MCLELLAND Angela Estelle

Total Page:16

File Type:pdf, Size:1020Kb

MCLELLAND Angela Estelle An investigation into the antidyskinetic and reinforcing effects of UWA-101 in Sprague Dawley rats Angela Estelle McLelland, B.Sc. (Hons), M.D. This thesis is presented for the degree of Doctor of Philosophy of The University of Western Australia School of Medicine and Pharmacology Pharmacology and Anaesthesiology Unit 2019 1 2 Thesis Declaration I, Angela McLelland, certify that: This thesis has been substantially accomplished during enrolment in this degree. This thesis does not contain material which has been submitted for the award of any other degree or diploma in my name, in any university or other tertiary institution. In the future, no part of this thesis will be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of The University of Western Australia and where applicable, any partner institution responsible for the joint-award of this degree. This thesis does not contain any material previously published or written by another person, except where due reference has been made in the text and, where relevant, in the Authorship Declaration that follows. This thesis does not violate or infringe any copyright, trademark, patent, or other rights whatsoever of any person. The research involving animal data reported in this thesis was assessed and approved by The University of Western Australia Animal Ethics Committee. Approval RA/3/100/1165, RA/3/100/1182, RA/3/100/1178. The research involving animals reported in this thesis followed The University of Western Australia and national standards for the care and use of laboratory animals. This thesis contains published work and/or work prepared for publication, some of which has been co-authored. Signature: Date: 16/08/19 3 4 Abstract Long-term treatment of people with Parkinson’s disease (PD) with the gold-standard drug, L-3,4-dihydroxyphenylalanine (L-DOPA), often results in debilitating excessive involuntary movements known as L-DOPA induced dyskinesia (LID). There is limited treatment for LID, with only one drug, amantadine, currently licensed for this purpose, and its long-term efficacy is questionable. Research into pharmacological treatment of LID has included the investigation of MDMA-analogue UWA-101, which has affinity for the transporters of dopamine and serotonin, but not noradrenaline. The first aim of this thesis was to investigate the antidyskinetic and reinforcing effects of increasing doses of UWA-101 in Sprague-Dawley rats in three separate studies. Two of these studies involved the reserpinised rat model, and a second aim was to determine the potential of this model as an early screening procedure for LID drug discovery, prior to more extensive lesion models. This procedure serves to induce PD-like symptoms such as akinesia in a short time-frame through the administration of reserpine, which depletes monoamine neurotransmitter stores via vesicular monoamine transport 2 (VMAT2) inhibition. In this model, it has been proposed that rat vertical movements are analogous to human dyskinesia, whereas reductions in horizontal activity (akinesia) reflect the loss of dopamine and mimic PD symptoms. UWA-101 is an analogue of the illicit drug MDMA ('ecstasy'), so the third aim was to determine abuse liability or aversive subjective effects of UWA-101 that may reduce its treatment utility with three separate measurements: the conditioned place preference test, as a 5 measure of the reinforcing or aversive effects of a drug,; the elevated plus maze test, as a measure of anxiogenic effects of a drug; and ultrasonic vocalisations (USV), as a measure of both hedonic (50 kHz) and aversive (20 kHz) effects of a drug. Using custom-made locomotion detection equipment, UWA-101 (1 and 3 mg/kg) significantly reduced L-DOPA-induced hyperkinesia and behavioural dyskinesia correlates in reserpinised rats. Yohimbine, riluzole, and rimonabant, antidyskinetic compounds used to assess the validity of the reserpinised rat model, also significantly reduced L-DOPA-induced hyperkinesia and behavioural dyskinesia correlates. It can be concluded that the reserpinised rat may serve as an early and relatively quick screening model prior to more extensive lesion models. Treatment of reserpinised rats with UWA-101 (3 mg/kg) was then preceded by treatment with drugs of known pharmacological affinities to assess the underlying mechanism of the anti-hyperkinetic effect of UWA-101. Fluoxetine (a serotonin transporter [SERT] inhibitor), WAY-100635 (a 5-HT1A receptor antagonist) and riluzole (a glutamate release inhibitor) all blocked UWA-101 reversal of L-DOPA-induced hyperkinesia and dyskinesia correlates. These observations indicate that UWA-101 reversal of L-DOPA induced hyperkinesia may occur through reversal of SERT function, as does MDMA, and through activation of the 5-HT1A receptor, a process that is also dependent on glutamate release. UWA-101 (3 mg/kg) did not produce conditioned place preferences or aversions in the CPP test, changes in USVs or anxiolytic effects in the EPM test. In contrast, dexamphetamine (1.5 mg/kg) as a positive control, induced a robust place preference, increased 50 kHz USVs and increased open arm activity in the EPM test. Therefore, UWA- 101 did not appear to have abuse liability or to produce aversive side-effects at this dose. 6 UWA-101 reduced L-DOPA induced hyperkinesia in line with earlier lesion studies in rats and primates. Similar effects were induced by other drugs shown to have antidyskinetic activities in non-human lesioned animal models, including yohimbine, riluzole and rimonabant, further supporting the utility of the reserpinised model. These findings support the view that multiple neurotransmitters