 627 / 631 (99.36%) Fusarium sporotrichioides strain NRRL 29977 649/655 (99%)

Spring B53N1 FD_01304_EF-1a [Fusarium sp.] 641 / 646 (99.22%) Fusarium langsethiae strain NRRL 53422/2321/2 670/675 (99%)

Spring B53N2 FD_01857_EF-1a [Fusarium sp.] 615 / 618 (99.51%) Gibberella fujikuroi isolate PRC 642/648 (99%)

Spring B53N3 FD_01857_EF-1a [Fusarium sp.] 632 / 635 (99.52%) Gibberella fujikuroi isolate PRC 648/652 (99%)

Spring B53N4 FD_01304_EF-1a [Fusarium sp.] 644 / 646 (99.69%) Fusarium langsethiae strain NRRL 53422/2321/2 678/680 (99%)

Spring B53N5 FD_01304_EF-1a [Fusarium sp.] 643 / 646 (99.53%) Fusarium langsethiae strain NRRL 53422/2321/2 671/674 (99%)

Spring B53N6 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 612 / 615 (99.51%) Fusarium cf. incarnatum M03-11241S-2 PCNB 628/632 (99%) Spring B102N1 FD_01647_EF-1a| F. incarnatum-equiseti species complex 7-a 607 / 616 (98.53%) Fusarium equiseti 619/622(99%) Spring B104N1 FD_01635_EF-1a | F. incarnatum-equiseti species complex 18-b 594 / 597 (99.49%) Fusarium sp. NRRL 31167 594/597(99%) Spring B104N2 FD_01857_EF-1a [ Fusarium sp. ] 587 / 588 (99.82%) Fusarium sp. S112 594/595(99%) Spring B106N1 FD_01858_EF-1a [ Fusarium sp. ] 557 / 558 (99.82%) Gibberella fujikuroi 558/558(100%) Spring B106N2 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a 597 / 635 (94.01%) Fusarium cf. incarnatum 642/642(100%) Summer B19N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 672 / 676 (99.4%) Fusarium sp. NRRL 5537 672/676 (99%) Summer B19N2 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 674 / 676 (99.7%) Fusarium sp. NRRL 5537 674/676 (99%) Summer B19N3 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 664 / 683 (97.21%) Fusarium cf. incarnatum M03-11209S-1 PCNB 685/691 (99%) Summer B19N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 640 / 646 (99.07%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 659/665 (99%) Summer B19N9 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 669 / 677 (98.81%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 683/690 (99%) Summer B19N10 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 584 / 602 (97%) Fusarium cf. incarnatum M03-11209S-1 PCNB 608/615 (99%) Summer B20N2 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 641 / 645 (99.37%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 652/657 (99%)

Summer B55N2 FD_01320_EF-1a [Fusarium pallidoroseum] 363 / 398 (91.2%) Fusarium cf. incarnatum 394/406 (97%)

Summer B55N1 FD_01321_EF-1a [Fusarium sp.] 595 / 619 (96.12%) Fusarium sp. NRRL 43637 619/621 (99%) Summer B60N1 FD_01162_EF-1a NRRL26794 GFSC Gibberella fujikuroi species complex 504 / 588 (85.71%) Fusarium cf. incarnatum MLST 1-c clone spt113 557/640 (87%)

Summer B60N2 FD_01320_EF-1a [Fusarium pallidoroseum] 504 / 588 (85.71%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt134 586/628 (93%)

Summer B60N7 FD_01320_EF-1a [Fusarium pallidoroseum] 465 / 507 (91.71%) Fusarium cf. incarnatum 498/510 (98%)

Summer B61N8 FD_01322_EF-1a [Fusarium sp.] 537 / 576 (93.22%) Fusarium cf. incarnatum MLSTs 1-a and 1-c clone spt110 558/576 (97%) Fall B2N3 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 660 / 675 (97.77%) Fusarium cf. incarnatum M03-11209S-1 PCNB 673/674 (99%) Fall B2N8 FD_01160_EF-1a 627 / 628 (99.84%) Fusarium subglutinans strain NRRL 22016 655/658 (99%)

124 Fall B2N9 FD_01379_EF-1a [Fusarium proliferatum] 655 / 668 (98.05%) Gibberella intermedia isolate V217 659/665 (99%) Fall B2N17 FD_01388_EF-1a [Fusarium verticillioides] 672 / 677 (99.26%) Gibberella moniliformis isolate 8.3 686/692 (99%) Fall B2N21 FD_01388_EF-1a [Fusarium verticillioides] 669 / 673 (99.4%) Gibberella moniliformis isolate 8.3 683/688 (99%) Fall B2N19 FD_01388_EF-1a [Fusarium verticillioides] 645 / 645 (100%) Gibberella moniliformis isolate 8.3 661/664 (99%) Fall B2N38 FD_01388_EF-1a [Fusarium verticillioides] 669 / 675 (99.11%) Gibberella moniliformis isolate 8.3 680/687 (99%) Fall B3N3 FD_00986_EF-1a [Fusarium graminearum] 640 / 642 (99.68%) Gibberella zeae isolate CS3005 674/679 (99%) Fall B3N4 FD_00986_EF-1a [Fusarium graminearum] 628 / 628 (100%) Gibberella zeae isolate CS3005 647/648 (99%) Fall B3N2 FD_00986_EF-1a [Fusarium graminearum] 641 / 642 (99.84%) Gibberella zeae isolate CS3005 677/681 (99%) Fall B3N7 FD_00986_EF-1a [Fusarium graminearum] 641 / 644 (99.53%) Gibberella zeae isolate CS3005 672/678 (99%) Fall B3N10 FD_00986_EF-1a [Fusarium graminearum] 641 / 642 (99.84%) Gibberella zeae isolate CS3005 674/680 (99%) Fall B3N5 FD_01119_EF-1a [Fusarium graminearum] 629 / 629 (100%) Gibberella zeae isolate CS3005 658/661 (99%) Fall B3N6 FD_01119_EF-1a [Fusarium graminearum] 630 / 631 (99.84%) Gibberella zeae isolate CS3005 679/685 (99%) Fall B3N9 FD_01160_EF-1a 643 / 643 (100%) Fusarium subglutinans strain NRRL 22016 676/678 (99%) Fall B3N8 FD_01378_EF-1a [Fusarium proliferatum] 628 / 634 (99.05%) Fusarium proliferatum MUCL 31970 665/674 (99%) Fall B4N3 FD_00786_EF-1a [Fusarium sp.] 651 / 651 (100%) Fusarium oxysporum strain NRRL 46602 661/666 (99%) Fall B4N2 FD_00786_EF-1a [Fusarium sp.] 651 / 651 (100%) Fusarium oxysporum strain NRRL 46602 655/658 (99%) Fall B4N1 FD_01119_EF-1a [Fusarium graminearum] 642 / 644 (99.68%) Gibberella zeae isolate CS3005 669/674 (99%) Fall B4N4 FD_01378_EF-1a [Fusarium proliferatum] 627 / 635 (98.74%) Fusarium proliferatum isolate 2-91 652/655 (99%) Fall B5N2 FD_00986_EF-1a [Fusarium graminearum] 640 / 641 (99.84%) Gibberella zeae isolate CS3005 669/675 (99%) Fall B5N1 FD_01119_EF-1a [Fusarium graminearum] 641 / 644 (99.53%) Gibberella zeae isolate CS3005 675/681 (99%) Fall B6N1 FD_00805_EF-1a [Fusarium sp.] 655 / 655 (100%) Fusarium oxysporum strain LYF025 663/668 (99%) Fall B7N1 FD_01119_EF-1a [Fusarium graminearum] 627 / 629 (99.68%) Gibberella zeae isolate CS3005 657/662 (99%) Fall B9N1 FD_00986_EF-1a [Fusarium graminearum] 641 / 643 (99.68%) Gibberella zeae isolate CS3005 670/676 (99%) Fall B9N2 FD_00986_EF-1a [Fusarium graminearum] 628 / 628 (100%) Gibberella zeae isolate CS3005 657/661 (99%) Fall B9N3 FD_00986_EF-1a [Fusarium graminearum] 637 / 639 (99.68%) Gibberella zeae isolate CS3005 656/658 (99%) Fall B9N5 FD_01119_EF-1a [Fusarium graminearum] 629 / 630 (99.84%) Gibberella zeae isolate CS3005 658/662 (99%) Fall B21N1 FD_01119_EF-1a [Fusarium graminearum] 609 / 611 (99.67%) Gibberella zeae isolate G5S 609/610 (99%) Fall B21N2 GFSC isolate NRRL 46612, MLST-Gibberella fujikuroi species complex 538 / 544 (98.89%) Gibberella fujikuroi var. 543/545 (99%) Fall B21N3 FD_01119_EF-1a [Fusarium graminearum] 618 / 619 (99.83%) Gibberella zeae isolate G5S 621/622 (99%) Fall B21N4 F. chlamydosporum species complex isolate NRRL 28578, MLST1-a 634 / 635 (99.84%) Fusarium sp. NRRL 28578 648/652 (99%) Fall B21N5 FD_00986_EF-1a [Fusarium graminearum] 613 / 614 (99.83%) Gibberella zeae isolate G5S 619/621 (99%) 125 Fall B21N8 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 627 / 628 (99.84%) Fusarium sp. NRRL 45996 627/628 (99%) Fall B21N9 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 621 / 625 (99.36%) Fusarium cf. incarnatum M03-11241S-2 PCNB 623/625 (99%) Fall B22N1 FD_01857_EF-1a [Fusarium sp.] 601 / 602 (99.83%) Gibberella fujikuroi partial tef-1 gene 612/614 (99%) Fall B22N2 FD_01304_EF-1a [Fusarium sp.] 616 / 619 (99.51%) Fusarium sporotrichioides strain NRRL 29977 624/628 (99%) Fall B22N3 FD_01304_EF-1a [Fusarium sp.] 622 / 625 (99.52%) Fusarium sporotrichioides strain NRRL 29977 623/625 (99%) Fall B23N1 FD_01858_EF-1a [Fusarium sp.] 608 / 611 (99.5%) Fusarium proliferatum isolate 001B 623/627 (99%) Fall B23N2 FD_01858_EF-1a [Fusarium sp.] 607 / 610 (99.5%) Fusarium proliferatum partial tef-1 gene 619/621 (99%) Fall B23N3 FD_01857_EF-1a [Fusarium sp.] 602 / 604 (99.66%) Gibberella fujikuroi isolate V22 608/610 (99%) Fall B23N4 FD_01853_EF-1a [Fusarium sp.] 520 / 522 (99.61%) Fusarium sporotrichioides strain NRRL 53434 521/522 (99%) Fall B23N5 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 616/620 (99%) Fall B23N6 FD_01857_EF-1a [Fusarium sp.] 604 / 606 (99.66%) Gibberella fujikuroi isolate V22 615/618 (99%) Fall B23N7 FD_01857_EF-1a [Fusarium sp.] 605 / 607 (99.67%) Gibberella fujikuroi isolate V22 615/618 (99%) Fall B23N8 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 617/621 (99%) Fall B23N9 FD_01378_EF-1a [Fusarium proliferatum] 607 / 615 (98.69%) Gibberella fujikuroi var. intermedia partial tef-1 gene 629/634 (99%) Fall B24N2 FD_01119_EF-1a [Fusarium graminearum] 614 / 616 (99.67%) Gibberella zeae isolate G5S 618/620 (99%) Fall B24N3 FD_01119_EF-1a [Fusarium graminearum] 626 / 630 (99.36%) Gibberella zeae isolate G5S 627/630 (99%) Fall B24N4 FD_01119_EF-1a [Fusarium graminearum] 614 / 616 (99.67%) Gibberella zeae isolate G5S 619/621 (99%) Fall B24N5 FD_01858_EF-1a [Fusarium sp.] 608 / 610 (99.67%) Fusarium proliferatum isolate 001B 625/628 (99%) Fall B24N6 FD_01858_EF-1a [Fusarium sp.] 608 / 610 (99.67%) Fusarium proliferatum isolate 001B 616/617 (99%) Fall B24N7 FD_00986_EF-1a [Fusarium graminearum] 574 / 581 (98.79%) Gibberella zeae strain KB1171 574/581 (99%) Fall B24N8 FD_00986_EF-1a [Fusarium graminearum] 613 / 614 (99.83%) Gibberella zeae isolate G5S 619/621 (99%) Fall B24N9 FD_01119_EF-1a [Fusarium graminearum] 613 / 615 (99.67%) Gibberella zeae strain LMSA 1.09.107 619/621 (99%) Fall B24N10 FD_00986_EF-1a [Fusarium graminearum] 629 / 629 (100%) Gibberella zeae strain NRRL 31084 629/629 (100%) Fall B24N11 FD_01119_EF-1a [Fusarium graminearum] 633 / 634 (99.84%) Gibberella zeae strain LMSA 1.09.106 654/655 (99%) Fall B24N15 FD_00986_EF-1a [Fusarium graminearum] 637 / 643 (99.06%) Gibberella zeae strain LMSA 1.09.105 678/686 (99%) Fall B24N16 FD_01119_EF-1a [Fusarium graminearum] 630 / 630 (100%) Gibberella zeae strain LMSA 1.09.106 647/647 (100%) Fall B24N17 FD_00986_EF-1a [Fusarium graminearum] 579 / 584 (99.14%) Gibberella zeae strain NRRL 31084 579/584 (99%) Fall B24N20 FD_01119_EF-1a [Fusarium graminearum] 622 / 628 (99.04%) Gibberella zeae isolate CS3005 641/647 (99%) Fall B24N22 FD_01119_EF-1a [Fusarium graminearum] 614 / 615 (99.83%) Gibberella zeae isolate G5S 620/621 (99%) Fall B24N25 FD_01119_EF-1a [Fusarium graminearum] 615 / 615 (100%) Gibberella zeae strain LMSA 1.09.106 620/621 (99%) Fall B24N28 FD_01119_EF-1a [Fusarium graminearum] 615 / 615 (100%) Gibberella zeae strain LMSA 1.09.106 619/620 (99%) 126 Fall B24N30 FD_01114_EF-1a [Fusarium graminearum] 629 / 633 (99.36%) Gibberella zeae isolate CS3005 651/656 (99%) Fall B24N31 FD_01119_EF-1a [Fusarium graminearum] 597 / 599 (99.66%) Gibberella zeae isolate G5S 605/608 (99%) Fall B24N32 FD_01119_EF-1a [Fusarium graminearum] 620 / 623 (99.51%) Gibberella zeae strain ATCC 60309 637/638 (99%) Fall B24N33 FD_00986_EF-1a [Fusarium graminearum] 627 / 629 (99.68%) Gibberella zeae isolate M02-7035S-2 DCPA 641/643 (99%) Fall B24N34 FD_01119_EF-1a [Fusarium graminearum] 629 / 630 (99.84%) Gibberella zeae isolate G5S 647/647 (100%) Fall B24N35 FD_01304_EF-1a [Fusarium sp.] 629 / 632 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 656/661 (99%) Fall B25N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 634/638 (99%) Fall B25N2 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 605 / 644 (93.94%) Fusarium cf. incarnatum isolate M02-7079S-5 635/655 (97%) Fall B25N3 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 633 / 634 (99.84%) Fusarium sp. NRRL 5537 637/639 (99%) Fall B25N4 F. solani species complex isolate NRRL 32821, MLST12-e 116 / 119 (97.47%) Beauveria bassiana isolate 2641 545/674 (81%) Fall B26N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 620 / 634 (97.79%) Fusarium cf. incarnatum M03-11209S-1 PCNB 637/638 (99%) Fall B26N3 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 613 / 628 (97.61%) Fusarium cf. incarnatum M03-11209S-1 PCNB 626/627 (99%) Fall B26N4 FD_01119_EF-1a [Fusarium graminearum] 627 / 630 (99.52%) Gibberella zeae strain ATCC 60309 647/649 (99%) Fall B26N5 FD_00986_EF-1a [Fusarium graminearum] 612 / 612 (100%) Gibberella zeae strain NRRL 31084 617/618 (99%) Fall B26N6 F. incarnatum-equiseti species complex isolate NRRL 34039, MLST1-b 670 / 672 (99.7%) Fusarium sp. NRRL 34039 670/672 (99%) Fall B27N1 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 630 / 635 (99.21%) Fusarium lacertarum strain NRRL 20423 630/635 (99%) Fall B27N2 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 616/620 (99%) Fall B27N3 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 610 / 613 (99.51%) Fusarium cf. incarnatum M03-11241S-2 PCNB 618/620 (99%) Fall B27N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 632 / 634 (99.68%) Fusarium sp. NRRL 32522 632/634 (99%) Fall B27N5 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 606 / 608 (99.67%) Fusarium sp. NRRL 28029 619/623 (99%) Fall B27N6 F. incarnatum-equiseti species complex isolate NRRL 34034, MLST1-c 639 / 639 (100%) Fusarium equiseti isolate 44 642/642 (100%) Fall B27N7 GFSC isolate NRRL 31418, MLST-Gibberella fujikuroi species complex 428 / 429 (99.76%) Gibberella fujikuroi strain EF01 427/429 (99%) Fall B28N2 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 634/638 (99%) Fall B28N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 625 / 627 (99.68%) Fusarium sp. NRRL 32522 625/627 (99%) Fall B28N5 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 619 / 634 (97.63%) Fusarium cf. incarnatum M03-11209S-1 PCNB 639/642 (99%) Fall B28N6 F. incarnatum-equiseti species complex isolate NRRL 34005, MLST24-a 640 / 642 (99.68%) Fusarium cf. incarnatum M03-11345S-1 DCPA 653/655 (99%) Fall B28N7 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 641 / 643 (99.68%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 650/651 (99%) Fall B28N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 612 / 616 (99.35%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 625/629 (99%) Fall B28N9 FD_01857_EF-1a [Fusarium sp.] 602 / 604 (99.66%) Gibberella fujikuroi isolate V95 617/622 (99%) Fall B28N10 FD_01858_EF-1a [Fusarium sp.] 603 / 605 (99.66%) Fusarium proliferatum isolate 001B 616/618 (99%)

Fall B68N1 FD_01319_EF-1a [Fusarium sp.] 563 / 619 (90.95%) Fusarium cf. incarnatum 598/639 (94%) 127 Fall B69N1 FD_00801_EF-1a | F. oxysporum species complex 231 586 / 620 (94.51%) Fusarium oxysporum strain NRRL 52698 598/634 (94%) Fall B70N2 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 593 / 594 (99.83%) Fusarium proliferatum partial tef-1 gene 597/597 (100%)

Fall B70N4 FD_01321_EF-1a [Fusarium sp.] 599 / 623 (96.14%) Fusarium equiseti strain AGrocketbis 616/619 (99%)

Fall B71N2 FD_01320_EF-1a [Fusarium pallidoroseum] 449 / 456 (98.46%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt134 462/463 (99%) Fall B86N1 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 522 / 535 (97.57%) Gibberella fujikuroi partial tef-1 gene 536/538 (99%) Fall B87N5 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 525 / 537 (97.76%) Gibberella fujikuroi partial tef-1 gene 538/539 (99%)

Fall B87N8 FD_01319_EF-1a [Fusarium sp.] 565 / 607 (93.08%) Fusarium cf. incarnatum MLSTs 25-a, 25-b and 25-c clone spt046 613/614 (99%)

Fall B87N2 FD_01321_EF-1a [Fusarium sp.] 353 / 369 (95.66%) Fusarium sp. NRRL 43637 374/378 (99%)

Fall B87N3 FD_01321_EF-1a [Fusarium sp.] 368 / 382 (96.33%) Fusarium sp. NRRL 43637 391/391 (100%)

Fall B87N4 FD_01321_EF-1a [Fusarium sp.] 579 / 601 (96.33%) Fusarium sp. NRRL 43637 602/603 (99%)

Fall B87N6 FD_01321_EF-1a [Fusarium sp.] 623 / 649 (95.99%) Fusarium sp. NRRL 43637 642/644 (99%)

Fall B87N7 FD_01321_EF-1a [Fusarium sp.] 578 / 601 (96.17%) Fusarium sp. NRRL 43637 602/604 (99%)

Fall B91N1 FD_01119_EF-1a [Fusarium graminearum] 550 / 607 (90.6%) Gibberella zeae isolate G5S 560/619 (90%)

Fall B92N2 FD_01378_EF-1a [Fusarium proliferatum] 605 / 620 (97.58%) Gibberella intermedia isolate 3075 613/627 (98%)

Fall B92N1 FD_01388_EF-1a [Fusarium verticillioides] 513 / 513 (100%) Gibberella moniliformis isolate B4 513/513 (100%) Winter B12N1 FD_01373_EF-1a [Fusarium solani] 687 / 689 (99.7%) Fusarium sp. NRRL 46598 690/690 (100%)

128 Table 4. Comparisons of Fusarium-ID and GenBank for the isolates of Fusarium collected with an unmanned aerial vehicle (UAV)

100 m above ground level across all seasons over four calendar years (2009, 2010, 2011, & 2012).

