15. Thermosets from Renewable Sources

Total Page:16

File Type:pdf, Size:1020Kb

15. Thermosets from Renewable Sources 15 Biobased Thermosets Ana Dotan Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Ramat-Gan, Israel OUTLINE Polymers from Renewable Sources 577 Thermoset from Renewable Sources 594 Determination of Bio-Based Content in References 615 Polymers 578 Raw Materials for Renewable Sources Polymers 579 Polymers from Renewable Bio-based polymers are derived from renewable Sources resources such as plant and animal mass from CO2 recently fixed via photosynthesis [2]. Bio-based poly- In the past few decades concern about the environ- mers can be natural or synthetic. Natural bio-based ment, climate changes, and limited fossil resources polymers are polymers synthesized by living organ- has led to an intensive research of alternatives to isms such as animals, plants, algae, and microorgan- fossil-based polymers. From a historical point of isms. The most abundant bio-based polymers in view, the first polymers used by mankind were from nature are polysaccharides [3]. Cellulose and starch renewable sources, bio-based polymers, long before are natural polymers based on polysaccharides, and the birth of synthetic polymers. Celluloid, a bio- are abundant in nature. Proteins and bacterial polyhy- based man-made polymer was invented in the 1860s, droxyalkanoates are also natural bio-based polymers and since then, many other bio-based polymers have [4]. Bio-based polymers are not necessarily sustain- been developed. However, the development of the able; this depends on a variety of issues, including crude oil industry in the 20th century transformed the the source material, production process, and how the world of polymers, leading to the use of synthetic material is managed at the end of its useful life. Sus- polymers as a replacement for bio-based polymers. tainable produced bio-based polymers are those The increasing use of synthetic polymers as a result grown without genetically modified organisms of the growing human population and standard of liv- (GMOs), hazardous pesticides, certified as sustain- ing in the next decades will result in higher demands able for the soil and ecosystems, and compostable. on oil production and will contribute to a possible Sustainability also depends on the reduction of depletion of crude oil before the end of the 21st cen- impacts to occupational and public health as well as tury. It is estimated that by 2015 the worldwide the environment throughout their life cycles [2].Bio- annual production of plastics is very likely to reach based materials are important candidates for sustain- 300 million tons (14À18% are thermosets), which able development since they present the potential to will require large amounts of petroleum and will reduce greenhouse emissions by sequestering CO2,to result in the emissions of hundreds of millions of tons reduce raw material costs, and to create opportunities of CO2 to the atmosphere [1]. A return to bio-based for growth and employment in agriculture [5]. polymers will reduce the dependency of the polymers Life cycle assessment (LCA) is the most widely and plastics industry on petroleum, thus creating applied and accepted method to quantitatively assess more sustainable alternatives. the environmental impact of a given material Handbook of Thermoset Plastics. DOI: http://dx.doi.org/10.1016/B978-1-4557-3107-7.00015-4 © 2014 Elsevier Inc. All rights reserved. 577 578 HANDBOOK OF THERMOSET PLASTICS throughout its life cycle; its principles and frame- carbon dating), because ancient petroleum has lost work are described in ISO 14040 [6]. Usually the its 14C through radioactive decay whereas feedstock impact categories considered in LCA are global derived from recently living organisms have a 14C warming, acidification of soil, ozone layer depletion, content related to the current equilibrium concen- aquatic eutrophication, respiratory organics, respira- tration in the atmosphere. tory inorganics, land occupation, non-renewable ASTM D6866-11 has developed a protocol to energy, and aquatic ecotoxicity [7]. Additional envi- quantify the bio-based content in materials by com- ronmental indicators are resource depletion and paring the 14C/12C ratio to that of a standard speci- human toxicity [5]. men typical of living organisms [11]. CEN/TS Global warming impact is measured by the 16137 is the equivalent European for the ASTM amount of CO2 that is liberated from the material standard test [3]. ASTM D6866-11 is the Standard throughout its life cycle. CO2 is the principal anthro- Test Methods for Determining the Bio-based pogenic gas that is thought to affect the Earth’s radia- Content of Solid, Liquid, and Gaseous Samples tive balance. For this reason it is believed that there Using Radiocarbon Analysis. It defines bio-based is a close correlation between CO2 and the change of content as the amount of bio-based carbon in the the Earth’s temperature [8].TheCO2 footprint of a material or product as a percent of the weight material is assessed by the carbon emissions conse- (mass) of the total organic carbon in