other than dopamine may be involved in the development or expression of L-DOPA induced dyskinetic behaviour. Furthermore, the mechanisms underlying the anti-hyperkinetic effect of UWA-101 seem to involve the serotonergic system. In conclusion, the reserpinised rat model is useful as an early screen for antidyskinetic compounds, prior to more expensive and time-consuming lesion studies. The findings with UWA-101 support earlier research in such lesion studies indicating its potential utility as a therapeutic agent for LID without evidence of abuse liability or aversive side-effects, and provides the first evidence that UWA-101, like MDMA, reverses the SERT. 7 8 Table of Contents Abstract……………………………………………………………………………………….5 List of Tables………………………………………………………………………………...15 List of Figures……………………………………………………………………………….17 List of Abbreviations………………………………………………………………………..21 Acknowledgements………………………………………………………………………….23 Authorship declaration: Co-authored publications………………………………..……..25 Statement of candidate contribution………………………………………………………27 Chapter 1 – General Introduction…………………………………………………………29 1. Introduction..................................................................................................................29 1.1 Development of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) ......................................................................................................................31 1.1.1 Overview of the basal ganglia....................................................................31 1.1.2 Factors involved in LID development........................................................36 1.1.2.1 Hypothesis of LID emergence..............................................................36 1.1.2.2 Delaying the onset of LID....................................................................38 1.1.2.3 Modifications of L-DOPA in established LID.....................................41 1.2 Pharmacological treatment of LID.........................................................................43 1.2.1 Dopamine receptors....................................................................................43 1.2.1.1 D1-like receptors...................................................................................43 1.2.1.2 D2-like receptors...................................................................................45 1.2.2 Serotonin receptors.....................................................................................53 1.2.2.1 5-HT1A/b receptors...............................................................................54 1.2.2.2 5-HT2A receptors..................................................................................58 1.2.3 Monoamine transporters.............................................................................60 1.2.4 Glutamate receptors....................................................................................64 1.2.4.1 N-methyl-D-aspartate (NMDA) receptors...........................................64 1.2.4.2 Alpha-amine-3-hydroxyl-methyl-4-isoxazleproprionic acid (AMPA) receptors...............................................................................................67 1.2.4.3 Metabotropic receptors.........................................................................69 1.2.5 Adrenergic receptors..................................................................................73 1.2.6 Cannabinoid receptors................................................................................77 1.3 Animal models of LID...........................................................................................80 1.3.1 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primate........................................................................................................81
Recommended publications
  • Mglur5 Modulation As a Treatment for Parkinson's Disease
    mGluR5 modulation as a treatment for Parkinson’s disease Kyle Farmer A thesis submitted to the Faculty of Graduate & Postdoctoral Affairs in partial fulfillment of requirements of the degree of Doctor of Philosophy in Neuroscience Carleton University Ottawa, ON Copyright © 2018 – Kyle Farmer ii Space Abstract Parkinson’s disease is an age related neurodegenerative disease. Current treatments do not reverse the degenerative course; rather they merely manage symptom severity. As such there is an urgent need to develop novel neuroprotective therapeutics. There is an additional need to stimulate and promote inherent neuro-recovery processes. Such processes could maximize the utilization of the existing dopamine neurons, and/or recruit alternate neuronal pathways to promote recovery. This thesis investigates the therapeutic potential of the mGluR5 negative allosteric modulator CTEP in a 6-hydroxydopamine mouse model of Parkinson’s disease. We found that CTEP caused a modest reduction in the parkinsonian phenotype after only 1 week of treatment. When administered for 12 weeks, CTEP was able to completely reverse any parkinsonian behaviours and resulted in full dopaminergic striatal terminal re-innervation. Furthermore, restoration of the striatal terminals resulted in normalization of hyperactive neurons in both the striatum and the motor cortex. The beneficial effects within the striatum iii were associated with an increase in activation of mTOR and p70s6K activity. Accordingly, the beneficial effects of CTEP can be blocked if co-administered with the mTOR complex 1 inhibitor, rapamycin. In contrast, CTEP had differential effects in the motor cortex, promoting ERK1/2 and CaMKIIα instead of mTOR. Together these data suggest that modulating mGluR5 with CTEP may have clinical significance in treating Parkinson’s disease.