Genbank Season Isolate Identification based on Fusarium-ID Query Fusarium-ID (%) Identification based on GenBank Query (%)

Spring F134N9 F. oxysporum species complex isolate NRRL 26989619 / 620 (99.83%) 619 / 620 (99.83%) Fusarium oxysporum f. sp. lycopersici strain OSU451 624/626 (99%)

Spring F134N1 FD_00785_EF-1a [Fusarium sp.] 653 / 653 (100%) Fusarium oxysporum strain NRRL 46605 653/653 (100%)

Spring F134N10 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 645/648 (99%)

Spring F134N3 FD_01320_EF-1a [Fusarium pallidoroseum] 661 / 662 (99.84%) Fusarium sp. NRRL 43622 667/670 (99%)

Spring F134N7 FD_01321_EF-1a [Fusarium sp.] 631 / 659 (95.75%) Fusarium sp. NRRL 34034 665/669 (99%)

Spring F135N1 FD_01321_EF-1a [Fusarium sp.] 634 / 660 (96.06%) Fusarium sp. NRRL 36323 665/666 (99%)

Spring F135N6 FD_01321_EF-1a [Fusarium sp.] 565 / 603 (93.69%) Fusarium sp. NRRL 32997 650/662 (98%)

Spring F136N9 FD_01320_EF-1a [Fusarium pallidoroseum] 663 / 663 (100%) Fusarium sp. NRRL 43622 663/663 (100%)

Spring F137N3 FD_01320_EF-1a [Fusarium pallidoroseum] 615 / 633 (97.15%) Fusarium cf. incarnatum H04-777S-1 PCNB 652/673 (97%)

Spring F137N4 FD_01320_EF-1a [Fusarium pallidoroseum] 663 / 663 (100%) Fusarium sp. NRRL 43622 669/671 (99%)

Spring F138N9 F. incarnatum-equiseti species complex isolate NRRL 28029 608 / 610 (99.67%) Fusarium sp. NRRL 28029 611/614 (99%)

Spring F138N8 F. incarnatum-equiseti species complex isolate NRRL 5537 642 / 643 (99.84%) Fusarium sp. NRRL 5537 642/643 (99%)

Spring F138N4 FD_00785_EF-1a [Fusarium sp.] 675 / 681 (99.11%) Fusarium oxysporum f. sp. melonis isolate TX388 673/676 (99%)

Spring F138N5 FD_00805_EF-1a [Fusarium sp.] 655 / 656 (99.84%) Fusarium oxysporum strain LYF025 658/662 (99%)

Spring F138N1 FD_01320_EF-1a [Fusarium pallidoroseum] 594 / 649 (91.52%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 615/664 (93%)

Spring F139N6 F. incarnatum-equiseti species complex isolate NRRL 5537 642 / 643 (99.84%) Fusarium sp. NRRL 5537 642/643 (99%)

Spring F139N7 FD_00809_EF-1a [Fusarium sp.] 653 / 653 (100%) Fusarium sp. F67 661/662 (99%)

Spring F139N9 FD_01320_EF-1a [Fusarium pallidoroseum] 656 / 664 (98.79%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 677/683 (99%)

Spring F139N5 FD_01321_EF-1a [Fusarium sp.] 629 / 665 (94.58%) Fusarium sp. NRRL 5537 669/671 (99%)

Spring F139N8 FD_01321_EF-1a [Fusarium sp.] 627 / 663 (94.57%) Fusarium sp. NRRL 5537 668/670 (99%)

Spring F140N7 FD_00802_EF-1a [Fusarium sp.] 675 / 682 (98.97%) Fusarium oxysporum f. sp. lycopersici strain OSU451 676/683 (99%)

Spring F140N3 FD_01376_EF-1a [Fusarium oxysporum] 673 / 679 (99.11%) Fusarium oxysporum isolate Lb4 669/672 (99%)

Spring F141N2 FD_00785_EF-1a [Fusarium sp.] 680 / 685 (99.27%) Fusarium oxysporum strain NRRL 46605 680/685 (99%)

Spring F141N8 FD_00986_EF-1a [Fusarium graminearum] 628 / 629 (99.84%) Gibberella zeae isolate CS3005 645/649 (99%)

129 Spring F141N4 FD_01321_EF-1a [Fusarium sp.] 615 / 667 (92.2%) Fusarium sp. NRRL 32997 664/677 (98%)

Spring F141N5 FD_01321_EF-1a [Fusarium sp.] 625 / 662 (94.41%) Fusarium sp. NRRL 5537 659/662 (99%)

Spring F141N7 FD_01321_EF-1a [Fusarium sp.] 636 / 660 (96.36%) Fusarium sp. NRRL 45996 664/665 (99%)

Spring F142N5 FD_01320_EF-1a [Fusarium pallidoroseum] 655 / 663 (98.79%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 676/682 (99%)

Spring ISF159N17 FD_01321_EF-1a [Fusarium sp.] 628 / 655 (95.87%) Fusarium sp. NRRL 28029 647/649 (99%)

Spring OHF159N5 FD_01317_EF-1a [Fusarium sp.] 607 / 624 (97.27%) Gibberella avenacea voucher FRC R-9369 613/617 (99%)

Spring ISF160N18 FD_01304_EF-1a [Fusarium sp.] 630 / 632 (99.68%) Fusarium langsethiae strain NRRL 53422/2321/2 649/652 (99%)

Spring ISF160N7 FD_01321_EF-1a [Fusarium sp.] 615 / 652 (94.32%) Fusarium sp. NRRL 5537 646/648 (99%)

Spring OSF160N7 FD_00386_EF-1a [Fusarium sp.] 646 / 648 (99.69%) Fusarium oxysporum isolate SAT77 646/647 (99%)

Spring OSF160N6 FD_00793_EF-1a [Fusarium sp.] 650 / 651 (99.84%) Fusarium oxysporum isolate Lb4 655/657 (99%)

Spring OSF160N9 FD_01327_EF-1a [Fusarium sp.] 662 / 664 (99.69%) Fusarium polyphialidicum isolate F0016 657/661 (99%)

Spring IHF161N14 FD_00802_EF-1a [Fusarium sp.] 652 / 654 (99.69%) Fusarium oxysporum f. sp. lycopersici strain OSU451 652/654 (99%)

Spring ISF161N13 FD_01261_EF-1a [Fusarium oxysporum] 577 / 579 (99.65%) Fusarium oxysporum isolate NBAII-Fu1 577/579 (99%)

Spring ISF161N15 FD_01261_EF-1a [Fusarium oxysporum] 619 / 620 (99.83%) Fusarium oxysporum f. sp. lycopersici strain OSU451 628/631 (99%)

Spring ISF161N16 FD_01317_EF-1a [Fusarium sp.] 674 / 685 (98.39%) Fusarium avenaceum strain CC39 673/684 (98%)

Spring ISF161N18 FD_01321_EF-1a [Fusarium sp.] 614 / 652 (94.17%) Fusarium sp. NRRL 5537 645/648 (99%)

Spring OSF161N23 FD_01288_EF-1a [Fusarium sp.] 636 / 647 (98.29%) Fusarium solani strain NRRL 32798 646/647 (99%)

Spring OSF161N24 FD_01288_EF-1a [Fusarium sp.] 636 / 648 (98.14%) Fusarium solani strain NRRL 32798 646/648 (99%)

Spring OSF161N1 FD_01321_EF-1a [Fusarium sp.] 644 / 670 (96.11%) Fusarium sp. NRRL 45996 663/665 (99%)

Spring OSF161N19 FD_01321_EF-1a [Fusarium sp.] 658 / 666 (98.79%) Fusarium equiseti strain 163b 666/666 (100%)

Spring ISF162N7 FD_01321_EF-1a [Fusarium sp.] 614 / 652 (94.17%) Fusarium sp. NRRL 5537 645/648 (99%)

Spring OSF162N12 FD_00785_EF-1a [Fusarium sp.] 646 / 647 (99.84%) Fusarium sp. 45BMC 650/650 (100%)

Spring OSF162N1 FD_01321_EF-1a [Fusarium sp.] 613 / 631 (97.14%) Fusarium equiseti strain 84b 625/643 (97%)

Spring OSF162N13 FD_01371_EF-1a [Fusarium solani] 681 / 681 (100%) Fusarium solani partial tef-1a gene 686/688 (99%)

Spring ISF163N24 FD_01321_EF-1a [Fusarium sp.] 633 / 651 (97.23%) Fusarium sp. NRRL 43680 haplotype FIESC 4-a 643/659 (98%)

Spring ISF163N23 FD_01321_EF-1a [Fusarium sp.] 615 / 652 (94.32%) Fusarium sp. NRRL 5537 646/648 (99%)

Spring ISF164N10 FD_01321_EF-1a [Fusarium sp.] 615 / 652 (94.32%) Fusarium sp. NRRL 5537 646/648 (99%)

Spring ISF164N18 FD_01321_EF-1a [Fusarium sp.] 645 / 669 (96.41%) Fusarium sp. NRRL 45996 664/664 (100%)

Spring ISF164N20 FD_01373_EF-1a [Fusarium solani] 651 / 654 (99.54%) Fusarium solani f. radicicola gene 653/654 (99%)

Spring ISF164N22 FD_01373_EF-1a [Fusarium solani] 651 / 654 (99.54%) Fusarium solani f. radicicola gene 653/654 (99%)

130 Spring OSF164N16 FD_00805_EF-1a [Fusarium sp.] 646 / 647 (99.84%) Fusarium oxysporum isolate 57 648/651 (99%)

Spring OSF164N1 FD_01321_EF-1a [Fusarium sp.] 625 / 661 (94.55%) Fusarium sp. NRRL 5537 652/652 (100%)

Spring OSF164N4 FD_01321_EF-1a [Fusarium sp.] 657 / 666 (98.64%) Fusarium equiseti strain 163b 665/666 (99%)

Spring ISF166N5 FD_01041_EF-1a 635 / 652 (97.39%) Fusarium solani strain NRRL 22656 653/657 (99%)

Spring ISF166N10 FD_01313_EF-1a [Fusarium nelsonii] 620 / 641 (96.72%) Fusarium sp. NRRL 43630 652/653 (99%)

Spring ISF166N2 FD_01325_EF-1a [Fusarium aywerti] 507 / 557 (91.02%) Fusarium brachygibbosum strain NRRL 34033 625/628 (99%)

Spring IF170N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 636 / 652 (97.54%) Fusarium cf. incarnatum M03-11209S-1 PCNB 660/664 (99%)

Spring IF170N2 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 637 / 653 (97.54%) Fusarium cf. incarnatum M03-11209S-1 PCNB 661/665 (99%)

Spring IF171N1 F. oxysporum species complex isolate NRRL 40182, MLST99 648 / 649 (99.84%) Fusarium oxysporum strain LYF025 651/655 (99%)

Spring IF171N2 F. oxysporum species complex isolate NRRL 40182, MLST99 646 / 648 (99.69%) Fusarium oxysporum isolate 57 649/653 (99%)

Spring IF171N3 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 618 / 618 (100%) Gibberella fujikuroi isolate PRC 646/649 (99%)

Spring IF171N4 FD_01317_EF-1a [Fusarium sp.] 642 / 651 (98.61%) Fusarium avenaceum strain CC32 652/660 (99%)

Spring IF171N5 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 643 / 643 (100%) Fusarium sp. NRRL 5537 655/657 (99%)

Spring IF171N6 FD_01119_EF-1a [Fusarium graminearum] 640 / 644 (99.37%) Gibberella zeae isolate CS3005 677/681 (99%)

Spring IF171N7 F. oxysporum species complex isolate NRRL 39464, MLST232 680 / 683 (99.56%) Fusarium oxysporum f. sp. vasinfectum isolate NRRL25231 681/684 (99%)

Spring OF171N1 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 313 / 336 (93.15%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 591/700 (84%)

Spring OF171N2 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 640 / 678 (94.39%) Fusarium cf. incarnatum DFH-2010 669/688 (97%)

Spring OF171N3 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 625 / 643 (97.2%) Gibberella fujikuroi isolate PRC 2a 652/672 (97%) Spring OF171N4 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 640 / 641 (99.84%) Gibberella fujikuroi isolate PRC 2a 672/674 (99%) Spring OF171N5 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 673 / 674 (99.85%) Fusarium sp. NRRL 5537 673/674 (99%)

Spring OF171N6 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 645 / 646 (99.84%) Fusarium sp. NRRL 5537 652/654 (99%)

Spring IF173N1 FD_00986_EF-1a [Fusarium graminearum] 626 / 628 (99.68%) Gibberella zeae strain NRRL 31084 637/639 (99%)

Spring IF173N2 FD_00986_EF-1a [Fusarium graminearum] 642 / 643 (99.84%) Gibberella zeae isolate CS3005 679/681 (99%)

Spring OF173N2 F. oxysporum species complex isolate NRRL 39464, MLST232 677 / 684 (98.97%) Fusarium oxysporum f. sp. lycopersici strain OSU451 678/684 (99%)

Spring IF174N1 FD_01345_EF-1a [Fusarium lateritium] 638 / 665 (95.93%) Fusarium lateritium isolate F0104 649/664 (98%)

Spring IF174N3 FD_01119_EF-1a [Fusarium graminearum] 612 / 615 (99.51%) Gibberella zeae strain ATCC 60309 624/627 (99%)

Spring IF174N4 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 634 / 650 (97.53%) Fusarium cf. incarnatum M03-11209S-1 PCNB 651/654 (99%)

Spring IF174N5 FD_01304_EF-1a [Fusarium sp.] 639 / 643 (99.37%) Fusarium sporotrichioides strain NRRL 29977 651/654 (99%)

Spring OF174N1 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 616 / 618 (99.67%) Gibberella fujikuroi isolate PRC 641/646 (99%) Spring OF174N2 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 633 / 673 (94.05%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 663/684 (97%)

131 Spring IF175N1 FD_00986_EF-1a [Fusarium graminearum] 642 / 646 (99.38%) Gibberella zeae isolate CS3005 673/678 (99%)

Spring IF175N2 FD_01317_EF-1a [Fusarium sp.] 682 / 688 (99.12%) Fusarium avenaceum strain CC32 683/687 (99%)

Spring IF175N3 FD_00986_EF-1a [Fusarium graminearum] 641 / 643 (99.68%) Gibberella zeae isolate CS3005 674/677 (99%) Spring IF175N4 FD_00986_EF-1a [Fusarium graminearum] 626 / 628 (99.68%) Gibberella zeae strain NRRL 31084 638/641 (99%) Spring OF175N1 FD_00986_EF-1a [Fusarium graminearum] 628 / 628 (100%) Gibberella zeae isolate CS3005 645/646 (99%) Spring OF175N2 FD_01857_EF-1a [Fusarium sp.] 618 / 618 (100%) Gibberella fujikuroi isolate PRC 652/657 (99%) Spring OF175N3 FD_00986_EF-1a [Fusarium graminearum] 628 / 628 (100%) Gibberella zeae isolate CS3005 658/662 (99%)

Spring OF175N4 FD_01119_EF-1a [Fusarium graminearum] 641 / 647 (99.07%) Gibberella zeae isolate CS3005 672/679 (99%)

Spring OF175N5 FD_01857_EF-1a [Fusarium sp.] 639 / 640 (99.84%) Gibberella fujikuroi isolate PRC 665/667 (99%)

Spring IF176N1 F. oxysporum species complex isolate NRRL 40182, MLST99 621 / 622 (99.83%) Fusarium oxysporum strain NRRL28359 634/640 (99%) Spring IF176N2 FD_01119_EF-1a [Fusarium graminearum] 614 / 615 (99.83%) Gibberella zeae isolate G5S 641/643 (99%)

Spring OF176N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 645 / 660 (97.72%) Fusarium cf. incarnatum M03-11209S-1 PCNB 662/663 (99%)

Spring OF176N2 FD_01119_EF-1a [Fusarium graminearum] 629 / 630 (99.84%) Gibberella zeae isolate G5S 644/644 (100%)

Spring OF176N3 FD_01857_EF-1a [Fusarium sp.] 633 / 636 (99.52%) Gibberella fujikuroi isolate PRC 646/650 (99%) Spring OF177N1 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 642 / 643 (99.84%) Fusarium sp. NRRL 28029 659/664 (99%) Spring OF177N2 FD_01304_EF-1a [Fusarium sp.] 630 / 631 (99.84%) Fusarium langsethiae strain NRRL 53422/2321/2 652/654 (99%)

Spring IF178N1 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium sporotrichioides strain NRRL 29977 645/648 (99%)

Spring IF178N2 FD_01858_EF-1a [Fusarium sp.] 607 / 611 (99.34%) Gibberella intermedia strain PUF021 623/629 (99%) Spring IF178N3 FD_01389_EF-1a_2 [Fusarium proliferatum] 662 / 665 (99.54%) Fusarium proliferatum MUCL 31970 673/678 (99%) Spring OF178N1 FD_00986_EF-1a [Fusarium graminearum] 627 / 628 (99.84%) Gibberella zeae isolate CS3005 654/660 (99%) Spring OF178N2 FD_01304_EF-1a [Fusarium sp.] 630 / 631 (99.84%) Fusarium langsethiae strain NRRL 53422/2321/2 658/662 (99%) Spring IF179N1 F. oxysporum species complex isolate NRRL 38592, MLST222 677 / 679 (99.7%) Fusarium oxysporum strain NRRL 46602 676/680 (99%)

Spring IF179N3 F. incarnatum-equiseti species complex isolate NRRL 45997, MLST5-f 670 / 672 (99.7%) Fusarium sp. NRRL 43680 haplotype FIESC 4-a 675/679 (99%)

Spring IF179N4 FD_01119_EF-1a [Fusarium graminearum] 626 / 630 (99.36%) Gibberella zeae strain ATCC 60309 645/648 (99%)

Spring IF179N5 FD_01304_EF-1a [Fusarium sp.] 627 / 631 (99.36%) Fusarium langsethiae strain NRRL 53422/2321/2 648/653 (99%)

Spring IF179N6 FD_01857_EF-1a [Fusarium sp.] 615 / 618 (99.51%) Gibberella fujikuroi isolate V22 637/641 (99%) Spring IF179N7 FD_01317_EF-1a [Fusarium sp.] 672 / 678 (99.11%) Fusarium avenaceum strain CC32 674/677 (99%) Spring OF179N1 FD_01304_EF-1a [Fusarium sp.] 630 / 631 (99.84%) Fusarium langsethiae strain NRRL 53422/2321/2 650/652 (99%)