the product. quent on the creation of a unit mass of material, This standard utilizes two methods to quantify the including those associated with transport, generation bio-based content of a given product: (a) Accelera- of the electric power used by the plant, and that of tor Mass Spectrometry (AMS) along with Isotope feedstocks and hydrocarbon fuels. The CO2 footprint, Ratio Mass Spectrometry (IRMS); or (b) Liquid which is measured in units of kg of CO2/kg material, Scintillation Counters (LSC) using sample carbon is the sum of all contributions per unit mass of mate- that has been converted to benzene. Those methods rial. Renewable resource polymers have a low CO2 directly discriminate between product carbon result- footprint since plants grow by absorbing CO2 from ing from new carbon input and that derived from the atmosphere and thus sequester carbon [9]. fossil-based input. A measurement of the 14C/12C ratio is determined relative to the modern carbon- based oxalic acid radiocarbon Standard Reference Material (SRM) 4990c (referred to as HOxII), as Determination of Bio-Based the oxalic acid standard is 100% bio-based. The Content in Polymers percent new carbon can be slightly greater than 100% due to the continuing (but diminishing) Bio-based polymers can be made totally or par- effects of the 1950s nuclear testing programs. tially from renewable source raw materials, pro- Because all sample 14C activities are referenced to duced from photosynthesis and CO2. In order to a “pre-bomb” standard, all modern carbon values determine the bio-based content of the polymer, the must be multiplied by 0.95 to correct for the bomb “new” carbon content must be measured. A renew- carbon and to subsequently obtain the true bio- able source is replenished by natural processes at a based content of the sample [11]. rate comparable to its exploitation rate. The carbon CEN/TS 16137 specifies the calculation method content of such polymers is derived from the so- for the determination of bio-based carbon content called short carbon cycle within an expected time in monomers, polymers, plastics materials and pro- frame between 1 to 10 years. Most industrial poly- ducts using the 14C method based on three test mers and plastics are presently produced from fossil methods: (a) Proportional scintillation-counter resources that are non-renewable as they cannot be method (PSM); (b) Beta-ionization (BI); and replenished at a rate comparable to the exploitation (c) Accelerator mass spectrometry (AMS). The ana- rate. Fossil resources have a long carbon cycle, lytical test methods specified in this Technical with an expected time frame to convert biomass to Specification are compatible with those described petroleum, gas, and coal of greater than 106 years in ASTM D6866-11. The bio-based carbon content [10]. The accepted measure of bio-based content is is expressed by a fraction of sample mass, as a frac- the level of 14C isotope in the feedstock (basically, tion of the total carbon content, or as a fraction of 15: BIOBASED THERMOSETS 579 the total organic carbon content. This calculation hydrophobic or amphiphilic (both hydrophilic and method is applicable to any polymers containing lipophilic) small molecules. Different plant species organic carbon, including bio-composites [3]. contain lipids with different fatty acid compositions Calculation of percentage of bio-based content and distributions. Lipids help form a hydrophobic according to CN/TS 16137:2011 is based on the biological membrane that separates cells from their calculation of carbon content as a fraction of the surroundings and keeps chloroplasts, mitochondria, total organic carbon content (TOC) expressed as a and cytoplasm apart, thus preventing or regulating percentage, using Equation (15.1): diffusion of chemicals [14]. Plant oil is a mixture of various triglycerides XB;TOC 5 ðXBÞ=ðXTOCÞ (15.1) (also called triacylglycerol). One glycerol is attached to three different fatty acids to form a tri- Here, XB 5 is the bio-based carbon content by glyceride. Glycerolipid and fatty acids are synthe- mass, expressed as a percentage; and XTOC 5 is the sized in the oilseed simultaneously during seed total organic carbon content, expressed as a per- development, before forming diacylglycerol and centage, of the sample. subsequently triacylglycerols. Triglycerides are composed of three fatty acids joined at a glycerol juncture, as can be seen in Figure 15.1. Fatty acids Raw Materials for Renewable account for approximately 95% of the total weight of triglycerides and their content and chemistry are Sources Polymers characteristics of each plant oil and geographical Natural Oils conditions [15]. The most common oils contain fatty acids that vary from 14 to 22 carbons in Natural oils, which can be derived from both length with 0 to 3 double bonds per fatty acid. plant and animal sources, are considered to be one Fatty acids derived from nature have even an num- of the most important classes of renewable sources ber of carbons due to their biosynthesis (acetyl because of the wide variety of possibilities for coenzyme A, two carbon carrier).