    [Show full text]
  • Inhibition of 50-Khz Ultrasonic Vocalizations by Dopamine Receptor Subtype-Selective Agonists and Antagonists in Adult Rats
    Psychopharmacology (2013) 226:589–600 DOI 10.1007/s00213-012-2931-6 ORIGINAL INVESTIGATION Inhibition of 50-kHz ultrasonic vocalizations by dopamine receptor subtype-selective agonists and antagonists in adult rats Tina Scardochio & Paul B. S. Clarke Received: 6 September 2012 /Accepted: 13 November 2012 /Published online: 29 November 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract calling. The D4 agonist and antagonist did not significantly Rationale Adult rats emit ultrasonic calls at around 22 and affect 50-kHz call rates. Twenty-two-kilohertz calls oc- 50 kHz, which are often elicited by aversive and rewarding curred infrequently under all drug conditions. stimuli, respectively. Dopamine (DA) plays a role in aspects Conclusion Following systemic drug administration, tonic of both reward and aversion. pharmacological activation of D1-like or D2-like DA recep- Objective The purpose of this study is to investigate the tors, either alone or in combination, does not appear suffi- effects of DA receptor subtype-selective agonists on 22- cient to induce 50-kHz calls. Dopaminergic transmission and 50-kHz call rates. through D1, D2, and D3 receptors appears necessary for Methods Ultrasonic calls were recorded in adult male rats spontaneous calling. that were initially screened with amphetamine to eliminate low 50-kHz callers. The remaining subjects were tested after Keywords Vocalization . Dopamine receptor . Reward . acute intraperitoneal or subcutaneous injection of the fol- Aversion . Agonist . Antagonist . Reinforcement . lowing DA receptor-selective agonists and antagonists: Behavior . D1 [D-1] . D2 [D-2] A68930 (D1-like agonist), quinpirole (D2-like agonist), PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH 39166 (D1-like antagonist), L-741,626 (D2 antagonist), Introduction NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist).
    [Show full text]
  • Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Antinociceptive Effects of Monoamine Reuptake Inhibitors in Assays of Pain-Stimulated and Pain-Depressed Behaviors Marisa Rosenberg Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2715 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. ANTINOCICEPTIVE EFFECTS OF MONOAMINE REUPTAKE INHIBITORS IN ASSAYS OF PAIN-STIMULATED AND PAIN-DEPRESSED BEHAVIOR A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Marisa B. Rosenberg Bachelor of Science, Temple University, 2008 Advisor: Sidney Stevens Negus, Ph.D. Professor, Department of Pharmacology/Toxicology Virginia Commonwealth University Richmond, VA May, 2012 Acknowledgement First and foremost, I’d like to thank my advisor Dr. Steven Negus, whose unwavering support, guidance and patience throughout my graduate career has helped me become the scientist I am today. His dedication to education, learning and the scientific process has instilled in me a quest for knowledge that I will continue to pursue in life. His thoroughness, attention to detail and understanding of pharmacology has been exemplary to a young person like me just starting out in the field of science. I’d also like to thank all of my committee members (Drs.