Spring OF179N3 FD_00986_EF-1a [Fusarium graminearum] 628 / 646 (97.21%) Gibberella zeae isolate CS3005 657/676 (97%)

Spring OF228N1 F. incarnatum-equiseti species complex 4-b 601 / 641 (93.75%) Fusarium cf. incarnatum 640/644(99%)

Spring OF228N2 FD_01857_EF-1a [ Fusarium sp. ] 600 / 602 (99.66%) Gibberella intermedia 612/615(99%)

Spring OF228N3 FD_01304_EF-1a [ Fusarium sp. ] 599 / 601 (99.66%) Fusarium sporotrichioides 606/608(99%)

Spring OF228N4 FD_01304_EF-1a [ Fusarium sp. ] 579 / 581 (99.65%) Fusarium sporotrichioides 600/601(99%)

132 Spring OF228N6 FD_01524_EF-1a | F. solani species complex 5-g NRRL25388 622 / 622 (100%) Fusarium solani 622/622(100%)

Spring OF228N8 FD_01304_EF-1a [ Fusarium sp. ] 625 / 627 (99.68%) Fusarium sporotrichioides 636/637(99%)

Spring OF230N5 FD_01857_EF-1a [ Fusarium sp. ] 603 / 603 (100%) Gibberella fujikuroi 614/616(99%)

Spring OF230N6 FD_01375_EF-1a [ Fusarium oxysporum ] 618 / 618 (100%) Fusarium oxysporum 618/618(100%)

Spring OF230N7 FD_01614_EF-1a | F. incarnatum-equiseti species complex 8-a NRRL5537 674 / 676 (99.7%) Fusarium equiseti 674/676(99%)

Spring IF228N1 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 657 / 663 (99.09%) Fusarium equiseti 645/655(98%)

Spring IF228N2 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 594 / 665 (89.32%) Fusarium equiseti 591/665(89%)

Spring IF228N3 FD_01674_EF-1a | F. incarnatum-equiseti species complex 2-a NRRL36401 607 / 673 (90.19%) Fusarium equiseti 610/672(91%)

Spring IF230N1 FD_01389_EF-1a [ Fusarium proliferatum ] 612 / 615 (99.51%) Gibberella intermedia 613/615(99%)

Spring IF230N2 FD_01389_EF-1a [ Fusarium proliferatum ] 593 / 595 (99.66%) Gibberella intermedia 594/595(99%)

Spring IF230N4 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 652 / 652 (100%) Fusarium equiseti 654/658(99%)

Summer F143N5 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 636 / 640 (99.37%) Fusarium sp. NRRL 28029 640/645 (99%)

Summer F143N11 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 639 / 641 (99.68%) Fusarium sp. NRRL 28029 643/646 (99%)

Summer F143N2 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 597 / 600 (99.5%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 608/612 (99%)

Summer F143N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 636 / 641 (99.21%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 650/654 (99%)

Summer F143N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 649 / 653 (99.38%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 666/670 (99%)

Summer F143N10 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 640 / 645 (99.22%) Fusarium cf. incarnatum H04-777S-1 PCNB 658/662 (99%)

Summer F143N16 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 646 / 648 (99.69%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 657/660 (99%)

Summer F143N17 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 673 / 676 (99.55%) Fusarium cf. incarnatum H04-777S-1 PCNB 687/688 (99%)

Summer F143N20 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 648 / 654 (99.08%) Fusarium cf. incarnatum H04-777S-1 PCNB 666/671 (99%)

Summer F143N21 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 640 / 645 (99.22%) Fusarium cf. incarnatum H04-777S-1 PCNB 658/662 (99%)

Summer F143N26 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 640 / 645 (99.22%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 658/666 (99%)

Summer F143N27 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 651 / 654 (99.54%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 662/666 (99%)

Summer F143N32 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 642 / 645 (99.53%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 662/669 (99%)

Summer F143N33 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 645 / 650 (99.23%) Fusarium cf. incarnatum H04-777S-1 PCNB 663/667 (99%)

Summer F143N35 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 644 / 647 (99.53%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 655/659 (99%)

Summer F143N15 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 632 / 651 (97.08%) Fusarium cf. incarnatum M03-11209S-1 PCNB 653/659 (99%)

Summer F143N3 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 635 / 651 (97.54%) Fusarium cf. incarnatum M03-11209S-1 PCNB 656/659 (99%)

Summer F143N9 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 640 / 657 (97.41%) Fusarium cf. incarnatum M03-11209S-1 PCNB 657/660 (99%)

Summer F143N13 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 640 / 662 (96.67%) Fusarium cf. incarnatum M03-11209S-1 PCNB 657/665 (99%)

Summer F143N18 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 633 / 650 (97.38%) Fusarium cf. incarnatum M03-11209S-1 PCNB 650/653 (99%) 133 Summer F143N25 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 667 / 683 (97.65%) Fusarium cf. incarnatum M03-11209S-1 PCNB 684/686 (99%)

Summer F143N28 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 661 / 677 (97.63%) Fusarium cf. incarnatum M03-11209S-1 PCNB 678/680 (99%)

Summer F143N30 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 635 / 651 (97.54%) Fusarium cf. incarnatum M03-11209S-1 PCNB 656/659 (99%)

Summer F143N31 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 639 / 656 (97.4%) Fusarium cf. incarnatum M03-11209S-1 PCNB 656/659 (99%)

Summer F143N36 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 636 / 651 (97.69%) Fusarium cf. incarnatum M03-11209S-1 PCNB 657/659 (99%)

Summer F143N39 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 619 / 635 (97.48%) Fusarium cf. incarnatum M03-11209S-1 PCNB 636/638 (99%)

Summer F143N24 F. incarnatum-equiseti species complex isolate NRRL 34005, MLST24-a 638 / 642 (99.37%) Fusarium cf. incarnatum M03-11345S-1 DCPA 650/654 (99%)

Summer F143N12 F. incarnatum-equiseti species complex isolate NRRL 36323, MLST3-a 639 / 640 (99.84%) Fusarium sp. NRRL 36323 645/647 (99%)

Summer F143N7 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 646 / 650 (99.38%) Fusarium sp. NRRL 45996 646/650 (99%)

Summer F143N34 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 650 / 652 (99.69%) Fusarium sp. NRRL 5537 650/652 (99%)

Summer F143N37 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 640 / 641 (99.84%) Fusarium sp. NRRL 5537 651/654 (99%)

Summer F143N38 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 652 / 652 (100%) Fusarium sp. NRRL 5537 652/652 (100%)

Summer F143N1 F. oxysporum species complex isolate NRRL 38599, MLST67 660 / 662 (99.69%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 662/664 (99%)

Summer F143N14 F. oxysporum species complex isolate NRRL 38599, MLST67 650 / 653 (99.54%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 659/664 (99%)

Summer F143N23 FD_01389_EF-1a_2 [Fusarium proliferatum] 667 / 669 (99.7%) Fusarium proliferatum MUCL 31970 667/674 (99%)

Summer F143N22 FD_01857_EF-1a [Fusarium sp.] 623 / 626 (99.52%) Gibberella fujikuroi partial tef-1 gene 645/651 (99%)

Summer F144N40 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 675 / 676 (99.85%) Fusarium sp. NRRL 28029 675/676 (99%)

Summer F144N16 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 641 / 646 (99.22%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 656/663 (99%)

Summer F144N18 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 652 / 654 (99.69%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 668/673 (99%)

Summer F144N34 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 645 / 648 (99.53%) Fusarium cf. incarnatum H04-777S-1 PCNB 663/665 (99%)

Summer F144N36 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 649 / 654 (99.23%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 662/666 (99%)

Summer F144N42 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 622 / 624 (99.67%) Fusarium sp. NRRL 32522 628/631 (99%)

Summer F144N49 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 641 / 645 (99.37%) Fusarium cf. incarnatum H04-777S-1 PCNB 653/655 (99%)

Summer F144N52 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 648 / 653 (99.23%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 673/679 (99%)

Summer F144N53 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 645 / 649 (99.38%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 658/661 (99%)

Summer F144N54 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 641 / 643 (99.68%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 652/655 (99%)

Summer F144N57 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 653 / 654 (99.84%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 662/664 (99%)

Summer F144N64 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 640 / 643 (99.53%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 659/662 (99%)

Summer F144N65 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 671 / 672 (99.85%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 682/684 (99%)

Summer F144N72 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 647 / 654 (98.92%) Fusarium cf. incarnatum H04-777S-1 PCNB 661/666 (99%)

Summer F144N15 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 559 / 576 (97.04%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 566/571 (99%) 134 Summer F144N19 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 650 / 652 (99.69%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 661/664 (99%)

Summer F144N13 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 643 / 657 (97.86%) Fusarium cf. incarnatum M03-11209S-1 PCNB 664/665 (99%)

Summer F144N17 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 638 / 653 (97.7%) Fusarium cf. incarnatum M03-11209S-1 PCNB 655/656 (99%)

Summer F144N28 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 644 / 660 (97.57%) Fusarium cf. incarnatum M03-11209S-1 PCNB 661/663 (99%)

Summer F144N38 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 662 / 677 (97.78%) Fusarium cf. incarnatum M03-11209S-1 PCNB 679/680 (99%)

Summer F144N39 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 633 / 649 (97.53%) Fusarium cf. incarnatum M03-11209S-1 PCNB 656/659 (99%)

Summer F144N51 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 634 / 651 (97.38%) Fusarium cf. incarnatum M03-11209S-1 PCNB 651/654 (99%)

Summer F144N58 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 634 / 651 (97.38%) Fusarium cf. incarnatum M03-11209S-1 PCNB 655/659 (99%)

Summer F144N59 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 638 / 656 (97.25%) Fusarium cf. incarnatum M03-11209S-1 PCNB 655/659 (99%)

Summer F144N60 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 639 / 656 (97.4%) Fusarium cf. incarnatum M03-11209S-1 PCNB 656/659 (99%)

Summer F144N71 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 645 / 660 (97.72%) Fusarium cf. incarnatum M03-11209S-1 PCNB 662/663 (99%)

Summer F144N47 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 664 / 680 (97.64%) Fusarium cf. incarnatum M03-11209S-1 PCNB 681/683 (99%)

Summer F144N37 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 639 / 648 (98.61%) Fusarium sp. NRRL 32997 639/648 (99%)

Summer F144N32 F. incarnatum-equiseti species complex isolate NRRL 34005, MLST24-a 672 / 677 (99.26%) Fusarium cf. incarnatum M03-11345S-1 DCPA 689/694 (99%)

Summer F144N69 F. incarnatum-equiseti species complex isolate NRRL 34005, MLST24-a 667 / 669 (99.7%) Fusarium cf. incarnatum M03-11345S-1 DCPA 679/681 (99%)

Summer F144N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 637 / 638 (99.84%) Fusarium sp. NRRL 5537 637/638 (99%)

Summer F144N27 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 671 / 674 (99.55%) Fusarium sp. NRRL 5537 671/674 (99%)

Summer F144N48 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 652 / 652 (100%) Fusarium sp. NRRL 5537 652/652 (100%)

Summer F144N62 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 636 / 638 (99.68%) Fusarium sp. NRRL 5537 636/638 (99%)

Summer F144N63 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 672 / 675 (99.55%) Fusarium sp. NRRL 5537 672/675 (99%)

Summer F144N67 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 639 / 643 (99.37%) Fusarium sp. NRRL 5537 648/654 (99%)

Summer F144N68 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 650 / 653 (99.54%) Fusarium sp. NRRL 5537 650/653 (99%)

Summer F144N24 F. oxysporum species complex isolate NRRL 38599, MLST67 659 / 660 (99.84%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 661/662 (99%)

Summer F144N31 F. oxysporum species complex isolate NRRL 38599, MLST67 662 / 664 (99.69%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 665/667 (99%)

Summer F144N4 FD_01304_EF-1a [Fusarium sp.] 638 / 641 (99.53%) Fusarium sporotrichioides strain F95 662/667 (99%)

Summer F144N41 FD_01304_EF-1a [Fusarium sp.] 645 / 646 (99.84%) Fusarium sporotrichioides strain F95 685/688 (99%)

Summer F144N21 FD_01389_EF-1a_2 [Fusarium proliferatum] 665 / 668 (99.55%) Fusarium proliferatum MUCL 31970 665/672 (99%)

Summer F144N55 FD_01389_EF-1a_2 [Fusarium proliferatum] 609 / 610 (99.83%) Fusarium proliferatum isolate 2-91 619/622 (99%)

Summer F144N56 FD_01389_EF-1a_2 [Fusarium proliferatum] 665 / 668 (99.55%) Fusarium proliferatum MUCL 31970 676/683 (99%)

Summer F144N20 FD_01853_EF-1a [Fusarium sp.] 627 / 631 (99.36%) Fusarium sporotrichioides strain NRRL 53434/2616/11 662/668 (99%)

Summer F144N29 FD_01853_EF-1a [Fusarium sp.] 643 / 646 (99.53%) Fusarium sporotrichioides strain F95 685/688 (99%) 135 Summer F144N2 FD_01857_EF-1a [Fusarium sp.] 637 / 640 (99.53%) Gibberella fujikuroi isolate 11-93 670/677 (99%)

Summer F144N3 FD_01857_EF-1a [Fusarium sp.] 627 / 633 (99.05%) Gibberella fujikuroi strain NRRL 43470 627/632 (99%)

Summer F144N5 FD_01857_EF-1a [Fusarium sp.] 637 / 640 (99.53%) Gibberella fujikuroi isolate 11-93 671/678 (99%)

Summer F144N12 FD_01857_EF-1a [Fusarium sp.] 631 / 635 (99.37%) Gibberella fujikuroi partial tef-1 gene 643/649 (99%)

Summer F144N22 FD_01857_EF-1a [Fusarium sp.] 607 / 609 (99.67%) Gibberella fujikuroi partial tef-1 gene 649/657 (99%)

Summer F144N23 FD_01857_EF-1a [Fusarium sp.] 612 / 613 (99.83%) Gibberella fujikuroi partial tef-1 gene 646/651 (99%)

Summer F144N26 FD_01857_EF-1a [Fusarium sp.] 637 / 640 (99.53%) Gibberella fujikuroi isolate 11-93 656/663 (99%)

Summer F144N45 FD_01857_EF-1a [Fusarium sp.] 616 / 618 (99.67%) Gibberella fujikuroi strain NRRL 43470 624/626 (99%)

Summer F144N46 FD_01857_EF-1a [Fusarium sp.] 624 / 627 (99.52%) Gibberella fujikuroi partial tef-1 gene 640/643 (99%)

Summer F144N66 FD_01857_EF-1a [Fusarium sp.] 639 / 640 (99.84%) Gibberella fujikuroi isolate 11-93 672/677 (99%)

Summer F144N70 FD_01857_EF-1a [Fusarium sp.] 639 / 640 (99.84%) Gibberella fujikuroi isolate 14-22 672/677 (99%)

Summer F144N25 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 628 / 630 (99.68%) Gibberella fujikuroi partial tef-1 gene 648/652 (99%)

Summer F145N22 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 668 / 675 (98.96%) Fusarium lacertarum strain NRRL 20423 668/675 (99%)

Summer F145N7 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 657 / 659 (99.69%) Fusarium sp. NRRL 28029 657/659 (99%)

Summer F145N10 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 635 / 640 (99.21%) Fusarium sp. NRRL 28029 639/645 (99%)

Summer F145N14 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 671 / 674 (99.55%) Fusarium sp. NRRL 28029 671/674 (99%)

Summer F145N18 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 670 / 674 (99.4%) Fusarium sp. NRRL 28029 670/674 (99%)

Summer F145N27 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 645 / 649 (99.38%) Fusarium sp. NRRL 28029 645/649 (99%)

Summer F145N29 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 672 / 674 (99.7%) Fusarium sp. NRRL 28029 672/674 (99%)

Summer F145N31 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 646 / 649 (99.53%) Fusarium sp. NRRL 28029 646/649 (99%)

Summer F145N36 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 670 / 673 (99.55%) Fusarium sp. NRRL 28029 670/673 (99%)

Summer F145N42 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 655 / 657 (99.69%) Fusarium sp. NRRL 28029 658/661 (99%)

Summer F145N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 625 / 629 (99.36%) Fusarium cf. incarnatum M03-11241S-2 PCNB 631/634 (99%)

Summer F145N13 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 652 / 655 (99.54%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 659/662 (99%)

Summer F145N25 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 648 / 654 (99.08%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 660/667 (99%)

Summer F145N30 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 675 / 678 (99.55%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 687/691 (99%)

Summer F145N32 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 671 / 672 (99.85%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 682/684 (99%)

Summer F145N34 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 648 / 654 (99.08%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 655/660 (99%)

Summer F145N37 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 642 / 645 (99.53%) Fusarium sp. NRRL 32522 642/645 (99%)

Summer F145N38 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 672 / 678 (99.11%) Fusarium cf. incarnatum H04-777S-1 PCNB 682/686 (99%)

Summer F145N39 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 625 / 628 (99.52%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 638/643 (99%) 136 Summer F145N40 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 649 / 660 (98.33%) Fusarium sp. NRRL 32522 654/667 (99%)

Summer F145N41 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 659 / 662 (99.54%) Fusarium sp. NRRL 32522 663/667 (99%)

Summer F145N19 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 611 / 626 (97.6%) Fusarium cf. incarnatum M03-11209S-1 PCNB 637/641 (99%)

Summer F145N20 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 633 / 651 (97.23%) Fusarium cf. incarnatum M03-11209S-1 PCNB 654/659 (99%)

Summer F145N26 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 651 / 667 (97.6%) Fusarium cf. incarnatum M03-11209S-1 PCNB 664/666 (99%)

Summer F145N43 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 663 / 680 (97.5%) Fusarium cf. incarnatum M03-11209S-1 PCNB 680/683 (99%)

Summer F145N44 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 641 / 656 (97.71%) Fusarium cf. incarnatum M03-11209S-1 PCNB 658/659 (99%)

Summer F145N33 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 662 / 680 (97.35%) Fusarium cf. incarnatum M03-11209S-1 PCNB 679/683 (99%)

Summer F145N2 F. incarnatum-equiseti species complex isolate NRRL 43730, MLST16-c 624 / 629 (99.2%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 631/635 (99%)

Summer F145N3 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 673 / 675 (99.7%) Fusarium sp. NRRL 45996 673/675 (99%)

Summer F145N4 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 670 / 674 (99.4%) Fusarium sp. NRRL 45996 670/674 (99%)

Summer F145N16 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 652 / 654 (99.69%) Fusarium sp. NRRL 5537 655/658 (99%)

Summer F145N23 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 674 / 677 (99.55%) Fusarium sp. NRRL 5537 674/677 (99%)

Summer F145N24 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 671 / 675 (99.4%) Fusarium sp. NRRL 5537 671/675 (99%)

Summer F145N45 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 673 / 674 (99.85%) Fusarium sp. NRRL 5537 673/674 (99%)

Summer F145N35 F. oxysporum species complex isolate NRRL 38592, MLST222 683 / 686 (99.56%) Fusarium oxysporum strain NRRL 46602 681/686 (99%)

Summer F145N46 F. oxysporum species complex isolate NRRL 38599, MLST67 660 / 661 (99.84%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 667/670 (99%)

Summer F145N12 FD_01304_EF-1a [Fusarium sp.] 643 / 646 (99.53%) Fusarium langsethiae strain NRRL 53422/2321/2 677/680 (99%)

Summer F145N17 FD_01304_EF-1a [Fusarium sp.] 642 / 646 (99.38%) Fusarium sporotrichioides strain F95 682/688 (99%)