Recommended publications
  • Tannic Acid-Based Prepolymer Systems for Enhanced Intumescence in Epoxy Thermosets
    Cite this article Themed Issue: Sustainable flame Keywords: environmental impact/green Korey M, Johnson A, Webb W et al. (2020) retarded materials polymers/sustainable materials Tannic acid-based prepolymer systems for enhanced intumescence in epoxy thermosets. Paper 1900061 Green Materials 8(3): 150–161, Received 29/09/2019; Accepted 05/03/2020 https://doi.org/10.1680/jgrma.19.00061 Published online 06/04/2020 ICE Publishing: All rights reserved Green Materials Tannic acid-based prepolymer systems for enhanced intumescence in epoxy thermosets Matthew Korey Mark Dietenberger Graduate Research Assistant, Purdue University, West Lafayette, IN, USA Research General Engineer, Forest Products Laboratory, Madison, WI, USA (Orcid:0000-0002-2285-5646) Jeffrey Youngblood Alexander Johnson Professor, Purdue University, West Lafayette, IN, USA Undergraduate Research Assistant, Purdue University, West Lafayette, IN, USA (Orcid:0000-0002-8720-8642) William Webb John Howarter Staff, Career Academy, San Diego, CA, USA Associate Professor, Purdue University, West Lafayette, IN, USA (corresponding author: [email protected]) Tannic acid (TA) is a bio-based high-molecular-weight organic molecule. Although biologically sourced, TA is a pollutant in industrial wastewater streams, and there is desire to find applications in which to downcycle this molecule. Many flame retardants (FRs) used in epoxy are synthesized from petroleum-based monomers. Various bio-based modifiers have been developed, but increasing the flame retardancy of the system without trade-offs with other properties has proved challenging. In this work, TA is incorporated into the thermoset. The molecular behavior of the system was dependent on the TA loading, with low concentrations causing the molecule to be surface-functionalized, while at higher concentrations the molecule was cross-linked into the network.
    [Show full text]
  • The Use of Plants in the Traditional Management of Diabetes in Nigeria: Pharmacological and Toxicological Considerations
    Journal of Ethnopharmacology 155 (2014) 857–924 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations Udoamaka F. Ezuruike n, Jose M. Prieto 1 Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom article info abstract Article history: Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is Received 15 November 2013 now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of Received in revised form herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby 26 May 2014 carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on Accepted 26 May 2014 the available evidence on the species' pharmacology and safety, we highlight ways in which their Available online 12 June 2014 therapeutic potential can be properly harnessed for possible integration into the country's healthcare Keywords: system. Diabetes Materials and methods: Ethnobotanical information was obtained from a literature search of electronic Nigeria databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants Ethnopharmacology used in diabetes management, in which the place of use and/or sample collection was identified as Herb–drug interactions Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – WHO Traditional Medicine Strategy accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches.
    [Show full text]
  • Effects of Polyols on the Processing and Qualities of Wheat Tortillas'
    BREADMAKING Effects of Polyols on the Processing and Qualities of Wheat Tortillas' E. L. SUHENDRO, 2 R. D. WANISKA,2 L. W. ROONEY, 2 and M. H. GOMEZ 3 ABSTRACT Cereal Chem. 72(l):122-127 Effects of polyols on processing of hot-press wheat tortillas were evalu- Doughs containing 6% polyols, except maltitol, were stickier and less ated. Hot-press wheat tortillas with 0, 2, 4, or 6% glycerol were prepared machinable than control doughs. Tortillas prepared from 10.2% protein from wheat flour of 10.2, 11.0, or 11.5% protein content. Tortillas with flour with or without polyols were less rollable during storage compared 2, 4, or 6% propylene glycol, sorbitol, or maltitol were prepared from to those prepared from higher protein flours. Tortillas containing glycerol the 11.0% protein flour. Farinograph and alveograph values, dough mixing had less moisture, higher liquid content, and improved shelf-stability, characteristics and machinability, rollability over time, sensory evaluation, except when prepared from low protein flour. Water activity decreased water holding capacity, total liquid content, and water activity were deter- with increasing polyol level. Propylene glycol and glycerol were more mined. Low protein (10.2%) flour required less water, shorter mixing effective in decreasing water activity than sorbitol and maltitol. Formulas time, and yielded tortilla doughs that were less machinable compared containing 4% polyols and Ž11.0% protein flour had good machinability to other flours. Water absorption decreased with increasing polyol level. and yielded acceptable tortillas with improved rollability during storage. The increased production of wheat tortillas in the United States Propylene glycol (J.T.