    [Show full text]
  • Experimental Dopamine Reuptake Inhibitors in Parkinson’S Disease: a Review of the Evidence
    Journal of Experimental Pharmacology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Experimental Dopamine Reuptake Inhibitors in Parkinson’s Disease: A Review of the Evidence This article was published in the following Dove Press journal: Journal of Experimental Pharmacology Thomas Müller Abstract: Parkinson’s disease (PD) is the second most chronic neurodegenerative disorder worldwide. Deficit of monoamines, particularly dopamine, causes an individually varying Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, compilation of motor and non-motor features. Constraint of presynaptic uptake extends 13088, Germany monoamine stay in the synaptic cleft. This review discusses possible benefits of dopamine reuptake inhibition for the treatment of PD. Translation of this pharmacologic principle into positive clinical study results failed to date. Past clinical trial designs did not consider a mandatory, concomitant stable inhibition of glial monoamine turnover, i.e. with mono­ amine oxidase B inhibitors. These studies focused on improvement of motor behavior and levodopa associated motor complications, which are fluctuations of motor and non-motor behavior. Future clinical investigations in early, levodopa- and dopamine agonist naïve patients shall also aim on alleviation of non-motor symptoms, like fatigue, apathy or cognitive slowing. Oral levodopa/dopa decarboxylase inhibitor application is inevitably necessary with advance of PD. Monoamine reuptake (MRT) inhibition improves the efficacy of levodopa, the blood brain barrier crossing metabolic precursor of dopamine. The pulsatile brain delivery pattern of orally administered levodopa containing formulations results in synaptic dopamine variability. Ups and downs of dopamine counteract the physiologic principle of continuous neurotransmission, particularly in nigrostriatal, respectively meso­ corticolimbic pathways, both of which regulate motor respectively non-motor behavior.
    [Show full text]
  • Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2008 Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes. Ashley Brianna Sheppard East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Hormones, Hormone Substitutes, and Hormone Antagonists Commons Recommended Citation Sheppard, Ashley Brianna, "Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes." (2008). Electronic Theses and Dissertations. Paper 1978. https://dc.etsu.edu/etd/ 1978 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Sex Differences in Nicotine-conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes A thesis presented to the faculty of the Department of Psychology East Tennessee State University In partial fulfillment of the requirements for the degree of Master of Arts in Psychology by Ashley Brianna Sheppard August 2008 Russell Brown, PhD., Chair Michael Woodruff, PhD., Committee member Otto Zinser,
    [Show full text]
  • Metabotropic Glutamate Receptors
    mGluR Metabotropic glutamate receptors mGluR (metabotropic glutamate receptor) is a type of glutamate receptor that are active through an indirect metabotropic process. They are members of thegroup C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatoryneurotransmitter. The mGluRs perform a variety of functions in the central and peripheral nervous systems: mGluRs are involved in learning, memory, anxiety, and the perception of pain. mGluRs are found in pre- and postsynaptic neurons in synapses of the hippocampus, cerebellum, and the cerebral cortex, as well as other parts of the brain and in peripheral tissues. Eight different types of mGluRs, labeled mGluR1 to mGluR8, are divided into groups I, II, and III. Receptor types are grouped based on receptor structure and physiological activity. www.MedChemExpress.com 1 mGluR Agonists, Antagonists, Inhibitors, Modulators & Activators (-)-Camphoric acid (1R,2S)-VU0155041 Cat. No.: HY-122808 Cat. No.: HY-14417A (-)-Camphoric acid is the less active enantiomer (1R,2S)-VU0155041, Cis regioisomer of VU0155041, is of Camphoric acid. Camphoric acid stimulates a partial mGluR4 agonist with an EC50 of 2.35 osteoblast differentiation and induces μM. glutamate receptor expression. Camphoric acid also significantly induced the activation of NF-κB and AP-1. Purity: ≥98.0% Purity: ≥98.0% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10 mM × 1 mL, 100 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg (2R,4R)-APDC (R)-ADX-47273 Cat. No.: HY-102091 Cat. No.: HY-13058B (2R,4R)-APDC is a selective group II metabotropic (R)-ADX-47273 is a potent mGluR5 positive glutamate receptors (mGluRs) agonist.