Summer F145N15 FD_01857_EF-1a [Fusarium sp.] 638 / 640 (99.68%) Gibberella fujikuroi isolate 11-93 672/678 (99%)

Summer F145N28 FD_01857_EF-1a [Fusarium sp.] 623 / 626 (99.52%) Gibberella fujikuroi isolate 11-93 669/678 (99%)

Summer F145N21 FD_01857_EF-1a [Fusarium sp.] 623 / 626 (99.52%) Gibberella fujikuroi partial tef-1 gene 647/651 (99%)

Summer F146N16 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 640 / 644 (99.37%) Fusarium lacertarum strain NRRL 20423 651/658 (99%)

Summer F146N18 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 668 / 675 (98.96%) Fusarium lacertarum strain NRRL 20423 668/675 (99%)

Summer F146N19 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 651 / 658 (98.93%) Fusarium lacertarum strain NRRL 20423 651/658 (99%)

Summer F146N24 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 667 / 676 (98.66%) Fusarium lacertarum strain NRRL 20423 667/676 (99%)

Summer F146N25 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 624 / 676 (92.3%) Fusarium lacertarum strain NRRL 20423 624/676 (93%)

Summer F146N36 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 668 / 675 (98.96%) Fusarium lacertarum strain NRRL 20423 668/675 (99%)

Summer F146N3 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 524 / 524 (100%) Fusarium sp. NRRL 28029 539/542 (99%)

Summer F146N6 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 644 / 645 (99.84%) Fusarium sp. NRRL 28029 644/645 (99%)

Summer F146N7 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 629 / 631 (99.68%) Fusarium sp. NRRL 28029 632/635 (99%) 137 Summer F146N28 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 645 / 649 (99.38%) Fusarium sp. NRRL 28029 645/649 (99%)

Summer F146N29 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 670 / 674 (99.4%) Fusarium sp. NRRL 28029 670/674 (99%)

Summer F146N42 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 653 / 656 (99.54%) Fusarium sp. NRRL 28029 667/673 (99%)

Summer F146N46 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 671 / 675 (99.4%) Fusarium sp. NRRL 28029 671/675 (99%)

Summer F146N17 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 670 / 677 (98.96%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 692/698 (99%)

Summer F146N21 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 645 / 650 (99.23%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 656/662 (99%)

Summer F146N23 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 612 / 616 (99.35%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 632/638 (99%)

Summer F146N26 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 620 / 622 (99.67%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 627/629 (99%)

Summer F146N35 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 677 / 679 (99.7%) Fusarium cf. incarnatum DFH-2010 isolate M02-7097S-1 DCPA 681/684 (99%)

Summer F146N20 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 611 / 626 (97.6%) Fusarium cf. incarnatum M03-11209S-1 PCNB 633/636 (99%)

Summer F146N27 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 670 / 687 (97.52%) Fusarium cf. incarnatum M03-11209S-1 PCNB 687/690 (99%)

Summer F146N39 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 665 / 684 (97.22%) Fusarium cf. incarnatum M03-11209S-1 PCNB 682/687 (99%)

Summer F146N43 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 628/631 (99%)

Summer F146N49 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 667 / 684 (97.51%) Fusarium cf. incarnatum M03-11209S-1 PCNB 684/687 (99%)

Summer F146N50 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 641 / 655 (97.86%) Fusarium cf. incarnatum M03-11209S-1 PCNB 660/661 (99%)

Summer F146N15 F. incarnatum-equiseti species complex isolate NRRL 34039, MLST1-b 669 / 674 (99.25%) Fusarium sp. NRRL 34039 669/674 (99%)

Summer F146N2 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 596 / 602 (99%) Fusarium sp. NRRL 45996 599/606 (99%)

Summer F146N5 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 602 / 616 (97.72%) Fusarium sp. NRRL 45996 617/634 (98%)

Summer F146N22 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 648 / 650 (99.69%) Fusarium sp. NRRL 45996 648/650 (99%)

Summer F146N30 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 668 / 672 (99.4%) Fusarium sp. NRRL 45996 668/672 (99%)

Summer F146N32 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 671 / 674 (99.55%) Fusarium sp. NRRL 45996 671/674 (99%)

Summer F146N33 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 671 / 675 (99.4%) Fusarium sp. NRRL 45996 671/675 (99%)

Summer F146N1 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 668 / 677 (98.67%) Fusarium sp. NRRL 45996 668/677 (99%)

Summer F146N4 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 590 / 623 (94.7%) Fusarium sp. NRRL 45996 593/627 (95%)

Summer F146N34 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 674 / 675 (99.85%) Fusarium sp. NRRL 45996 674/675 (99%)

Summer F146N8 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 609 / 610 (99.83%) Fusarium sp. NRRL 5537 616/618 (99%)

Summer F146N9 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 647 / 650 (99.53%) Fusarium sp. NRRL 5537 647/650 (99%)

Summer F146N40 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 671 / 674 (99.55%) Fusarium sp. NRRL 5537 671/674 (99%)

Summer F146N45 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 673 / 677 (99.4%) Fusarium sp. NRRL 5537 673/677 (99%)

Summer F146N13 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 674 / 677 (99.55%) Fusarium sp. NRRL 5537 674/677 (99%)

Summer F146N11 F. oxysporum species complex isolate NRRL 38591, MLST191 684 / 686 (99.7%) Fusarium oxysporum f. sp. pisi isolate Fopi002 687/689 (99%) 138 Summer F146N12 F. oxysporum species complex isolate NRRL 38591, MLST191 682 / 685 (99.56%) Fusarium oxysporum strain NRRL 46605 682/685 (99%)

Summer F146N14 F. oxysporum species complex isolate NRRL 38599, MLST67 682 / 684 (99.7%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 682/684 (99%)

Summer F146N44 FD_01304_EF-1a [Fusarium sp.] 643 / 646 (99.53%) Fusarium sporotrichioides strain F95 680/684 (99%)

Summer F146N10 FD_01857_EF-1a [Fusarium sp.] 638 / 640 (99.68%) Gibberella fujikuroi isolate V95 660/662 (99%)

Summer F146N37 FD_01857_EF-1a [Fusarium sp.] 615 / 617 (99.67%) Gibberella fujikuroi isolate V95 626/628 (99%)

Summer F146N38 FD_01857_EF-1a [Fusarium sp.] 610 / 613 (99.51%) Gibberella fujikuroi isolate V95 624/630 (99%)

Summer F146N41 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 637 / 640 (99.53%) Gibberella fujikuroi isolate 14-22 669/676 (99%)

Summer F146N47 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 637 / 640 (99.53%) Gibberella fujikuroi isolate 14-22 669/676 (99%)

Summer IF180N2 FD_01379_EF-1a [Fusarium proliferatum] 618 / 641 (96.41%) Gibberella intermedia isolate 5R3 624/645 (97%)

Summer OF180N4 FD_00801_EF-1a | F. oxysporum species complex 231 NRRL38885 516 / 587 (87.9%) Fusarium sp. 45BMC 565/649 (87%)

Summer OF180N2 FD_01299_EF-1a [Fusarium globosum] 576 / 591 (97.46%) Gibberella fujikuroi isolate V22 590/591 (99%)

Summer OF180N3 FD_01321_EF-1a [Fusarium sp.] 485 / 505 (96.03%) Fusarium sp. NRRL 43637 501/502 (99%)

Summer IF181N2 FD_01388_EF-1a [Fusarium verticillioides] 502 / 503 (99.8%) Fusarium oxysporum isolate FSY0951 506/508 (99%)

Summer OF181N7 FD_01320_EF-1a [Fusarium pallidoroseum] 595 / 616 (96.59%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 614/629 (98%)

Summer OF181N3 FD_01321_EF-1a [Fusarium sp.] 586 / 608 (96.38%) Fusarium sp. NRRL 43637 635/642 (99%)

Summer OF183N1 FD_01321_EF-1a [Fusarium sp.] 600 / 653 (91.88%) Fusarium sp. NRRL 43637 610/651 (94%)

Summer OF184N1 FD_01321_EF-1a [Fusarium sp.] 572 / 596 (95.97%) Fusarium sp. NRRL 36318 592/592 (100%)

Summer OF184N2 FD_01321_EF-1a [Fusarium sp.] 411 / 448 (91.74%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 463/465 (99%)

Summer OF184N3 FD_01321_EF-1a [Fusarium sp.] 428 / 509 (84.08%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 562/653 (86%)

Summer IF185N2 FD_01169_EF-1a GFSC Gibberella fujikuroi species complex NRRL13566 463 / 474 (97.67%) Gibberella fujikuroi isolate 3101 481/487 (99%)

Summer IF185N3 FD_01169_EF-1a GFSC Gibberella fujikuroi species complex NRRL13566 532 / 544 (97.79%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 548/550 (99%)

Summer IF185N4 FD_01319_EF-1a [Fusarium sp.] 536 / 580 (92.41%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 579/580 (99%)

Summer OF185N4 FD_01320_EF-1a [Fusarium pallidoroseum] 561 / 569 (98.59%) Fusarium sp. NRRL 31167 580/582 (99%)

Summer OF185N1 FD_01321_EF-1a [Fusarium sp.] 604 / 628 (96.17%) Fusarium sp. NRRL 43637 627/629 (99%)

Summer OF185N2 FD_01321_EF-1a [Fusarium sp.] 622 / 646 (96.28%) Fusarium sp. NRRL 43637 645/646 (99%)

Summer OF185N3 FD_01378_EF-1a [Fusarium proliferatum] 552 / 558 (98.92%) Gibberella intermedia clone spt146 557/559 (99%)

Summer IF186N5 FD_01268_EF-1a | F. oxysporum species complex 88 NRRL26961 538 / 538 (100%) Fusarium oxysporum f. sp. melonis partial tef1a gene 538/538 (100%)

Summer IF186N3 FD_01320_EF-1a [Fusarium pallidoroseum] 575 / 619 (92.89%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 597/635 (94%)

Summer OF186N4 FD_01321_EF-1a [Fusarium sp.] 591 / 652 (90.64%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 618/661 (93%)

Summer OF186N7 FD_01321_EF-1a [Fusarium sp.] 595 / 652 (91.25%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 620/661 (94%)

Summer IF187N1 FD_01321_EF-1a [Fusarium sp.] 505 / 528 (95.64%) Fusarium cf. incarnatum MLST 3-b clone spt072 539/541 (99%) 139 Summer IF187N2 FD_01321_EF-1a [Fusarium sp.] 478 / 497 (96.17%) Fusarium cf. incarnatum MLST 3-b clone spt072 504/505 (99%)

Summer OF187N6 FD_01321_EF-1a [Fusarium sp.] 528 / 550 (96%) Fusarium sp. NRRL 43637 549/552 (99%)

Summer OF187N2 FD_01321_EF-1a [Fusarium sp.] 581 / 606 (95.87%) Fusarium cf. incarnatum MLST 1-c clone spt113 606/608 (99%)

Summer IF188N3 FD_01321_EF-1a [Fusarium sp.] 614 / 636 (96.54%) Fusarium sp. NRRL 43637 659/663 (99%)

Summer IF188N11 FD_01321_EF-1a [Fusarium sp.] 472 / 506 (93.28%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 527/539 (98%)

Summer OF188N8 FD_01168_EF-1a GFSC Gibberella fujikuroi species complex NRRL22944 603 / 610 (98.85%) Gibberella intermedia clone spt146 621/627 (99%)

Summer OF188N1 FD_01169_EF-1a GFSC Gibberella fujikuroi species complex NRRL13566 581 / 595 (97.64%) Gibberella fujikuroi isolate 3208 577/578 (99%)

Summer IF189N2 FD_01162_EF-1a | GFSC Gibberella fujikuroi species complex NRRL26794 531 / 637 (83.35%) Fusarium cf. incarnatum MLST 1-c clone spt113 518/598 (87%)

Summer IF189N10 FD_01321_EF-1a [Fusarium sp.] 605 / 628 (96.33%) Fusarium sp. NRRL 43637 628/629 (99%)

Summer IF189N13 FD_01321_EF-1a [Fusarium sp.] 330 / 355 (92.95%) Fusarium sp. NRRL 52776 385/397 (97%)

Summer OF189N7 FD_01119_EF-1a [Fusarium graminearum] 507 / 572 (88.63%) Fusarium cf. incarnatum MLST 1-c clone spt113 572/651 (88%)

Summer OF189N2 FD_01320_EF-1a [Fusarium pallidoroseum] 439 / 447 (98.21%) Fusarium sp. NRRL 31167 450/452 (99%)

Summer OF189N3 FD_01321_EF-1a [Fusarium sp.] 586 / 610 (96.06%) Fusarium cf. incarnatum MLST 1-c clone spt113 627/630 (99%)

Summer OF189N12 FD_01321_EF-1a [Fusarium sp.] 621 / 646 (96.13%) Fusarium sp. NRRL 43637 644/646 (99%)

Summer IF190N5 FD_01321_EF-1a [Fusarium sp.] 475 / 507 (93.68%) Fusarium cf. incarnatum MLSTs 1-a, 1-c and 4-b clone spt105 526/544 (97%)

Summer OF190N6 FD_01205_EF-1a | F. oxysporum species complex 38 NRRL26022 309 / 354 (87.28%) Fusarium oxysporum strain FCC3171 567/652 (87%)

Summer OF190N3 FD_01320_EF-1a [Fusarium pallidoroseum] 344 / 378 (91%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 371/382 (97%)

Summer OF190N1 FD_01321_EF-1a [Fusarium sp.] 642 / 672 (95.53%) Fusarium cf. incarnatum MLST 1-c clone spt113 672/680 (99%)

Summer OF190N4 FD_01321_EF-1a [Fusarium sp.] 583 / 606 (96.2%) Fusarium equiseti strain AGrocketbis 605/607 (99%)

Summer OF190N7 FD_01321_EF-1a [Fusarium sp.] 609 / 634 (96.05%) Fusarium cf. incarnatum MLST 1-c clone spt113 636/637 (99%)

Summer OF190N8 FD_01321_EF-1a [Fusarium sp.] 576 / 601 (95.84%) Fusarium cf. incarnatum MLST 3-b clone spt072 599/602 (99%)

Summer OF191N6 FD_01320_EF-1a [Fusarium pallidoroseum] 538 / 545 (98.71%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 545/545 (100%)

Summer OF191N8 FD_01320_EF-1a [Fusarium pallidoroseum] 545 / 553 (98.55%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 552/553 (99%)

Summer OF191N3 FD_01321_EF-1a [Fusarium sp.] 618 / 646 (95.66%) Fusarium cf. incarnatum MLST 1-c clone spt113 651/654 (99%)

Summer OF191N7 FD_01321_EF-1a [Fusarium sp.] 621 / 646 (96.13%) Fusarium sp. NRRL 43637 644/646 (99%)

Summer IF192N1 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 603 / 618 (97.57%) Gibberella fujikuroi isolate V22 633/635 (99%)

Summer IF192N7 FD_01267_EF-1a | F. oxysporum species complex 89 NRRL26962 580 / 580 (100%) Fusarium oxysporum f. sp. melonis partial tef1a gene 585/586 (99%)

Summer IF192N5 FD_01321_EF-1a [Fusarium sp.] 583 / 605 (96.36%) Fusarium sp. NRRL 43637 617/619 (99%)

Summer IF192N8 FD_01321_EF-1a [Fusarium sp.] 625 / 650 (96.15%) Fusarium sp. NRRL 43637 644/645 (99%)

Summer OF192N3 FD_01169_EF-1a GFSC NRRL13566 Gibberella fujikuroi species complex 511 / 522 (97.89%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 532/535 (99%)

Summer OF192N2 FD_01248_EF-1a | F. oxysporum species complex 91 NRRL28406 261 / 309 (84.46%) Fusarium oxysporum isolate FXM0831 552/655 (84%) 140 Summer OF192N1 FD_01321_EF-1a [Fusarium sp.] 581 / 643 (90.35%) Fusarium sp. NRRL 43623 598/653 (92%)

Summer OF192N4 FD_01321_EF-1a [Fusarium sp.] 526 / 547 (96.16%) Fusarium sp. NRRL 43637 547/549 (99%)

Summer OF192N7 FD_01321_EF-1a [Fusarium sp.] 625 / 651 (96%) Fusarium sp. NRRL 43637 644/646 (99%)

Summer IF193N1 FD_01320_EF-1a [Fusarium pallidoroseum] 585 / 614 (95.27%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt142 607/637 (95%)

Summer IF194N3 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 430 / 447 (96.19%) Gibberella intermedia clone spt067 469/494 (95%)

Summer IF194N7 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 498 / 592 (84.12%) Gibberella intermedia strain PUF018 545/654 (83%)

Summer IF194N15 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 602 / 610 (98.68%) Fusarium proliferatum partial tef-1 gene 612/616 (99%)

Summer IF194N14 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 604 / 618 (97.73%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 637/641 (99%)

Summer IF194N24 FD_01205_EF-1a | F. oxysporum species complex 38 NRRL26022 337 / 364 (92.58%) Fusarium oxysporum strain NRRL 46602 583/674 (86%)

Summer IF194N32 FD_01269_EF-1a | F. oxysporum species complex 87 NRRL26960 499 / 500 (99.8%) Fusarium oxysporum strain NRRL 53084 505/506 (99%)

Summer IF194N1 FD_01320_EF-1a [Fusarium pallidoroseum] 582 / 631 (92.23%) Fusarium sp. NRRL 43637 599/642 (93%)

Summer IF194N8 FD_01320_EF-1a [Fusarium pallidoroseum] 538 / 547 (98.35%) Fusarium sp. NRRL 31167 545/547 (99%)

Summer IF194N16 FD_01320_EF-1a [Fusarium pallidoroseum] 489 / 496 (98.58%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt134 502/503 (99%)

Summer IF194N28 FD_01320_EF-1a [Fusarium pallidoroseum] 615 / 623 (98.71%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 639/643 (99%)

Summer IF194N30 FD_01320_EF-1a [Fusarium pallidoroseum] 555 / 563 (98.57%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 574/576 (99%)

Summer IF194N2 FD_01321_EF-1a [Fusarium sp.] 604 / 628 (96.17%) Fusarium sp. NRRL 36318 639/641 (99%)

Summer IF194N5 FD_01321_EF-1a [Fusarium sp.] 626 / 650 (96.3%) Fusarium sp. NRRL 43637 651/654 (99%)

Summer IF194N6 FD_01321_EF-1a [Fusarium sp.] 605 / 627 (96.49%) Fusarium sp. NRRL 43637 639/641 (99%)

Summer IF194N10 FD_01321_EF-1a [Fusarium sp.] 612 / 678 (90.26%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 640/685 (93%)

Summer IF194N11 FD_01321_EF-1a [Fusarium sp.] 589 / 639 (92.17%) Fusarium sp. NRRL 43637 622/663 (94%)

Summer IF194N12 FD_01321_EF-1a [Fusarium sp.] 555 / 578 (96.02%) Fusarium sp. NRRL 43637 575/576 (99%)

Summer IF194N17 FD_01321_EF-1a [Fusarium sp.] 592 / 625 (94.72%) Fusarium cf. incarnatum MLST 1-c clone spt113 617/627 (98%)

Summer IF194N18 FD_01321_EF-1a [Fusarium sp.] 556 / 638 (87.14%) Fusarium cf. incarnatum MLST 1-c clone spt113 587/652 (90%)

Summer IF194N19 FD_01321_EF-1a [Fusarium sp.] 614 / 636 (96.54%) Fusarium sp. NRRL 43637 651/653 (99%)