    [Show full text]
  • Biomolecules
    biomolecules Article Tannic Acid Improves Renal Function Recovery after Renal Warm Ischemia–Reperfusion in a Rat Model Louise Alechinsky 1, Frederic Favreau 2,3, Petra Cechova 4 , Sofiane Inal 1,5, Pierre-Antoine Faye 2,3, Cecile Ory 1, Raphaël Thuillier 1,5,6,7 , Benoit Barrou 1, Patrick Trouillas 8, Jerome Guillard 9 and Thierry Hauet 1,5,6,7,* 1 INSERM, U1082 IRTOMIT, 86021 Poitiers, France; [email protected] (L.A.); sofi[email protected] (S.I.); [email protected] (C.O.); [email protected] (R.T.); [email protected] (B.B.) 2 Université de Limoges, Faculté de Médecine, EA 6309 “Maintenance Myélinique et Neuropathies Périphériques”, 87025 Limoges, France; [email protected] (F.F.); [email protected] (P.-A.F.) 3 CHU de Limoges, Laboratoire de Biochimie et Génétique Moléculaire, 87042 Limoges, France 4 University Palacký of Olomouc, RCPTM, Dept Physical Chemistry, Faculty of Science, 771 46 Olomouc, Czech Republic; [email protected] 5 CHU de Poitiers, Laboratoire de Biochimie, 86021 Poitiers, France 6 Université de Poitiers, Faculté de Médecine et de Pharmacie, 86073 Poitiers, France 7 Département Hospitalo-Universitaire de Transplantation SUPORT, 86021 Poitiers, France 8 Inserm, UMR 1248, Fac. Pharmacy, Univ. Limoges, 87025 Limoges, France; [email protected] 9 Université de Poitiers, UMR CNRS 7285 IC2MP, Team 5 Organic Chemistry, 86073 Poitiers, France; [email protected] * Correspondence: [email protected] Received: 11 February 2020; Accepted: 9 March 2020; Published: 12 March 2020 Abstract: Background and purpose: Ischemia–reperfusion injury is encountered in numerous processes such as cardiovascular diseases or kidney transplantation; however, the latter involves cold ischemia, different from the warm ischemia found in vascular surgery by arterial clamping.
    [Show full text]
  • Conductometric Study of the Acidity Properties of Tannic Acid (Chinese Tannin)
    Journal of the UniversityL. Costadinnova, of Chemical M. Hristova, Technology T. Kolusheva, and Metallurgy, N. Stoilova 47, 3, 2012, 289-296 CONDUCTOMETRIC STUDY OF THE ACIDITY PROPERTIES OF TANNIC ACID (CHINESE TANNIN) L. Costadinnova1, M. Hristova1, T. Kolusheva1, N. Stoilova2 1 University of Chemical Technology and Metallurgy Received 22 May 2012 8 Kl. Ohridski, 1756 Sofia, Bulgaria Accepted 12 June 2012 2 CLVCE, Department of VMP Analysis, 5 Iskarsko shose Blvd., Sofia, Bulgaria E-mail: [email protected] ABSTRACT Two tannic acids are studied (H T, n = 52), C H O , with average molar mass 1701.20 g mol-1. Using their UV and n 76 52 46 IR spectra it is shown that they have identical composition with respect to their functional groups, while by potentiometric and conductometric titration their structure of chinese tannin is verified and the relations between the acidity constants K > K K ... are determined. The absence of gallic acid is proved by HPLC. The conformational flexibility of the a1 a2 : a3 : tannin molecule is used to measure the stepwise constant K . By direct conductometry the acids were studied in the a1 concentration range of 5.00x10-4 to 5.00x10-2 mol l-1. The latter is determined from the Onsager-Shedlovsky relation. The molar conductivity of the ions − for the infinitely dilute solutions of the two tannic acids is found to be 55.2 and HTn1− 64.3 S L mol-1 cm-1. The degree of dissociation á in the studied concentration range varies from 0.03 to 0.3. The results for the acidity constant exponent pK are generalised using variance analysis, yielding ±∆ = ± , n = a1 pKa1 pK a1 4.19 0.02 26.