    [Show full text]
  • Dopamine Reuptake Transporter (DAT) “Inverse Agonism” E Anovel 66 2 67 3 Hypothesis to Explain the Enigmatic Pharmacology of Cocaine 68 4 * 69 5 Q5 David J
    NP5526_proof ■ 24 June 2014 ■ 1/22 Neuropharmacology xxx (2014) 1e22 55 Contents lists available at ScienceDirect 56 57 Neuropharmacology 58 59 60 journal homepage: www.elsevier.com/locate/neuropharm 61 62 63 64 65 1 Dopamine reuptake transporter (DAT) “inverse agonism” e Anovel 66 2 67 3 hypothesis to explain the enigmatic pharmacology of cocaine 68 4 * 69 5 Q5 David J. Heal , Jane Gosden, Sharon L. Smith 70 6 71 RenaSci Limited, BioCity, Pennyfoot Street, Nottingham NG1 1GF, UK 7 72 8 73 9 article info abstract 74 10 75 11 76 Article history: The long held view is cocaine's pharmacological effects are mediated by monoamine reuptake inhibition. 12 Available online xxx However, drugs with rapid brain penetration like sibutramine, bupropion, mazindol and tesofensine, 77 13 which are equal to or more potent than cocaine as dopamine reuptake inhibitors, produce no discernable 78 14 Keywords: subjective effects such as drug “highs” or euphoria in drug-experienced human volunteers. Moreover 79 15 Cocaine they are dysphoric and aversive when given at high doses. In vivo experiments in animals demonstrate 80 16 Dopamine reuptake inhibitor that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed 81 Dopamine releasing agent 17 monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to 82 Dopamine transporter fi 18 Inverse agonist conclude that the highly unusual, stimulant pro le of cocaine and related compounds, eg methylphe- 83 19 DAT inverse agonist nidate, is not mediated by monoamine reuptake inhibition alone. 84 We describe the experimental findings which suggest cocaine serves as a negative allosteric 20 Novel mechanism 85 21 modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of fi 86 22 transport.
    [Show full text]
  • Study Protocol
    Clinical Study Protocol A 24-WEEK PHASE 2, DOUBLE-BLIND, RANDOMIZED, PLACEBO- CONTROLLED, SINGLE-CENTER SAFETY AND EFFICACY STUDY TO EVALUATE OVERALL SAFETY AND TOLERABILITY OF CO- ADMINISTRATION OF TESOFENSINE AND METOPROLOL IN SUBJECTS WITH HYPOTHALAMIC INJURY-INDUCED OBESITY (HIO), AND WITH A 24-WEEK OPEN-LABEL EXTENSION, IN TOTAL 48 WEEKS Sponsor: Saniona, A/S Baltorpvej 154 DK2750 Ballerup Denmark Protocol number: TM005 Protocol version: 5.0 Date: 10 December 2019 EudraCT number: 2018-003672-12 The information contained in this document is provided in confidence. It is understood that this information will not be disclosed to others without prior agreement with Saniona A/S, according to the statement in the Clinical Study Protocol, and in accordance with the confidentiality agreement. Saniona A/S Clinical Study Protocol TM005 CONFIDENTIAL CLINICAL STUDY PROTOCOL SYNOPSIS A 24-week phase 2, double-blind (DB), randomized, placebo- controlled, single-center safety and efficacy study to evaluate overall safety and tolerability of co-administration of Study title tesofensine and metoprolol in subjects with hypothalamic injury-induced obesity (HIO), and with a 24-week open-label extension, in total 48 weeks. Saniona, A/S Baltorpvej 154 Study sponsor DK2750 Ballerup Denmark Phase 2a Number of sites 1 site; Rigshospitalet (RH), Copenhagen, Denmark Sample size Minimum of 12 and maximum of 25 adult subjects with HIO. DB, randomized, placebo-controlled, single-center study followed by an open-label extension period. The study will have two
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Pharmacological Stimulation of Brain Dopamine D3 Receptors Induced
    ABSTRACT Pharmacological stimulation of brain dopamine D3 receptors induced ejaculation in anaesthetised rats # 163 Pierre Clément 1, Jacques Bernabé 1, Laurent Alexandre 1, François Giuliano 1,2 * 1PELVIPHARM Laboratories, Gif-sur-Yvette, France 2Raymond Poincaré Hospital, Neuro-Urology Unit, Garches, France * e-mail address: [email protected] ABSTRACT INTRODUCTION & OBJECTIVE RESULTS Introduction and Objective : We have previously found that intracerebroventricular (i.c.v.) Ejaculation consists in two distinct and successive phases i.e. emission and expulsion with the latter caused Figure 1 . Sample of EMG recording of the injection of the non selective dopamine D2/D3 receptors agonist by rhythmic contractions of pelvic floor striated muscles; the primary role being played by bulbospongiosus 7-OH-DPAT i.c.v. bulbospongiosus (BS) muscles obtained in quinelorane induced rhythmic (BS) muscles (Gerstenberg et al., 1990). (1 µg) anaesthetised rats after i.c.v. delivery of 7- contractions of bulbospongiosus 10 s (BS) muscles, which is key for OH-DPAT (1 µg). expelling semen out the urethra, in anaesthetised rats. In the present We have previously reported that the dopamine D2-like receptor agonist quinelorane delivered in cerebral A magnification of the tracing of BS-EMG is study we aimed at demonstrating ventricle was capable to elicit rhythmic BS muscles contractions in anaesthetised rats (Clement et al., 2006; displayed in the inset and allows to see the which of these dopamine receptor subtypes is involved in triggering BS EAU 2006, poster #164). In addition it has been shown that the preferential D3 receptor agonist 7-OH-DPAT V unitary events (i.e.