Summer IF194N20 FD_01321_EF-1a [Fusarium sp.] 604 / 630 (95.87%) Fusarium cf. incarnatum MLST 1-c clone spt113 627/633 (99%)

Summer IF194N21 FD_01321_EF-1a [Fusarium sp.] 416 / 449 (92.65%) Fusarium sp. NRRL 52776 463/477 (97%)

Summer IF194N23 FD_01321_EF-1a [Fusarium sp.] 556 / 579 (96.02%) Fusarium equiseti strain AGrocketbis 590/592 (99%)

Summer IF194N25 FD_01321_EF-1a [Fusarium sp.] 612 / 636 (96.22%) Fusarium cf. incarnatum MLST 1-c clone spt113 654/658 (99%)

Summer IF194N26 FD_01321_EF-1a [Fusarium sp.] 540 / 564 (95.74%) Fusarium cf. incarnatum MLST 3-b clone spt072 574/577 (99%)

Summer IF194N27 FD_01321_EF-1a [Fusarium sp.] 627 / 653 (96.01%) Fusarium cf. incarnatum MLST 1-c clone spt113 653/654 (99%)

Summer IF194N29 FD_01321_EF-1a [Fusarium sp.] 595 / 617 (96.43%) Fusarium sp. NRRL 43637 624/625 (99%) 141 Summer IF194N31 FD_01321_EF-1a [Fusarium sp.] 577 / 640 (90.15%) Fusarium sp. NRRL 43623 605/663 (91%)

Summer IF194N4 FD_01378_EF-1a [Fusarium proliferatum] 320 / 366 (87.43%) Gibberella intermedia clone spt067 572/674 (85%)

Summer OF194N7 FD_01168_EF-1a GFSC Gibberella fujikuroi species complex NRRL22944 513 / 517 (99.22%) Fusarium proliferatum isolate 001B 523/524 (99%)

Summer OF194N5 FD_01248_EF-1a F. oxysporum species complex 91 NRRL28406 595 / 628 (94.74%) Fusarium oxysporum f. sp. gladioli strain NRRL28406 595/628 (95%)

Summer OF194N1 FD_01321_EF-1a [Fusarium sp.] 489 / 507 (96.44%) Fusarium sp. NRRL 43637 531/534 (99%)

Summer OF194N2 FD_01321_EF-1a [Fusarium sp.] 550 / 597 (92.12%) Fusarium cf. incarnatum MLSTs 1-a, 1-c and 4-b clone spt105 576/595 (97%)

Summer OF194N3 FD_01321_EF-1a [Fusarium sp.] 495 / 518 (95.55%) Fusarium cf. incarnatum MLST 1-c clone spt113 535/539 (99%)

Summer OF194N4 FD_01321_EF-1a [Fusarium sp.] 565 / 620 (91.12%) Fusarium sp. NRRL 52765 598/637 (94%)

Summer OF194N9 FD_01321_EF-1a [Fusarium sp.] 553 / 577 (95.84%) Fusarium equiseti strain AGrocketbis 571/573 (99%)

Summer IF195N2 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 533 / 545 (97.79%) Gibberella fujikuroi isolate 3208 545/545 (100%)

Summer OF195N2 FD_01320_EF-1a [Fusarium pallidoroseum] 389 / 396 (98.23%) Fusarium sp. NRRL 31167 400/402 (99%)

Summer OF195N3 FD_01320_EF-1a [Fusarium pallidoroseum] 367 / 404 (90.84%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 407/409 (99%)

Summer IF197N1 FD_01321_EF-1a [Fusarium sp.] 506 / 527 (96.01%) Fusarium sp. NRRL 43637 544/548 (99%)

Summer OF197N1 FD_01169_EF-1a NRRL13566 GFSC Gibberella fujikuroi species complex 442 / 450 (98.22%) Gibberella cf. fujikuroi Trap_3_24_hr_Med_5 clone spt136 461/463 (99%)

Summer OF197N2 FD_01375_EF-1a [Fusarium oxysporum] 312 / 361 (86.42%) Fusarium sp. NRRL 52765 520/592 (88%)

Summer IF198N2 FD_01321_EF-1a [Fusarium sp.] 612 / 634 (96.52%) Fusarium sp. NRRL 43637 651/655 (99%)

Summer OF198N3 FD_01321_EF-1a [Fusarium sp.] 437 / 455 (96.04%) Fusarium sp. NRRL 43637 462/463 (99%)

Summer OF198N4 FD_01321_EF-1a [Fusarium sp.] 508 / 529 (96.03%) Fusarium sp. NRRL 43637 541/543 (99%)

Summer IF199N4 FD_01321_EF-1a [Fusarium sp.] 535 / 556 (96.22%) Fusarium sp. NRRL 43637 556/558 (99%)

Summer IF199N9 FD_01321_EF-1a [Fusarium sp.] 473 / 504 (93.84%) Fusarium cf. incarnatum MLSTs 1-a, 1-c and 4-b clone spt105 540/542 (99%)

Summer OF199N10 FD_01119_EF-1a [Fusarium graminearum] 480 / 513 (93.56%) Gibberella zeae strain F5051 525/572 (92%)

Summer OF199N2 FD_01169_EF-1a NRRL13566 GFSC Gibberella fujikuroi species complex 611 / 631 (96.83%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 637/643 (99%)

Summer OF199N9 FD_01319_EF-1a [Fusarium sp.] 490 / 526 (93.15%) Fusarium cf. incarnatum MLSTs 25-a, 25-b and 25-c clone spt046 539/541 (99%)

Summer OF199N1 FD_01321_EF-1a [Fusarium sp.] 557 / 579 (96.2%) Fusarium sp. NRRL 43637 591/593 (99%)

Summer OF199N5 FD_01321_EF-1a [Fusarium sp.] 537 / 560 (95.89%) Fusarium sp. NRRL 43637 571/574 (99%)

Summer OF199N8 FD_01321_EF-1a [Fusarium sp.] 508 / 529 (96.03%) Fusarium sp. NRRL 43637 542/544 (99%)

Summer OF199N14 FD_01388_EF-1a [Fusarium verticillioides] 496 / 497 (99.79%) Fusarium oxysporum isolate FSY0951 500/502 (99%)

Fall F116N2 F. incarnatum-equiseti species complex isolate NRRL 20423, MLST4-a 629 / 634 (99.21%) Fusarium equiseti isolate 1571B 638/644 (99%)

Fall F116N3 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 641 / 641 (100%) Fusarium sp. NRRL 45996 644/645 (99%)

Fall F116N4 FD_01320_EF-1a [Fusarium pallidoroseum] 641 / 650 (98.61%) Fusarium cf. incarnatum H04-777S-1 PCNB 671/680 (99%)

Fall F117N1 FD_01119_EF-1a [Fusarium graminearum] 638 / 641 (99.53%) Gibberella zeae isolate CS3005 655/657 (99%) 142 Fall F119N2 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 643 / 643 (100%) Fusarium sp. NRRL 5537 643/643 (100%)

Fall F120N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 611 / 612 (99.83%) Fusarium sp. NRRL 5537 627/631 (99%)

Fall F120N2 FD_01321_EF-1a [Fusarium sp.] 613 / 661 (92.73%) Fusarium cf. incarnatum H04-707S-4 PCNB 686/695 (99%)

Fall F121N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 642 / 643 (99.84%) Fusarium sp. NRRL 5537 645/647 (99%)

Fall F121N3 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 609 / 612 (99.5%) Fusarium sp. NRRL 5537 628/635 (99%)

Fall F121N2 GFSC isolate NRRL 22016, MLSTGibberella fujikuroi species complex 610 / 612 (99.67%) Fusarium subglutinans strain NRRL 22016 610/612 (99%)

Fall F122N3 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 641 / 643 (99.68%) Fusarium sp. NRRL 5537 646/649 (99%)

Fall F122N5 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 632 / 632 (100%) Fusarium sp. NRRL 5537 632/632 (100%)

Fall F122N2 FD_00986_EF-1a [Fusarium graminearum] 613 / 613 (100%) Gibberella zeae isolate M02-7035S-2 DCPA 639/640 (99%)

Fall F122N4 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 612/615 (99%)

Fall F125N2 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 596 / 597 (99.83%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 602/603 (99%)

Fall F125N4 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 603 / 604 (99.83%) Fusarium sp. NRRL 45996 608/610 (99%)

Fall F125N5 FD_01321_EF-1a [Fusarium sp.] 635 / 659 (96.35%) Fusarium sp. NRRL 45996 668/670 (99%)

Fall F126N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 606 / 610 (99.34%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 612/615 (99%)

Fall F126N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 623 / 626 (99.52%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 624/626 (99%)

Fall F126N10 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 622 / 625 (99.52%) Fusarium cf. incarnatum M03-11241S-2 PCNB 624/625 (99%)

Fall F126N3 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 603 / 618 (97.57%) Fusarium cf. incarnatum M03-11209S-1 PCNB 620/622 (99%)

Fall F126N11 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 527 / 540 (97.59%) Fusarium cf. incarnatum M03-11209S-1 PCNB 538/539 (99%)

Fall F126N15 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 634/638 (99%)

Fall F126N20 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 638 / 639 (99.84%) Fusarium sp. NRRL 5537 638/639 (99%)

Fall F126N7 FD_00986_EF-1a [Fusarium graminearum] 618 / 619 (99.83%) Gibberella zeae isolate M02-7035S-2 DCPA 633/634 (99%)

Fall F126N6 FD_01114_EF-1a [Fusarium graminearum] 608 / 612 (99.34%) Gibberella zeae isolate G5S 608/611 (99%)

Fall F126N13 FD_01119_EF-1a [Fusarium graminearum] 613 / 615 (99.67%) Gibberella zeae strain ATCC 60309 623/625 (99%)

Fall F126N19 FD_01119_EF-1a [Fusarium graminearum] 614 / 615 (99.83%) Gibberella zeae isolate G5S 619/620 (99%)

Fall F126N21 FD_01169_EF-1a 624 / 640 (97.5%) Gibberella fujikuroi isolate PRC 2a 658/661 (99%)

Fall F126N30 FD_01304_EF-1a [Fusarium sp.] 627 / 630 (99.52%) Fusarium sporotrichioides strain LMSA 1.09.114 644/647 (99%)

Fall F126N18 FD_01319_EF-1a [Fusarium sp.] 594 / 643 (92.37%) Fusarium cf. incarnatum M03-11209S-1 PCNB 665/670 (99%)

Fall F126N29 FD_01321_EF-1a [Fusarium sp.] 613 / 661 (92.73%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 686/695 (99%)

Fall F126N1 FD_01857_EF-1a [Fusarium sp.] 600 / 602 (99.66%) Gibberella fujikuroi partial tef-1 gene 605/608 (99%)

Fall F126N12 FD_01857_EF-1a [Fusarium sp.] 602 / 604 (99.66%) Gibberella fujikuroi isolate V22 608/610 (99%)

Fall F126N14 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 617/621 (99%) 143 Fall F126N23 FD_01862_EF-1a [Fusarium sp.] 624 / 626 (99.68%) Fusarium subglutinans strain NRRL 22016 644/647 (99%)

Fall F126N33 GFSC isolate NRRL 13618, MLSTGibberella fujikuroi species complex 606 / 617 (98.21%) Fusarium bulbicola strain NRRL13618 609/621 (98%)

Fall F126N31 GFSC isolate NRRL 22016, MLSTGibberella fujikuroi species complex 612 / 613 (99.83%) Fusarium subglutinans strain NRRL 22016 615/617 (99%)

Fall F126N22 GFSC isolate NRRL 22016, MLSTGibberella fujikuroi species complex 613 / 614 (99.83%) Fusarium subglutinans strain NRRL 22016 613/614 (99%)

Fall F127N3 FD_00986_EF-1a [Fusarium graminearum] 611 / 612 (99.83%) Gibberella zeae strain NRRL 31084 615/617 (99%)

Fall F127N2 FD_01321_EF-1a [Fusarium sp.] 626 / 649 (96.45%) Fusarium sp. NRRL 45996 669/676 (99%)

Fall F129N1 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 628 / 630 (99.68%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 639/643 (99%)

Fall F147N5 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 609 / 610 (99.83%) Fusarium sp. NRRL 45996 632/637 (99%)

Fall F147N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 610 / 612 (99.67%) Fusarium sp. NRRL 5537 627/632 (99%)

Fall F148N8 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 596 / 604 (98.67%) Fusarium sp. NRRL 32997 621/635 (98%)

Fall F148N6 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 607 / 621 (97.74%) Fusarium cf. incarnatum M03-11209S-1 PCNB 636/640 (99%)

Fall F148N7 FD_01304_EF-1a [Fusarium sp.] 615 / 617 (99.67%) Fusarium sporotrichioides strain NRRL 29977 628/632 (99%)

Fall F148N3 FD_01389_EF-1a_2 [Fusarium proliferatum] 609 / 610 (99.83%) Fusarium proliferatum isolate 2-91 626/630 (99%)

Fall F148N2 FD_01857_EF-1a [Fusarium sp.] 608 / 608 (100%) Gibberella fujikuroi isolate V95 619/621 (99%)

Fall F148N4 FD_01857_EF-1a [Fusarium sp.] 619 / 625 (99.04%) Gibberella fujikuroi partial tef-1 gene 639/645 (99%)

Fall F149N13 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 633 / 649 (97.53%) Fusarium cf. incarnatum M03-11209S-1 PCNB 652/655 (99%)

Fall F149N25 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 637/642 (99%)

Fall F149N11 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 635 / 651 (97.54%) Fusarium cf. incarnatum M03-11209S-1 PCNB 654/657 (99%)

Fall F149N12 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 609 / 624 (97.59%) Fusarium cf. incarnatum M03-11209S-1 PCNB 628/630 (99%)

Fall F149N21 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 576 / 612 (94.11%) Fusarium cf. incarnatum H04-707S-4 PCNB 626/631 (99%)

Fall F149N9 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 672 / 678 (99.11%) Fusarium sp. NRRL 5537 672/678 (99%)

Fall F149N23 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 614 / 614 (100%) Fusarium sp. NRRL 5537 629/632 (99%)

Fall F149N19 FD_01119_EF-1a [Fusarium graminearum] 625 / 629 (99.36%) Gibberella zeae strain LMSA 1.09.107 614/615 (99%)

Fall F149N20 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium langsethiae strain NRRL 53422/2321/2 653/658 (99%)

Fall F149N24 FD_01304_EF-1a [Fusarium sp.] 618 / 621 (99.51%) Fusarium sporotrichioides strain NRRL 29977 624/627 (99%)

Fall F149N3 FD_01304_EF-1a [Fusarium sp.] 626 / 632 (99.05%) Fusarium langsethiae strain NRRL 53422/2321/2 643/649 (99%)

Fall F149N8 FD_01388_EF-1a [Fusarium verticillioides] 642 / 645 (99.53%) Gibberella moniliformis strain PUMCH10XB00173 651/656 (99%)

Fall F149N6 FD_01857_EF-1a [Fusarium sp.] 601 / 602 (99.83%) Gibberella fujikuroi partial tef-1 gene 622/627 (99%)

Fall F149N17 FD_01857_EF-1a [Fusarium sp.] 602 / 604 (99.66%) Gibberella fujikuroi isolate V95 608/611 (99%)

Fall F149N7 GFSC isolate NRRL 25331, MLSTGibberella fujikuroi species complex 615 / 624 (98.55%) Gibberella circinata strain NRRL25331 620/630 (99%)

Fall F150N3 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 607 / 609 (99.67%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 613/616 (99%) 144 Fall F150N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 610 / 613 (99.51%) Fusarium cf. incarnatum M03-11241S-2 PCNB 626/630 (99%)

Fall F150N2 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 608 / 611 (99.5%) Fusarium cf. incarnatum M03-11241S-2 PCNB 617/619 (99%)

Fall F150N13 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 591 / 605 (97.68%) Fusarium cf. incarnatum M03-11209S-1 PCNB 627/632 (99%)

Fall F150N9 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 602 / 618 (97.41%) Fusarium cf. incarnatum M03-11209S-1 PCNB 626/630 (99%)

Fall F150N10 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 621 (97.58%) Fusarium cf. incarnatum M03-11209S-1 PCNB 628/631 (99%)

Fall F150N11 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 610 / 625 (97.6%) Fusarium cf. incarnatum M03-11209S-1 PCNB 627/629 (99%)

Fall F150N14 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 606 / 620 (97.74%) Fusarium cf. incarnatum M03-11209S-1 PCNB 633/636 (99%)

Fall F150N15 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 591 / 605 (97.68%) Fusarium cf. incarnatum M03-11209S-1 PCNB 610/611 (99%)

Fall F150N5 FD_01304_EF-1a [Fusarium sp.] 614 / 617 (99.51%) Fusarium sporotrichioides strain NRRL 29977 623/627 (99%)

Fall F150N6 FD_01857_EF-1a [Fusarium sp.] 596 / 597 (99.83%) Gibberella fujikuroi isolate V22 610/613 (99%)

Fall F150N7 FD_01857_EF-1a [Fusarium sp.] 604 / 606 (99.66%) Gibberella fujikuroi isolate V22 607/609 (99%)

Fall F150N1 FD_01858_EF-1a [Fusarium sp.] 609 / 611 (99.67%) Gibberella intermedia isolate C45 626/630 (99%)

Fall F151N6 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 599 / 599 (100%) Fusarium sp. NRRL 32522 610/612 (99%)

Fall F151N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 611 / 612 (99.83%) Fusarium sp. NRRL 32522 618/621 (99%)

Fall F151N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 604 / 619 (97.57%) Fusarium cf. incarnatum M03-11209S-1 PCNB 623/625 (99%)

Fall F151N5 FD_00986_EF-1a [Fusarium graminearum] 511 / 535 (95.51%) Gibberella zeae isolate CS3005 531/555 (96%)

Fall F151N3 FD_00986_EF-1a [Fusarium graminearum] 618 / 619 (99.83%) Gibberella zeae strain NRRL 31084 622/624 (99%)

Fall F151N10 FD_01119_EF-1a [Fusarium graminearum] 625 / 628 (99.52%) Gibberella zeae isolate G5S 611/612 (99%)

Fall F151N9 FD_01119_EF-1a [Fusarium graminearum] 546 / 554 (98.55%) Gibberella zeae isolate CS3005 622/668 (94%)

Fall F151N4 FD_01857_EF-1a [Fusarium sp.] 587 / 588 (99.82%) Gibberella fujikuroi isolate V22 607/611 (99%)

Fall F152N2 F. oxysporum species complex isolate NRRL 28391, MLST103 618 / 619 (99.83%) Fusarium oxysporum strain NRRL 43431 618/619 (99%)

Fall F152N5 F. oxysporum species complex isolate NRRL 28391, MLST103 604 / 605 (99.83%) Fusarium oxysporum strain NRRL 26404 615/618 (99%)

Fall F152N4 GFSC isolate NRRL 25200, MLSTGibberella fujikuroi species complex 620 / 634 (97.79%) Fusarium lactis strain NRRL25200 620/634 (98%)

Fall F153N6 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 602 / 603 (99.83%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 609/610 (99%)

Fall F153N8 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 553 / 564 (98.04%) Fusarium cf. incarnatum M03-11209S-1 PCNB 579/582 (99%)

Fall F153N1 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 580 / 605 (95.86%) Fusarium cf. incarnatum M03-11209S-1 PCNB 604/617 (98%)

Fall F153N2 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 601 / 616 (97.56%) Fusarium cf. incarnatum M03-11209S-1 PCNB 614/615 (99%)

Fall F153N4 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 589 / 605 (97.35%) Fusarium cf. incarnatum M03-11209S-1 PCNB 608/611 (99%)

Fall F153N13 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 634 / 651 (97.38%) Fusarium cf. incarnatum M03-11209S-1 PCNB 651/654 (99%)