    [Show full text]
  • Achieving Performance and Sustainability Objectives with Biobased Polyols
    AS SEEN IN Paint Coatings Industry Globally Serving Liquid and Powder Manufacturers and Formulators Achieving Performance and Sustainability Objectives with Biobased Polyols By Mark Anater, Chemist, Research & Technology Aliphatic polyester polyols are typically produced based – Polyols, and Eric Geiger, Technology Manager – on petrochemical-derived adipic acid, which is expe- Polyols, Emery Oleochemicals LLC, Cincinnati, OH riencing environmental pressure due to the potential for NOx emissions. Biobased adipic acid is not currently commercially available. However, there are alternative chieving sustainability objectives has biobased diacids available, such as the nine carbon increased in importance for those in the chain diacid, azelaic acid, which can offer end products coatings industry. This includes the use of with equivalent or improved performance with the biobased raw materials in the production of added benefit of sustainability. Aresins. The use of biobased materials in coatings is cer- Physical properties of a, w-alkane dicarboxylic acids tainly not new; shellac is based on a resin secreted from are dependent upon the carbon chain length, and physical the lac bug, and some of the first polyurethane chemistry characteristics can be quite different if the diacid has an practiced was based on castor oil, both of which are still even or an odd number of carbons, as outlined in Table 1. in use. The key limitation with such natural products Diacids with an even number of carbons have much higher was often performance. As application performance melting points and lower boiling points than the adjacent demands increased, more “engineered” solutions were odd carbon numbered acids. The even-odd effect can also developed based upon materials that were typically be seen in water solubility, but here chain length masks the derived from petrochemicals.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • Sweet Sensations by Judie Bizzozero | Senior Editor
    [Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Spinal Curaracardiac Poisons.Pdf
    STRYCHNOS NUX VOMICA KUCHILA Powerful alkaloids Strychnine and brucine ( 1& ½ %) Seeds also contain glucoside loganine Fruit hard, rough, glossy orange, 4‐5 cm wide, jelly like white or pale yellow pulp. It has 3‐5 seeds Strychnine occurs as colourless, odourless, rhombic prisms, having an intensely bitter taste The bark contains only brucine Fruit pulp ‐‐‐ low strychnine content Strychnine = 20 X brucine • Seeds are flat, circular discs or slightly convex on one side, concave on other side • 2.5 cm in diameter, 6mm in thickness • Ash grey or light brown in colour • Seeds are very hard, tough, difficult to pulverise • USES • In Chinese herbal medicine, the seeds of strychnine are eaten to alleviate external pains. • Different types of tumors as well as allay paralysis such as Bell’s palsy or facial paralysis. • Useful herbal medicine • Ingredient of homeopathic medication and is particularly recommended for digestive problems, feeling for cold as well as tetchiness. • As a respiratory stimulant • As a rodenticide • For killing stray dogs, even wild animals ABSORPTION AND EXCRETION All mm Much is taken by liver, muscle to be either released again into blood stream or to be destroyed This release produces convulsions on the 2nd or 3rd Day 80% is oxidised mainly in the liver Excreted slowly by the kidneys and traces in the bile, milk, saliva • ACTION • Competitively blocks ventral horn motor neuron postganglionic receptor sites in the spinal cord and prevent the effect of GLYCINE • Widespread inhibition in the spinal cord results in “release”
    [Show full text]
  • Erythritol As Sweetener—Wherefrom and Whereto?
    Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research.
    [Show full text]
  • Bio-Based Chemicals Overview
    Bio-Based Chemicals Overview 2019 PCA International Conference Vancouver, B.C., Canada, 23 - 24 September 2019 Doris de Guzman Senior Consultant – Biomaterials [email protected] OUR CORE STRENGTHS Intermediates, Fibres & Specialty Resins Soda Ash Epichlorohydrin Epoxy Resins Bisphenol A Caustic Soda EDC VCM PVC Acetone Phenol Isocyanates Chlorine Peroxy PO Polyols Polyurethanes Polyester Film Chlorohydrin PO PET Resin Bio-Materials Derivatives EO Derivatives Ethylene Oxide MEG Polyester Fibre Acetic Acid PTA Polyester Polypropylene Fibre Paraxylene Vinyl Acetate Monomer DMT Caprolactam Acrylic Fibre Acrylonitrile Adiponitrile HMDA Polyamide 6 Polyamide Fibre Adipic Acid AH Salt Polyamide 66 Polyamide Resin Polyacetal ABS & SAN PBT Polycarbonate Methanol Isodecanol DIDP Orthoxylene Styrene Methyl Acrylate Isononanol DINP Phthalic Anhydride 1,4-Butanediol Ethyl Acrylate 2-PH DPHP Acrylic Acid Unsaturated Maleic Anhydride Polyester Resin 2-Ethylhexyl Acrylate 2-EH DOP Butyl Acrylate Butanols 2 BIO-MAT E R IAL S & INT E R ME DIAT E S A monthly publication reporting market trends, pricing, and feedstock for Bio-based chemicals and their Petrochemicals counterpart Started in 2007 & Inspired by an unwavering belief that we can and will do better www.greenchemicalsblog.com 3 Value additions of Bio-based Industry to US Economy Forest Products $364bn Bio-based $22bn Chemicals $3.5bn $45bn (NA) $106bn Enzymes Textiles Agriculture $35bn and $1.11bn Forestry Biorefining Bioplastic $506m bottles and packaging Source: USDA, PCA 4 Value additions
    [Show full text]