    [Show full text]
  • Pharmacological Characterizations of H05, a Novel Potent Serotonin And
    JPET/2018/248351 Title: Pharmacological characterization of (3-(benzo[d][1,3] dioxol-4-yloxy) -3-(4-fluorophenyl)-N, N-dimethylpropan-1-amine (H05), a novel serotonin and noradrenaline reuptake inhibitor with moderate 5-HT2A antagonist activity for the treatment of depression Authors: Xiangqing Xu, Yaqin Wei, Qiang Guo, Song Zhao, Zhiqiang Liu, Ting Xiao, Yani Liu, Yinli Qiu, Yuanyuan Hou, Guisen Zhang and KeWei Wang Affiliations: Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing, China (X.X., T.X., K.W.W.); School of pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China (Y.W.); Institute of pharmaceutical research, Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, China (Q.G., S.Z., Z.L., Y.Q., Y.H., G.Z.); Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China (Y.L., K.W.W.) 1 Running title page Running title: A novel SNRI with 5-HT2A antagonist activity for treatment of depression Corresponding author: KeWei Wang Address: No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China. Tel: 86•10•82805605; E•mail: [email protected] or [email protected] Number of text pages: 57 Number of tables: 3 Number of figures: 7 Number of references: 71 Words in Abstract: 248 Words in Introduction: 712 Words in Discussion:1357 Abbreviations: ADs: antidepressants; SSRIs: selective serotonin reuptake inhibitors; NRIs: norepinephrine reuptake inhibitors; SNRIs: serotonin and norepinephrine
    [Show full text]
  • Subject Index
    Subject Index A 68930 130 appetitive Conditions 81 A 86929 130 arachidonic acid 185,223 acetylcholine (ACh) 9 arcuate nucleus 89,97 acoustic neurinoma 227 aripiprazole 36 ACTH, see Adrenocortcotropic asynaptic release 100 hormone 173 ATF1, see Activating transcription factor activating transcription factor 1 (ATF 1) 1 326 attention 276 adaptive reponses 321 attention deficit hyperactivity disorder adenosine A2A receptor 164 (ADHD) 278 adenosine triphosphatase 269, 306 autism 128 adenylyl cyclase 11, 121, 163, 185, 236 autoreceptor 34 ADHD, see attention deficit aversive conditions 81 hyperactivity disorder adrenal gland 173 basal ganglia 31,166,310 adrenal medullary hormones 25 bed nucleus 55 adrenocorticotropic hormone (ACTH) benzazepine 130, 140 173 benzonaphtazepine 131 aggression 276 benztropine 270 akinesia 167 beta (~) adrenoreceptor 10, 238 alcohol 33, 169,203 beta (~)-arrestin 135 alpha (a)olf protein 237 beta (~)-endorphin 173 alpha (a)receptor adrenergic 10 biogenic amines 29 alpha's protein 237 bipolar cell 92 alpha-(a) melanocyte stimulating bipolar disorder 127,227 hormone (a-MSH) 171 bradykinesia 167 alpha-(a) methyltyrosine 33 brain development 201 amacrine cells 92 brain-derived neurotrophic factor amineptine 206 (BDNF) 187 aminotetralin 195 bromocriptine 12, 171, 309 amisulpride 196 brown adipose tissue 243 amitriptyline 206 buproprion 206 AMPA receptor channels 333 butaclamol 125,131 amperozide 196 amphetamine 12,33,135, 169,270,276, calbindin (CaBP) 44,87 325 calcineurin 244 amphetamine stereoselectivity 262 calcium
    [Show full text]