Fall F153N11 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 569 / 604 (94.2%) Fusarium cf. incarnatum H04-707S-4 PCNB 622/625 (99%)

Fall F153N12 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 609 / 610 (99.83%) Fusarium sp. NRRL 5537 624/628 (99%) 145 Fall F153N9 FD_01119_EF-1a [Fusarium graminearum] 647 / 650 (99.53%) Gibberella zeae isolate G5S 613/613 (100%)

Fall F153N10 FD_01307_EF-1a [Fusarium sp.] 531 / 554 (95.84%) Gibberella pulicaris strain FRC R-07843 532/554 (97%)

Fall F153N5 FD_01853_EF-1a [Fusarium sp.] 630 / 633 (99.52%) Fusarium sporotrichioides strain F95 655/658 (99%)

Fall F153N3 GFSC isolate NRRL 25200, MLSTGibberella fujikuroi species complex 605 / 618 (97.89%) Fusarium lactis strain NRRL25200 613/628 (98%)

Fall F154N4 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 599 / 599 (100%) Fusarium sp. NRRL 32522 616/619 (99%)

Fall F154N3 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 598 / 598 (100%) Fusarium sp. NRRL 32522 604/605 (99%)

Fall F154N8 F. incarnatum-equiseti species complex isolate NRRL 36123, MLST4-b 507 / 540 (93.88%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 533/554 (97%)

Fall F154N6 F. oxysporum species complex isolate NRRL 40182, MLST99 629 / 629 (100%) Fusarium oxysporum strain NRRL28359 628/629 (99%)

Fall F154N2 FD_00986_EF-1a [Fusarium graminearum] 608 / 609 (99.83%) Gibberella zeae strain NRRL 31084 617/621 (99%)

Fall F154N1 FD_01114_EF-1a [Fusarium graminearum] 613 / 616 (99.51%) Gibberella zeae strain LMSA 1.09.129 644/649 (99%)

Fall F154N5 FD_01119_EF-1a [Fusarium graminearum] 604 / 618 (97.73%) Gibberella zeae isolate CS3005 623/637 (98%)

Fall F154N7 FD_01304_EF-1a [Fusarium sp.] 605 / 606 (99.83%) Fusarium langsethiae strain NRRL 53422/2321/2 622/623 (99%)

Fall F154N11 FD_01853_EF-1a [Fusarium sp.] 607 / 609 (99.67%) Fusarium sporotrichioides strain NRRL 53434 613/615 (99%)

Fall F155N7 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 599 / 599 (100%) Fusarium sp. NRRL 32522 610/612 (99%)

Fall F155N10 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 599 / 599 (100%) Fusarium sp. NRRL 32522 610/612 (99%)

Fall F155N11 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 600 / 601 (99.83%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 612/614 (99%)

Fall F155N8 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 598 / 599 (99.83%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 610/612 (99%)

Fall F155N4 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 594 / 604 (98.34%) Fusarium sp. NRRL 32997 599/610 (99%)

Fall F155N5 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 597 / 606 (98.51%) Fusarium sp. NRRL 32997 604/615 (99%)

Fall F155N1 F. incarnatum-equiseti species complex isolate NRRL 34039, MLST1-b 603 / 605 (99.66%) Fusarium sp. NRRL 34039 618/623 (99%)

Fall F155N15 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 590 / 594 (99.32%) Fusarium sp. NRRL 45996 609/617 (99%)

Fall F155N13 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 654 / 655 (99.84%) Fusarium sp. NRRL 5537 654/655 (99%)

Fall F155N14 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 556 / 556 (100%) Fusarium sp. NRRL 5537 574/577 (99%)

Fall F155N6 F. oxysporum species complex isolate NRRL 26962, MLST89 623 / 625 (99.68%) Fusarium sp. 45BMC 626/628 (99%)

Fall F155N3 FD_01119_EF-1a [Fusarium graminearum] 628 / 629 (99.84%) Gibberella zeae isolate CS3005 649/652 (99%)

Fall F155N12 FD_01119_EF-1a [Fusarium graminearum] 573 / 580 (98.79%) Gibberella zeae strain LMSA 1.09.107 579/587 (99%)

Fall F155N2 FD_01857_EF-1a [Fusarium sp.] 584 / 587 (99.48%) Gibberella fujikuroi isolate V95 598/604 (99%)

Fall F156N10 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 597 / 600 (99.5%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 608/611 (99%)

Fall F156N15 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 615 / 619 (99.35%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 628/632 (99%)

Fall F156N19 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 614 / 615 (99.83%) Fusarium sp. NRRL 32522 624/627 (99%)

Fall F156N18 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 601 / 621 (96.77%) Fusarium cf. incarnatum M03-11209S-1 PCNB 628/637 (99%) 146 Fall F156N5 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 595 / 603 (98.67%) Fusarium sp. NRRL 32997 605/615 (99%)

Fall F156N47 F. incarnatum-equiseti species complex isolate NRRL 36123, MLST4-b 577 / 612 (94.28%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 615/640 (96%)

Fall F156N13 F. incarnatum-equiseti species complex isolate NRRL 45996, MLST1-a 576 / 611 (94.27%) Fusarium cf. incarnatum H04-707S-4 PCNB 629/633 (99%)

Fall F156N36 F. incarnatum-equiseti species complex isolate NRRL 28029, MLST3-b 620 / 622 (99.67%) Fusarium sp. NRRL 28029 627/630 (99%)

Fall F156N28 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 614 / 615 (99.83%) Fusarium sp. NRRL 32522 620/622 (99%)

Fall F156N39 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 614 / 615 (99.83%) Fusarium sp. NRRL 32522 620/622 (99%)

Fall F156N45 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 599 / 615 (97.39%) Fusarium sp. NRRL 32522 612/631 (97%)

Fall F156N35 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 610 / 626 (97.44%) Fusarium cf. incarnatum M03-11209S-1 PCNB 636/641 (99%)

Fall F156N21 F. incarnatum-equiseti species complex isolate NRRL 32997, MLST7-a 618 / 628 (98.4%) Fusarium sp. NRRL 32997 624/635 (98%)

Fall F156N43 F. incarnatum-equiseti species complex isolate NRRL 36123, MLST4-b 574 / 609 (94.25%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 609/631 (97%)

Fall F156N49 F. incarnatum-equiseti species complex isolate NRRL 36123, MLST4-b 569 / 606 (93.89%) Fusarium cf. incarnatum DFH-2010 isolate M02-7079S-5 597/621 (96%)

Fall F156N24 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 612 / 612 (100%) Fusarium sp. NRRL 5537 624/626 (99%)

Fall F156N30 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 641 / 643 (99.68%) Fusarium sp. NRRL 5537 641/643 (99%)

Fall F156N42 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 625 / 626 (99.84%) Fusarium sp. NRRL 5537 629/631 (99%)

Fall F156N2 F. oxysporum species complex isolate NRRL 40182, MLST99 605 / 606 (99.83%) Fusarium oxysporum strain NRRL 38361 619/623 (99%)

Fall F156N44 F. oxysporum species complex isolate NRRL 26962, MLST89 619 / 620 (99.83%) Fusarium sp. 45BMC 623/623 (100%)

Fall F156N22 FD_00986_EF-1a [Fusarium graminearum] 619 / 620 (99.83%) Gibberella zeae strain NRRL 31084 623/625 (99%)

Fall F156N37 FD_01304_EF-1a [Fusarium sp.] 614 / 617 (99.51%) Fusarium sporotrichioides strain NRRL 29977 618/621 (99%)

Fall F156N41 FD_01304_EF-1a [Fusarium sp.] 628 / 631 (99.52%) Fusarium sporotrichioides strain NRRL 29977 633/636 (99%)

Fall F156N6 FD_01304_EF-1a [Fusarium sp.] 615 / 617 (99.67%) Fusarium sporotrichioides strain NRRL 29977 625/628 (99%)

Fall F156N33 FD_01317_EF-1a [Fusarium sp.] 607 / 623 (97.43%) Gibberella avenacea voucher FRC R-9369 618/622 (99%)

Fall F156N1 FD_01345_EF-1a [Fusarium lateritium] 610 / 635 (96.06%) Fusarium lateritium isolate F0104 630/645 (98%)

Fall F156N9 FD_01345_EF-1a [Fusarium lateritium] 626 / 652 (96.01%) Fusarium lateritium isolate F0104 650/664 (98%)

Fall F156N40 FD_01376_EF-1a [Fusarium oxysporum] 618 / 619 (99.83%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 623/625 (99%)

Fall F156N11 FD_01843_EF-1a [Fusarium armeniacum] 594 / 597 (99.49%) Fusarium armeniacum strain NRRL 6227 603/604 (99%)

Fall F156N20 FD_01853_EF-1a [Fusarium sp.] 591 / 623 (94.86%) Fusarium sporotrichioides strain NRRL 53434 596/628 (95%)

Fall F156N27 FD_01857_EF-1a [Fusarium sp.] 603 / 604 (99.83%) Gibberella fujikuroi isolate V95 613/616 (99%)

Fall F156N32 FD_01857_EF-1a [Fusarium sp.] 614 / 616 (99.67%) Gibberella fujikuroi isolate V22 618/620 (99%)

Fall F156N3 FD_01857_EF-1a [Fusarium sp.] 596 / 600 (99.33%) Gibberella fujikuroi isolate V95 599/604 (99%)

Fall F156N4 FD_01857_EF-1a [Fusarium sp.] 545 / 546 (99.81%) Gibberella fujikuroi isolate V22 561/564 (99%)

Fall F156N14 FD_01857_EF-1a [Fusarium sp.] 602 / 604 (99.66%) Gibberella fujikuroi isolate V95 617/622 (99%) 147 Fall F156N29 FD_01857_EF-1a [Fusarium sp.] 608 / 611 (99.5%) Gibberella fujikuroi isolate V22 614/617 (99%)

Fall F156N16 GFSC isolate NRRL 44887, MLSTGibberella fujikuroi species complex 600 / 601 (99.83%) Gibberella fujikuroi partial tef-1 gene 598/599 (99%)

Fall F157N9 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 499 / 500 (99.8%) Fusarium sp. NRRL 32522 503/505 (99%)

Fall F157N10 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 475 / 480 (98.95%) Fusarium cf. incarnatum DFH-2010 isolate M02-7085S-4 477/480 (99%)

Fall F157N12 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 612 / 613 (99.83%) Fusarium cf. incarnatum DFH-2010 isolate M02-7033S-4 628/631 (99%)

Fall F157N14 F. incarnatum-equiseti species complex isolate NRRL 32522, MLST18-b 336 / 336 (100%) Fusarium sp. NRRL 32522 339/340 (99%)

Fall F157N4 F. incarnatum-equiseti species complex isolate NRRL 32993, MLST25-b 610 / 624 (97.75%) Fusarium cf. incarnatum M03-11209S-1 PCNB 629/630 (99%)

Fall F157N1 F. incarnatum-equiseti species complex isolate NRRL 34005, MLST24-a 604 / 605 (99.83%) Fusarium cf. incarnatum M03-11345S-1 DCPA 604/605 (99%)

Fall F157N13 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 602 / 604 (99.66%) Fusarium sp. NRRL 5537 606/609 (99%)

Fall F157N15 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 534 / 536 (99.62%) Fusarium sp. NRRL 5537 540/543 (99%)

Fall F157N6 F. oxysporum species complex isolate NRRL 26962, MLST89 577 / 577 (100%) Fusarium oxysporum 580/580 (100%)

Fall F157N8 FD_00929_EF-1a [Fusarium sp.] 535 / 539 (99.25%) Fusarium sporotrichioides strain NRRL 29977 541/544 (99%)

Fall F157N7 FD_01304_EF-1a [Fusarium sp.] 620 / 623 (99.51%) Fusarium sporotrichioides strain NRRL 29977 621/623 (99%)

Fall F157N3 FD_01345_EF-1a [Fusarium lateritium] 624 / 651 (95.85%) Fusarium lateritium isolate F0104 635/650 (98%)

Fall F157N16 FD_01376_EF-1a [Fusarium oxysporum] 623 / 624 (99.83%) Fusarium oxysporum f. sp. ciceris strain NRRL 32158 630/633 (99%)

Fall F157N11 FD_01853_EF-1a [Fusarium sp.] 600 / 602 (99.66%) Fusarium sporotrichioides strain NRRL 29977 600/602 (99%)

Fall F157N2 FD_01857_EF-1a [Fusarium sp.] 584 / 594 (98.31%) Gibberella fujikuroi isolate V95 595/607 (98%)

Fall F157N5 FD_01857_EF-1a [Fusarium sp.] 611 / 614 (99.51%) Gibberella fujikuroi isolate V22 614/617 (99%)

Fall IF201N3 FD_01321_EF-1a [Fusarium sp.] 633 / 697 (90.81%) Fusarium sp. NRRL 5537 663/690 (96%)

Fall OF201N2 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 359 / 369 (97.28%) Gibberella fujikuroi isolate GCF 372/374 (99%)

Fall OF201N1 FD_01299_EF-1a [Fusarium globosum] 315 / 323 (97.52%) Gibberella fujikuroi isolate GCF 327/328 (99%)

Fall OF201N3 FD_01320_EF-1a [Fusarium pallidoroseum] 351 / 386 (90.93%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 385/386 (99%)

Fall IF202N1 FD_01321_EF-1a [Fusarium sp.] 586 / 610 (96.06%) Fusarium sp. NRRL 36318 621/623 (99%)

Fall OF202N3 FD_01268_EF-1a | F. oxysporum species complex 88 NRRL26961 573 / 574 (99.82%) Fusarium oxysporum f. sp. melonis partial tef1a gene 573/574 (99%)

Fall OF202N2 FD_01320_EF-1a [Fusarium pallidoroseum] 579 / 624 (92.78%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt142 596/637 (94%)

Fall OF202N5 FD_01321_EF-1a [Fusarium sp.] 425 / 446 (95.29%) Fusarium cf. incarnatum MLST 3-b clone spt072 444/446 (99%)

Fall IF203N5 FD_01320_EF-1a [Fusarium pallidoroseum] 606 / 615 (98.53%) Fusarium sp. NRRL 31167 625/628 (99%)

Fall IF203N2 FD_01321_EF-1a [Fusarium sp.] 541 / 577 (93.76%) Fusarium equiseti EF-1alpha gene 621/622 (99%)

Fall IF204N4 FD_00805_EF-1a | F. oxysporum species complex 99 NRRL40182 365 / 366 (99.72%) Fusarium oxysporum strain NRRL28359 368/371 (99%)

Fall IF204N1 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 388 / 388 (100%) Fusarium subglutinans clone spt144 388/388 (100%)

Fall IF204N6 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 621 / 652 (95.24%) Fusarium subglutinans clone spt144 630/662 (95%) 148 Fall IF204N2 FD_01320_EF-1a [Fusarium pallidoroseum] 257 / 260 (98.84%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt142 271/273 (99%)

Fall OF204N3 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 613 / 614 (99.83%) Fusarium subglutinans clone spt144 613/614 (99%)

Fall OF204N7 FD_01319_EF-1a [Fusarium sp.] 580 / 627 (92.5%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 635/638 (99%)

Fall OF204N1 FD_01320_EF-1a [Fusarium pallidoroseum] 608 / 615 (98.86%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt134 626/628 (99%)

Fall OF204N5 FD_01378_EF-1a [Fusarium proliferatum] 626 / 633 (98.89%) Gibberella intermedia clone spt067 633/634 (99%)

Fall OF204N6 FD_01378_EF-1a [Fusarium proliferatum] 611 / 619 (98.7%) Gibberella intermedia clone spt067 623/626 (99%)

Fall OF204N2 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall IF205N1 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 619/621 (99%)

Fall IF206N3 FD_01388_EF-1a [Fusarium verticillioides] 564 / 565 (99.82%) Gibberella moniliformis isolate B4 569/571 (99%)

Fall OF206N3 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 590 / 604 (97.68%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 615/617 (99%)

Fall OF206N5 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 594 / 608 (97.69%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 614/615 (99%)

Fall OF206N6 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 279 / 285 (97.89%) Gibberella cf. fujikuroi Trap_3_24_hr_Med_5 clone spt136 296/298 (99%)

Fall OF206N2 FD_01388_EF-1a [Fusarium verticillioides] 621 / 622 (99.83%) Gibberella moniliformis isolate B4 621/622 (99%)

Fall OF206N4 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 625/628 (99%)

Fall IF207N70 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 591 / 594 (99.49%) Gibberella intermedia clone spt067 595/596 (99%)

Fall IF207N15 FD_01119_EF-1a 614 / 615 (99.83%) Gibberella zeae isolate G5S 618/619 (99%)

Fall IF207N9 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 321/323 (99%) Gibberella intermedia strain F1129 324/324 (100%)

Fall IF207N16 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 368 / 370 (99.45%) Gibberella intermedia clone spt067 370/370 (100%)

Fall IF207N18 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 606 / 610 (99.34%) Fusarium proliferatum isolate 001B 621/623 (99%)

Fall IF207N29 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 604 / 610 (99.01%) Fusarium proliferatum partial tef-1 gene 619/622 (99%)

Fall IF207N53 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 369 / 371 (99.46%) Gibberella intermedia strain F1129 370/371 (99%)

Fall IF207N61 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 608 / 613 (99.18%) Fusarium proliferatum partial tef-1 gene 621/623 (99%)

Fall IF207N62 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 324 / 325 (99.69%) Gibberella intermedia strain F1129 324/325 (99%)

Fall IF207N69 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 591 / 594 (99.49%) Gibberella intermedia clone spt067 619/623 (99%)

Fall IF207N71 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 606 / 610 (99.34%) Fusarium proliferatum isolate 001B 614/615 (99%)

Fall IF207N4 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 592 / 608 (97.36%) Gibberella intermedia EF-1alpha gene 618/621 (99%)

Fall IF207N23 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 589 / 604 (97.51%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 610/613 (99%)

Fall IF207N49 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 588 / 604 (97.35%) Gibberella fujikuroi isolate V22 609/611 (99%)

Fall IF207N10 FD_01319_EF-1a 577 / 626 (92.17%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 618/632 (98%)

Fall IF207N76 FD_01319_EF-1a 577 / 626 (92.17%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 624/640 (98%)

Fall IF207N77 FD_01319_EF-1a 577 / 626 (92.17%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 622/637 (98%) 149 Fall IF207N11 FD_01320_EF-1a 296 / 320 (92.5%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 321/329 (98%)

Fall IF207N64 FD_01320_EF-1a 606 / 615 (98.53%) Fusarium cf. incarnatum MLSTs 18-a and 18-b clone spt116 629/633 (99%)

Fall IF207N26 FD_01321_EF-1a 585 / 610 (95.9%) Fusarium sp. NRRL 36318 619/622 (99%)

Fall IF207N65 FD_01321_EF-1a 530 / 619 (85.62%) Fusarium cf. incarnatum 30-a DPGS-2011 strain FRC R10113 546/629 (87%)

Fall IF207N72 FD_01321_EF-1a 571 / 596 (95.8%) Fusarium sp. NRRL 43637 593/597 (99%)

Fall IF207N6 FD_01378_EF-1a 609 / 616 (98.86%) Gibberella intermedia clone spt067 624/627 (99%)

Fall IF207N8 FD_01378_EF-1a 226 / 230 (98.26%) Gibberella intermedia strain E1163 235/237 (99%)

Fall IF207N12 FD_01378_EF-1a 613 / 620 (98.87%) Gibberella intermedia clone spt067 625/627 (99%)

Fall IF207N14 FD_01378_EF-1a 608 / 616 (98.7%) Gibberella intermedia clone spt067 620/623 (99%)

Fall IF207N17 FD_01378_EF-1a 609 / 616 (98.86%) Gibberella intermedia strain E1163 624/628 (99%)

Fall IF207N20 FD_01378_EF-1a 609 / 616 (98.86%) Gibberella intermedia strain E1163 618/621 (99%)

Fall IF207N28 FD_01378_EF-1a 613 / 621 (98.71%) Gibberella intermedia clone spt067 620/622 (99%)

Fall IF207N36 FD_01378_EF-1a 610 / 618 (98.7%) Gibberella intermedia clone spt067 617/619 (99%)

Fall IF207N37 FD_01378_EF-1a 602 / 609 (98.85%) Gibberella intermedia clone spt067 614/616 (99%)

Fall IF207N38 FD_01378_EF-1a 607 / 614 (98.85%) Gibberella intermedia clone spt067 619/621 (99%)

Fall IF207N41 FD_01378_EF-1a 608 / 616 (98.7%) Gibberella intermedia clone spt067 623/627 (99%)

Fall IF207N42 FD_01378_EF-1a 539 / 546 (98.71%) Gibberella intermedia clone spt067 550/553 (99%)

Fall IF207N46 FD_01378_EF-1a 613 / 620 (98.87%) Gibberella intermedia clone spt067 625/627 (99%)

Fall IF207N51 FD_01378_EF-1a 571 / 578 (98.78%) Gibberella intermedia clone spt067 583/585 (99%)

Fall IF207N55 FD_01378_EF-1a 609 / 616 (98.86%) Gibberella intermedia clone spt146 624/628 (99%)

Fall IF207N74 FD_01378_EF-1a 617 / 624 (98.87%) Gibberella intermedia clone spt067 629/631 (99%)

Fall IF207N75 FD_01378_EF-1a 610 / 616 (99.02%) Gibberella intermedia clone spt146 621/623 (99%)

Fall IF207N78 FD_01378_EF-1a 608 / 616 (98.7%) Gibberella intermedia clone spt067 615/617 (99%)

Fall IF207N79 FD_01378_EF-1a 609 / 616 (98.86%) Gibberella intermedia clone spt146 620/623 (99%)

Fall IF207N1 FD_01378_EF-1a [Fusarium proliferatum] 348 / 352 (98.86%) Gibberella intermedia clone spt146 357/359 (99%)

Fall IF207N2 FD_01378_EF-1a [Fusarium proliferatum] 376 / 382 (98.42%) Gibberella intermedia strain E1163 382/383 (99%)

Fall IF207N30 FD_01379_EF-1a 660 / 669 (98.65%) Gibberella intermedia 689/693 (99%)

Fall IF207N19 FD_01380_EF-1a 325 / 329 (98.78%) Gibberella intermedia clone spt141 328/329 (99%)

Fall IF207N33 FD_01380_EF-1a 541 / 547 (98.9%) Gibberella intermedia strain NRRL 25089 560/561 (99%)

Fall IF207N39 FD_01380_EF-1a 631 / 638 (98.9%) Fusarium proliferatum isolate 001B 641/641 (100%)

Fall IF207N52 FD_01380_EF-1a 146 / 155 (94.19%) Fusarium proliferatum isolate LJC10023 150/159 (94%) 150 Fall IF207N56 FD_01380_EF-1a 639 / 647 (98.76%) Gibberella intermedia clone spt141 652/653 (99%)

Fall IF207N59 FD_01380_EF-1a 603 / 615 (98.04%) Gibberella intermedia clone spt141 615/620 (99%)

Fall IF207N5 FD_01388_EF-1a 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall IF207N7 FD_01388_EF-1a 616 / 617 (99.83%) Gibberella moniliformis isolate B4 626/630 (99%)

Fall IF207N13 FD_01388_EF-1a 648 / 649 (99.84%) Gibberella moniliformis clone spt086 649/650 (99%)

Fall IF207N21 FD_01388_EF-1a 616 / 618 (99.67%) Gibberella moniliformis isolate B4 621/624 (99%)

Fall IF207N22 FD_01388_EF-1a 644 / 648 (99.38%) Fusarium verticillioides partial tef-1 gene 644/645 (99%)

Fall IF207N24 FD_01388_EF-1a 581 / 586 (99.14%) Gibberella moniliformis clone spt078 584/586 (99%)

Fall IF207N25 FD_01388_EF-1a 353 / 353 (100%) Gibberella moniliformis isolate B4 353/353 (100%)

Fall IF207N31 FD_01388_EF-1a 589 / 589 (100%) Gibberella moniliformis isolate B4 594/595 (99%)

Fall IF207N32 FD_01388_EF-1a 612 / 613 (99.83%) Gibberella moniliformis isolate B4 617/619 (99%)

Fall IF207N35 FD_01388_EF-1a 618 / 618 (100%) Gibberella moniliformis isolate B4 623/624 (99%)

Fall IF207N40 FD_01388_EF-1a 613 / 617 (99.35%) Gibberella moniliformis clone spt078 621/623 (99%)

Fall IF207N43 FD_01388_EF-1a 617 / 620 (99.51%) Gibberella moniliformis isolate B1 624/626 (99%)

Fall IF207N44 FD_01388_EF-1a 616 / 617 (99.83%) Gibberella moniliformis isolate B4 624/627 (99%)

Fall IF207N47 FD_01388_EF-1a 615 / 617 (99.67%) Gibberella moniliformis isolate B4 620/623 (99%)

Fall IF207N48 FD_01388_EF-1a 630 / 633 (99.52%) Gibberella moniliformis clone spt086 635/639 (99%)

Fall IF207N50 FD_01388_EF-1a 617 / 617 (100%) Gibberella moniliformis isolate B4 625/627 (99%)

Fall IF207N54 FD_01856_EF-1a [ Fusarium sp. ] 614 / 617 (99.51%) Fusarium verticillioides 614/614(100%)

Fall IF207N57 FD_01388_EF-1a 643 / 650 (98.92%) Gibberella moniliformis clone spt086 643/650 (99%)

Fall IF207N58 FD_01388_EF-1a 615 / 617 (99.67%) Gibberella moniliformis isolate B4 620/623 (99%)

Fall IF207N60 FD_01388_EF-1a 576 / 576 (100%) Gibberella moniliformis isolate B4 581/582 (99%)

Fall IF207N63 FD_01388_EF-1a 648 / 648 (100%) Gibberella moniliformis clone spt086 648/648 (100%)

Fall IF207N66 FD_01388_EF-1a 587 / 588 (99.82%) Gibberella moniliformis isolate JD4 587/588 (99%)

Fall IF207N67 FD_01388_EF-1a 610 / 636 (95.91%) Gibberella moniliformis clone spt086 612/637 (96%)

Fall IF207N68 FD_01388_EF-1a 584 / 587 (99.48%) Gibberella moniliformis clone spt086 584/587 (99%)

Fall IF207N73 FD_01388_EF-1a 594 / 595 (99.83%) Gibberella moniliformis isolate B4 594/595 (99%)

Fall IF207N80 FD_01388_EF-1a 617 / 617 (100%) Gibberella moniliformis isolate B4 622/623 (99%)

Fall IF207N3 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall OF207N5 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 594 / 597 (99.49%) Fusarium proliferatum isolate 001B 615/620 (99%)

Fall OF207N9 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 609 / 614 (99.18%) Gibberella intermedia clone spt146 625/628 (99%) 151 Fall OF207N14 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 620 / 624 (99.35%) Gibberella intermedia clone spt146 641/644 (99%)

Fall OF207N29 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 524 / 524 (100%) Gibberella intermedia clone spt146 551/556 (99%)

Fall OF207N27 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 590 / 605 (97.52%) Gibberella intermedia EF-1alpha gene 616/618 (99%)

Fall OF207N11 FD_01319_EF-1a [Fusarium sp.] 583 / 632 (92.24%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 625/639 (98%)

Fall OF207N21 FD_01319_EF-1a [Fusarium sp.] 580 / 628 (92.35%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 622/637 (98%)

Fall OF207N26 FD_01319_EF-1a [Fusarium sp.] 576 / 625 (92.16%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 618/632 (98%)

Fall OF207N1 FD_01378_EF-1a [Fusarium proliferatum] 613 / 621 (98.71%) Gibberella intermedia clone spt067 625/628 (99%)

Fall OF207N4 FD_01378_EF-1a [Fusarium proliferatum] 609 / 617 (98.7%) Gibberella intermedia clone spt067 626/631 (99%)

Fall OF207N13 FD_01378_EF-1a [Fusarium proliferatum] 612 / 620 (98.7%) Gibberella intermedia clone spt067 624/627 (99%)

Fall OF207N16 FD_01378_EF-1a [Fusarium proliferatum] 609 / 617 (98.7%) Gibberella intermedia clone spt141 626/629 (99%)

Fall OF207N17 FD_01378_EF-1a [Fusarium proliferatum] 618 / 626 (98.72%) Gibberella intermedia clone spt141 631/633 (99%)

Fall OF207N18 FD_01378_EF-1a [Fusarium proliferatum] 612 / 620 (98.7%) Gibberella intermedia clone spt067 619/621 (99%)

Fall OF207N23 FD_01378_EF-1a [Fusarium proliferatum] 608 / 617 (98.54%) Gibberella intermedia clone spt141 621/624 (99%)

Fall OF207N24 FD_01378_EF-1a [Fusarium proliferatum] 613 / 620 (98.87%) Gibberella intermedia clone spt067 620/621 (99%)

Fall OF207N32 FD_01378_EF-1a [Fusarium proliferatum] 611 / 619 (98.7%) Gibberella intermedia clone spt067 623/626 (99%)

Fall OF207N19 FD_01380_EF-1a [Fusarium proliferatum] 640 / 646 (99.07%) Gibberella intermedia clone spt146 648/648 (100%)

Fall OF207N31 FD_01380_EF-1a [Fusarium proliferatum] 638 / 646 (98.76%) Gibberella intermedia clone spt146 644/646 (99%)

Fall OF207N25 FD_01387_EF-1a [Fusarium verticillioides] 613 / 617 (99.35%) Gibberella moniliformis strain NRRL 25102 622/628 (99%)

Fall OF207N2 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 625/628 (99%)

Fall OF207N6 FD_01388_EF-1a [Fusarium verticillioides] 617 / 617 (100%) Gibberella moniliformis isolate B4 622/623 (99%)

Fall OF207N7 FD_01388_EF-1a [Fusarium verticillioides] 634 / 637 (99.52%) Gibberella moniliformis clone spt086 639/643 (99%)

Fall OF207N8 FD_01388_EF-1a [Fusarium verticillioides] 620 / 621 (99.83%) Gibberella moniliformis isolate B4 620/621 (99%)

Fall OF207N10 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 620/622 (99%)

Fall OF207N12 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall OF207N15 FD_01388_EF-1a [Fusarium verticillioides] 623 / 624 (99.83%) Gibberella moniliformis isolate B4 623/624 (99%)

Fall OF207N20 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall OF207N22 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 616/617 (99%)

Fall OF207N28 FD_01388_EF-1a [Fusarium verticillioides] 614 / 618 (99.35%) Gibberella moniliformis isolate B4 619/624 (99%)

Fall OF207N30 FD_01388_EF-1a [Fusarium verticillioides] 485 / 512 (94.72%) Fusarium oxysporum isolate FSY0951 488/516 (95%)

Fall IF208N1 FD_01388_EF-1a 538 / 552 (97.46%) Gibberella moniliformis isolate JD4 557/574 (97%)

Fall IF208N2 FD_01389_EF-1a [ Fusarium proliferatum ] 608 / 608 (100%) Fusarium proliferatum 608/608(100%) 152 Fall IF208N3 FD_01856_EF-1a [ Fusarium sp. ] 600 / 602 (99.66%) Gibberella moniliformis 602/602(100%)

Fall IF208N4 FD_01856_EF-1a [ Fusarium sp. ] 609 / 610 (99.83%) Gibberella moniliformis 609/610(99%)

Fall IF208N5 FD_01856_EF-1a [ Fusarium sp. ] 567 / 568 (99.82%) Gibberella moniliformis 574/576(99%)

Fall IF208N6 FD_01857_EF-1a [ Fusarium sp. ] 591 / 592 (99.83%) Gibberella intermedia 592/592(100%)

Fall IF208N7 FD_01856_EF-1a [ Fusarium sp. ] 601 / 601 (100%) Gibberella moniliformis 606/607(99%)

Fall IF208N8 FD_00801_EF-1a | F. oxysporum species complex 231 NRRL38885 603 / 605 (99.66%) Fusarium oxysporum 617/620(99%)

Fall IF208N9 FD_01856_EF-1a [ Fusarium sp. ] 616 / 618 (99.67%) Gibberella moniliformis 622/624(99%)

Fall IF208N10 FD_01857_EF-1a [ Fusarium sp. ] 610 / 610 (100%) Gibberella cf. fujikuroi 615/616(99%)

Fall IF208N11 FD_01635_EF-1a | F. incarnatum-equiseti species complex 18-b NRRL32522 613 / 615 (99.67%) Fusarium cf. incarnatum 623/626(99%)

Fall IF208N12 FD_01858_EF-1a [ Fusarium sp. ] 593 / 594 (99.83%) Gibberella intermedia 606/608(99%)

Fall OF208N1 FD_01388_EF-1a [Fusarium verticillioides] 617 / 619 (99.67%) Gibberella moniliformis isolate B4 622/625 (99%)

Fall OF208N2 FD_01388_EF-1a [Fusarium verticillioides] 625 / 625 (100%) Gibberella moniliformis isolate B4 625/625 (100%)

Fall OF208N3 FD_01380_EF-1a [Fusarium proliferatum] 610 / 617 (98.86%) Gibberella intermedia clone spt146 622/623 (99%)

Fall OF208N4 FD_01378_EF-1a [Fusarium proliferatum] 593 / 600 (98.83%) Gibberella intermedia clone spt067 603/605 (99%)

Fall OF208N5 FD_01380_EF-1a [Fusarium proliferatum] 624 / 630 (99.04%) Gibberella intermedia clone spt146 631/631 (100%)

Fall OF208N6 FD_01388_EF-1a [Fusarium verticillioides] 596 / 600 (99.33%) Gibberella moniliformis strain NRRL 25113 604/606 (99%)

Fall OF208N7 FD_01388_EF-1a [Fusarium verticillioides] 589 / 592 (99.49%) Gibberella moniliformis clone spt078 597/598 (99%)

Fall OF208N8 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 567 / 581 (97.59%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 592/594 (99%)

Fall OF208N9 FD_01380_EF-1a [Fusarium proliferatum] 612 / 619 (98.86%) Gibberella intermedia clone spt146 622/623 (99%)

Fall OF208N10 FD_01319_EF-1a [Fusarium sp.] 575 / 621 (92.59%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 635/646 (98%)

Fall OF208N11 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 605 / 610 (99.18%) Fusarium proliferatum partial tef-1 gene 620/622 (99%)

Fall OF208N12 FD_01388_EF-1a [Fusarium verticillioides] 613 / 618 (99.19%) Gibberella moniliformis clone spt078 621/624 (99%)

Fall OF208N13 FD_01388_EF-1a [Fusarium verticillioides] 647 / 649 (99.69%) Gibberella moniliformis clone spt086 650/652 (99%)

Fall OF208N14 FD_01378_EF-1a [Fusarium proliferatum] 608 / 617 (98.54%) Gibberella intermedia clone spt141 621/624 (99%)

Fall OF208N15 FD_01378_EF-1a [Fusarium proliferatum] 608 / 617 (98.54%) Gibberella intermedia clone spt141 621/624 (99%)

Fall OF208N16 FD_01304_EF-1a [Fusarium sp.] 633 / 636 (99.52%) Fusarium sporotrichioides strain F627 653/656 (99%)

Fall OF208N17 FD_01319_EF-1a [Fusarium sp.] 575 / 623 (92.29%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 617/632 (98%)

Fall OF208N18 FD_01380_EF-1a [Fusarium proliferatum] 107 / 110 (97.27%) Fusarium proliferatum isolate ASHCFp5 105/107 (98%)

Fall OF208N19 FD_01319_EF-1a [Fusarium sp.] 577 / 626 (92.17%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 622/637 (98%)

Fall OF208N20 FD_01378_EF-1a [Fusarium proliferatum] 612 / 619 (98.86%) Gibberella intermedia clone spt146 623/626 (99%)

Fall OF208N21 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 618 / 619 (99.83%) Fusarium subglutinans clone spt144 618/619 (99%) 153 Fall OF208N22 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 165 / 174 (94.82%) Fusarium subglutinans clone spt144 165/174 (95%)

Fall OF208N23 FD_01388_EF-1a [Fusarium verticillioides] 614 / 617 (99.51%) Gibberella moniliformis isolate B1 621/623 (99%)

Fall OF208N24 FD_01378_EF-1a [Fusarium proliferatum] 612 / 619 (98.86%) Gibberella intermedia clone spt067 624/626 (99%)

Fall OF208N25 FD_01378_EF-1a [Fusarium proliferatum] 614 / 622 (98.71%) Gibberella intermedia clone spt141 627/629 (99%)

Fall OF208N26 FD_01378_EF-1a [Fusarium proliferatum] 613 / 621 (98.71%) Gibberella intermedia clone spt067 625/628 (99%)

Fall OF208N27 FD_01295_EF-1a [Fusarium bulbicola] 603 / 614 (98.2%) Fusarium subglutinans EF-1alpha gene 607/608 (99%)

Fall OF208N28 FD_01388_EF-1a [Fusarium verticillioides] 619 / 620 (99.83%) Gibberella moniliformis isolate B4 624/626 (99%)

Fall OF208N29 FD_01319_EF-1a [Fusarium sp.] 579 / 627 (92.34%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 634/638 (99%)

Fall OF208N30 FD_01378_EF-1a [Fusarium proliferatum] 607 / 614 (98.85%) Gibberella intermedia clone spt067 624/627 (99%)

Fall OF208N31 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 592 / 607 (97.52%) Gibberella intermedia EF-1alpha gene 618/620 (99%)

Fall OF208N32 FD_01319_EF-1a [Fusarium sp.] 580 / 627 (92.5%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 635/638 (99%)

Fall OF208N33 FD_01388_EF-1a [Fusarium verticillioides] 614 / 618 (99.35%) Gibberella moniliformis clone spt078 622/624 (99%)

Fall OF208N34 FD_01388_EF-1a [Fusarium verticillioides] 647 / 649 (99.69%) Gibberella moniliformis clone spt086 647/649 (99%)

Fall OF208N35 FD_01119_EF-1a [Fusarium graminearum] 606 / 613 (98.85%) Gibberella zeae partial tef1a gene 611/619 (99%)

Fall OF208N36 FD_00986_EF-1a [Fusarium graminearum] 614 / 614 (100%) Gibberella zeae clone spt132 619/620 (99%)

Fall OF208N37 FD_01388_EF-1a [Fusarium verticillioides] 618 / 620 (99.67%) Gibberella moniliformis isolate B4 623/626 (99%)

Fall OF208N38 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 592 / 607 (97.52%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 612/614 (99%)

Fall OF208N39 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 616/617 (99%)

Fall OF208N40 FD_01319_EF-1a [Fusarium sp.] 580 / 628 (92.35%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 622/636 (98%)

Fall OF208N41 FD_00986_EF-1a [Fusarium graminearum] 612 / 612 (100%) Gibberella zeae clone spt132 612/612 (100%)

Fall OF208N42 FD_01388_EF-1a [Fusarium verticillioides] 618 / 619 (99.83%) Gibberella moniliformis isolate B4 623/625 (99%)

Fall OF208N43 FD_01380_EF-1a [Fusarium proliferatum] 636 / 644 (98.75%) Gibberella intermedia clone spt146 642/644 (99%)

Fall OF208N44 FD_01319_EF-1a [Fusarium sp.] 579 / 627 (92.34%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 628/631 (99%)

Fall OF208N45 FD_01388_EF-1a [Fusarium verticillioides] 613 / 618 (99.19%) Gibberella moniliformis strain NRRL22172 619/625 (99%)

Fall OF208N46 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall OF208N47 FD_01319_EF-1a [Fusarium sp.] 583 / 631 (92.39%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 634/637 (99%)

Fall OF208N48 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 586 / 588 (99.65%) Gibberella intermedia clone spt146 626/631 (99%)

Fall OF208N49 FD_01378_EF-1a [Fusarium proliferatum] 609 / 618 (98.54%) Gibberella intermedia clone spt141 622/625 (99%)

Fall OF208N50 FD_01388_EF-1a [Fusarium verticillioides] 604 / 615 (98.21%) Fusarium verticillioides partial tef-1 gene 610/621 (98%)

Fall 0F208N51 FD_01388_EF-1a [Fusarium verticillioides] 620 / 621 (99.83%) Gibberella moniliformis isolate B4 623/625 (99%)

Fall 0F208N52 FD_01388_EF-1a [Fusarium verticillioides] 617 / 620 (99.51%) Gibberella moniliformis isolate B4 617/620 (99%) 154 Fall 0F208N53 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 623 / 628 (99.2%) Fusarium subglutinans clone spt144 635/641 (99%)

Fall 0F208N54 FD_01378_EF-1a [Fusarium proliferatum] 594 / 636 (93.39%) Gibberella intermedia 611/650 (94%)

Fall 0F208N55 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 601 / 610 (98.52%) Fusarium proliferatum partial tef-1 gene 611/616 (99%)

Fall 0F208N56 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 606 / 610 (99.34%) Fusarium proliferatum isolate 001B 624/627 (99%)

Fall 0F208N57 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 588 / 604 (97.35%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 613/617 (99%)

Fall 0F208N58 FD_01388_EF-1a [Fusarium verticillioides] 613 / 615 (99.67%) Gibberella moniliformis isolate B4 619/623 (99%)

Fall 0F208N59 FD_01378_EF-1a [Fusarium proliferatum] 606 / 617 (98.21%) Gibberella intermedia clone spt141 619/624 (99%)

Fall 0F208N60 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 621/623 (99%)

Fall 0F208N61 FD_01388_EF-1a [Fusarium verticillioides] 620 / 622 (99.67%) Gibberella moniliformis isolate B4 625/628 (99%)

Fall 0F208N62 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 585 / 604 (96.85%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 617/626 (99%)

Fall 0F208N63 FD_01388_EF-1a [Fusarium verticillioides] 640 / 641 (99.84%) Gibberella moniliformis clone spt086 645/647 (99%)

Fall 0F208N64 FD_01388_EF-1a [ Fusarium verticillioides ] 639 / 641 (99.68%) Gibberella moniliformis clone spt086 644/647 (99%)

Fall 0F208N65 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 608 / 614 (99.02%) Fusarium proliferatum isolate 001B 623/627 (99%)

Fall 0F208N66 FD_01319_EF-1a [Fusarium sp.] 577 / 626 (92.17%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 618/632 (98%)

Fall 0F208N67 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 584 / 604 (96.68%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 613/622 (99%)

Fall 0F208N68 FD_01388_EF-1a [Fusarium verticillioides] 585 / 589 (99.32%) Gibberella moniliformis isolate B4 585/589 (99%)

Fall 0F208N69 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 608 / 616 (98.7%) Gibberella intermedia clone spt067 625/630 (99%)

Fall 0F208N70 FD_01319_EF-1a [Fusarium sp.] 576 / 624 (92.3%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 622/638 (97%)

Fall 0F208N71 FD_01857_EF-1a [ Fusarium sp. ] 596 / 604 (98.67%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 607/617 (98%)

Fall 0F208N72 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 605 / 610 (99.18%) Fusarium proliferatum isolate 001B 624/628 (99%)

Fall 0F208N73 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 598 / 615 (97.23%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 616/620 (99%)

Fall 0F208N74 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 597 / 619 (96.44%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 611/619 (99%)

Fall 0F208N75 FD_01378_EF-1a [Fusarium proliferatum] 611 / 619 (98.7%) Gibberella intermedia clone spt146 622/626 (99%)

Fall 0F208N76 FD_01378_EF-1a [Fusarium proliferatum] 608 / 616 (98.7%) Gibberella intermedia clone spt146 623/628 (99%)

Fall 0F208N77 FD_01388_EF-1a [Fusarium verticillioides] 615 / 623 (98.71%) Gibberella fujikuroi var. moniliformis partial tef-1 gene 621/629 (99%)

Fall 0F208N78 FD_01388_EF-1a [Fusarium verticillioides] 642 / 645 (99.53%) Gibberella moniliformis clone spt086 642/645 (99%)

Fall 0F208N79 FD_01388_EF-1a [Fusarium verticillioides] 616 / 617 (99.83%) Gibberella moniliformis isolate B4 616/617 (99%)

Fall 0F208N80 FD_01378_EF-1a [Fusarium proliferatum] 609 / 616 (98.86%) Gibberella intermedia clone spt145 620/622 (99%)

Fall 0F208N81 FD_01388_EF-1a [Fusarium verticillioides] 621 / 622 (99.83%) Gibberella moniliformis isolate B4 621/622 (99%)

Fall 0F208N82 FD_01388_EF-1a [Fusarium verticillioides] 619 / 622 (99.51%) Gibberella moniliformis isolate B4 624/628 (99%)

Fall 0F208N83 FD_01388_EF-1a [Fusarium verticillioides] 605 / 609 (99.34%) Gibberella moniliformis isolate B4 610/615 (99%) 155 Fall 0F208N84 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 602 / 609 (98.85%) Fusarium proliferatum partial tef-1 gene 617/621 (99%)

Fall 0F208N85 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 613 / 615 (99.67%) Fusarium subglutinans clone spt144 613/615 (99%)

Fall 0F208N86 FD_01378_EF-1a [Fusarium proliferatum] 608 / 616 (98.7%) Gibberella intermedia clone spt146 623/628 (99%)

Fall 0F208N87 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 113 / 119 (94.95%) Gibberella fujikuroi strain EF01 193/223 (87%)

Fall 0F208N88 FD_01380_EF-1a [Fusarium proliferatum] 102 / 106 (96.22%) Fusarium proliferatum isolate ASHCFp5 111/116 (96%)

Fall 0F208N89 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 598 / 617 (96.92%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 616/622 (99%)

Fall 0F208N90 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 585 / 604 (96.85%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 610/617 (99%)

Fall 0F208N91 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 602 / 611 (98.52%) Fusarium proliferatum isolate 001B 617/624 (99%)

Fall 0F208N92 FD_01378_EF-1a [Fusarium proliferatum] 610 / 619 (98.54%) Gibberella intermedia clone spt141 623/626 (99%)

Fall 0F208N93 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 604 / 610 (99.01%) Fusarium proliferatum partial tef-1 gene 619/622 (99%)

Fall 0F208N94 FD_01378_EF-1a [Fusarium proliferatum] 603 / 617 (97.73%) Gibberella intermedia clone spt141 611/618 (99%)

Fall 0F208N95 FD_01388_EF-1a [Fusarium verticillioides] 613 / 617 (99.35%) Gibberella moniliformis isolate B4 617/622 (99%)

Fall 0F208N96 FD_01388_EF-1a [Fusarium verticillioides] 614 / 617 (99.51%) Gibberella moniliformis isolate B4 622/627 (99%)

Fall 0F208N97 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 576 / 580 (99.31%) Gibberella intermedia clone spt067 588/590 (99%)

Fall 0F208N98 FD_01319_EF-1a [Fusarium sp.] 590 / 637 (92.62%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 636/637 (99%)

Fall 0F208N99 FD_01388_EF-1a [Fusarium verticillioides] 604 / 606 (99.66%) Gibberella moniliformis isolate B4 604/606 (99%)

Fall 0F208N100 FD_01388_EF-1a [Fusarium verticillioides] 624 / 625 (99.84%) Gibberella moniliformis clone spt086 624/625 (99%)

Fall 0F208N101 FD_01319_EF-1a [Fusarium sp.] 565 / 615 (91.86%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 602/616 (98%)

Fall 0F208N102 FD_01319_EF-1a [Fusarium sp.] 567 / 614 (92.34%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 605/618 (98%)

Fall 0F208N103 FD_01378_EF-1a [Fusarium proliferatum] 600 / 609 (98.52%) Gibberella intermedia strain NRRL 25092 605/610 (99%)

Fall 0F208N104 FD_01320_EF-1a [Fusarium pallidoroseum] 603 / 616 (97.88%) Fusarium sp. NRRL 31167 615/621 (99%)

Fall 0F208N105 FD_01388_EF-1a [Fusarium verticillioides] 608 / 609 (99.83%) Gibberella moniliformis isolate B4 612/614 (99%)

Fall 0F208N106 FD_01388_EF-1a [Fusarium verticillioides] 620 / 621 (99.83%) Gibberella moniliformis isolate B4 625/627 (99%)

Fall 0F208N107 FD_01378_EF-1a [Fusarium proliferatum] 608 / 616 (98.7%) Gibberella intermedia clone spt067 623/627 (99%)

Fall 0F208N108 FD_01160_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22016 613 / 614 (99.83%) Fusarium subglutinans clone spt144 622/625 (99%)

Fall 0F208N109 FD_01388_EF-1a [Fusarium verticillioides] 609 / 616 (98.86%) Gibberella moniliformis isolate B4 614/622 (99%)

Fall 0F208N110 FD_01378_EF-1a [Fusarium proliferatum] 613 / 622 (98.55%) Gibberella intermedia clone spt141 626/629 (99%)

Fall 0F208N111 FD_01378_EF-1a [Fusarium proliferatum] 605 / 615 (98.37%) Gibberella intermedia clone spt067 612/616 (99%)

Fall 0F208N112 FD_01378_EF-1a [Fusarium proliferatum] 608 / 616 (98.7%) Gibberella intermedia clone spt067 620/623 (99%)

Fall 0F208N113 FD_01388_EF-1a [Fusarium verticillioides] 613 / 617 (99.35%) Gibberella moniliformis isolate B4 622/628 (99%)

Fall 0F208N114 FD_01378_EF-1a [Fusarium proliferatum] 613 / 619 (99.03%) Gibberella intermedia clone spt146 624/626 (99%) 156 Fall 0F208N115 FD_01378_EF-1a [Fusarium proliferatum] 613 / 620 (98.87%) Gibberella intermedia clone spt146 619/621 (99%)

Fall 0F208N117 FD_01378_EF-1a [Fusarium proliferatum] 610 / 617 (98.86%) Gibberella intermedia clone spt146 621/624 (99%)

Fall OF208N118 FD_01858_EF-1a [ Fusarium sp. ] 608 / 610 (99.67%) Gibberella intermedia 625/629(99%)

Fall 0F208N119 FD_01388_EF-1a [Fusarium verticillioides] 615 / 619 (99.35%) Gibberella moniliformis isolate B1 622/625 (99%)

Fall 0F208N120 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 603 / 610 (98.85%) Fusarium proliferatum partial tef-1 gene 618/622 (99%)

Fall IF209N1 FD_01856_EF-1a [ Fusarium sp. ] 577 / 578 (99.82%) Gibberella moniliformis 618/628(98%)

Fall IF209N2 FD_01759_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22945 580 / 590 (98.3%) Fusarium subglutinans 590/590(100%)

Fall IF209N3 FD_01857_EF-1a [ Fusarium sp. ] 600 / 602 (99.66%) Gibberella intermedia 612/615(99%)

Fall IF209N4 FD_01389_EF-1a [ Fusarium proliferatum ] 609 / 610 (99.83%) Gibberella intermedia 619/622(99%)

Fall IF209N5 FD_01857_EF-1a [ Fusarium sp. ] 607 / 612 (99.18%) Gibberella cf. fujikuroi 613/619(99%)

Fall IF210N2 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 611 / 613 (99.67%) Fusarium equiseti 607/613(99%)

Fall IF210N5 FD_01857_EF-1a [ Fusarium sp. ] 587 / 588 (99.82%) Gibberella fujikuroi 597/599(99%)

Fall IF210N6 FD_01614_EF-1a | F. incarnatum-equiseti species complex 8-a NRRL5537 610 / 612 (99.67%) Fusarium equiseti 603/606(99%)

Fall IF210N8 FD_01857_EF-1a [ Fusarium sp. ] 606 / 607 (99.83%) Gibberella fujikuroi 617/619(99%)

Fall OF210N5 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 603 / 610 (98.85%) Gibberella intermedia clone spt146 622/628 (99%)

Fall OF210N4 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 588 / 606 (97.02%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 613/619 (99%)

Fall OF210N6 FD_01319_EF-1a [Fusarium sp.] 576 / 623 (92.45%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 613/626 (98%)

Fall OF210N1 FD_01388_EF-1a [Fusarium verticillioides] 610 / 617 (98.86%) Gibberella moniliformis isolate B4 610/617 (99%)

Fall OF210N2 FD_01388_EF-1a [Fusarium verticillioides] 642 / 644 (99.68%) Gibberella moniliformis clone spt086 645/648 (99%)

Fall OF210N3 FD_01388_EF-1a [Fusarium verticillioides] 612 / 617 (99.18%) Gibberella moniliformis isolate B1 618/622 (99%)

Fall OF212N2 FD_01168_EF-1a | GFSC Gibberella fujikuroi species complex NRRL22944 590 / 594 (99.32%) Gibberella intermedia clone spt067 617/623 (99%)

Fall OF212N1 FD_01388_EF-1a [Fusarium verticillioides] 615 / 617 (99.67%) Gibberella moniliformis isolate B4 619/622 (99%)

Fall IF212N1 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 614 / 616 (99.67%) Fusarium equiseti 610/616(99%)

Fall IF213N1 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 609 / 614 (99.18%) Fusarium equiseti 613/622(99%)

Fall IF213N2 FD_01627_EF-1a | F. incarnatum-equiseti species complex 3-b NRRL28029 604 / 605 (99.83%) Fusarium equiseti 605/613(99%)

Fall IF213N4 FD_01628_EF-1a | F. incarnatum-equiseti species complex 26-b NRRL28714 575 / 592 (97.12%) Fusarium equiseti 585/606(97%)

Fall IF213N5 FD_00805_EF-1a | F. oxysporum species complex 99 NRRL40182 616 / 628 (98.08%) Fusarium oxysporum 618/628(98%)

Fall IF213N6 FD_01858_EF-1a [ Fusarium sp. ] 607 / 610 (99.5%) Gibberella intermedia 614/617(99%)

Fall IF213N7 FD_01858_EF-1a [ Fusarium sp. ] 608 / 611 (99.5%) Gibberella intermedia 621/624(99%)

Fall IF213N8 FD_01627_EF-1a | F. incarnatum-equiseti species complex 3-b NRRL28029 637 / 639 (99.68%) Fusarium equiseti 634/642(99%)

Fall OF213N9 FD_01169_EF-1a | GFSC Gibberella fujikuroi species complex NRRL13566 590 / 604 (97.68%) Gibberella cf. fujikuroi Trap_1_5_min_Low_1 clone spt121 613/615 (99%) 157 Fall OF213N8 FD_01319_EF-1a [Fusarium sp.] 579 / 627 (92.34%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 629/632 (99%)

Fall OF213N6 FD_01321_EF-1a [Fusarium sp.] 531 / 563 (94.31%) Fusarium sp. NRRL 5537 590/598 (99%)

Fall OF213N7 FD_01321_EF-1a [Fusarium sp.] 601 / 635 (94.64%) Fusarium sp. NRRL 5537 638/639 (99%)

Fall OF213N2 FD_01857_EF-1a [ Fusarium sp. ] 612 / 615 (99.51%) Gibberella intermedia 613/615(99%)

Fall OF213N3 FD_01378_EF-1a [Fusarium proliferatum] 607 / 616 (98.53%) Gibberella intermedia clone spt146 616/621 (99%)

Fall OF214N4 FD_01319_EF-1a [Fusarium sp.] 579 / 627 (92.34%) Fusarium cf. incarnatum MLSTs 25-a, 25-b, 25-c 26-a and 26-b clone spt045 625/627 (99%)

Fall IF214N4 FD_01694_EF-1a | F. incarnatum-equiseti species complex 1-a NRRL45996 605 / 606 (99.83%) Fusarium equiseti 608/614(99%)

Fall OF215N3 FD_01321_EF-1a [Fusarium sp.] 565 / 610 (92.62%) Fusarium cf. incarnatum MLSTs 1-a, 1-c and 4-b clone spt105 604/628 (96%)

Fall IF217N3 FD_01321_EF-1a [Fusarium sp.] 603 / 628 (96.01%) Fusarium cf. incarnatum MLST 3-b clone spt072 623/624 (99%)

Winter F130N1 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 643 / 643 (100%) Fusarium sp. NRRL 5537 648/649 (99%)

Winter F130N2 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 642 / 643 (99.84%) Fusarium sp. NRRL 5537 645/647 (99%)

Winter F130N3 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 640 / 642 (99.68%) Fusarium sp. NRRL 5537 640/642 (99%)

Winter F131N2 F. incarnatum-equiseti species complex isolate NRRL 5537, MLST8-a 634 / 634 (100%) Fusarium sp. NRRL 5537 637/638 (99%)

Winter F131N3 F. solani species complex isolate NRRL 32821 133 / 144 (92.36%) Neosartorya fischeri NRRL 181 267/271 (99%)

Winter F131N1 FD_01321_EF-1a [Fusarium sp.] 633 / 656 (96.49%) Fusarium sp. NRRL 45996 673/677 (99%)

Winter F132N1 EQUAL MATCHES FOR MANY Fusarium spp. 142 / 149 (95.3%) Clavicipitaceae sp. CV-2008a 170/181 (94%)

Winter F132N2 FD_00785_EF-1a [Fusarium sp.] 677 / 682 (99.26%) Fusarium oxysporum strain NRRL 46605 677/682 (99%)

Winter F133N1 F. incarnatum-equiseti species complex isolate NRRL 5537 611 / 612 (99.83%) Fusarium sp. NRRL 5537 627/631 (99%)

Winter F133N3 F. incarnatum-equiseti species complex isolate NRRL 5537 638 / 640 (99.68%) Fusarium sp. NRRL 5537 638/640 (99%)

Winter F133N2 F. oxysporum species complex isolate NRRL 26960 622 / 624 (99.67%) Fusarium oxysporum isolate SAT77 622/623 (99%)

Winter OF222N1 FD_01389_EF-1a [ Fusarium proliferatum ] 605 / 606 (99.83%) Gibberella intermedia 616/619(99%)

Winter OF222N2 FD_01857_EF-1a [ Fusarium sp. ] 594 / 596 (99.66%) Gibberella fujikuroi 600/602(99%)

Winter OF222N3 FD_01856_EF-1a [ Fusarium sp. ] 600 / 602 (99.66%) Gibberella moniliformis 602/602(100%)

Winter OF222N5 FD_01857_EF-1a [ Fusarium sp. ] 558 / 560 (99.64%) Gibberella fujikuroi 562/564(99%)

Winter IF222N1 FD_00785_EF-1a | F. oxysporum species complex 191 NRRL38591 681 / 682 (99.85%) Fusarium oxysporum 681/682(99%)

Winter IF222N4 FD_00785_EF-1a | F. oxysporum species complex 191 NRRL38591 645 / 645 (100%) Fusarium oxysporum 645/645(100%)

158