Based Proteomic Analysis of Mrna Splicing Relevant Proteins in Aging Hspcs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unrip (STRAP) (NM 007178) Human Tagged ORF Clone Lentiviral Particle Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC209149L3V Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Symbol: STRAP Synonyms: MAWD; PT-WD; UNRIP Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_007178 ORF Size: 1050 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC209149). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_007178.2 RefSeq Size: 1924 bp RefSeq ORF: 1053 bp Locus ID: 11171 UniProt ID: Q9Y3F4 Domains: WD40 Protein Families: Druggable Genome MW: 38.4 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle – RC209149L3V Gene Summary: The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. -
Structural Basis for DEAH-Helicase Activation by G-Patch Proteins
Structural basis for DEAH-helicase activation by G-patch proteins Michael K. Studera, Lazar Ivanovica, Marco E. Webera, Sabrina Martia, and Stefanie Jonasa,1 aInstitute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved February 21, 2020 (received for review August 12, 2019) RNA helicases of the DEAH/RHA family are involved in many essential RNA bases are stacked in the RNA binding channel between a long cellular processes, such as splicing or ribosome biogenesis, where β-hairpin in RecA2 (β14 to β15 in hsDHX15/scPrp43; SI Appendix, they remodel large RNA–protein complexes to facilitate transitions Fig. S1) and a conserved loop in RecA1 (termed “Hook-turn”). to the next intermediate. DEAH helicases couple adenosine tri- This means that during progression into the open state, the phosphate (ATP) hydrolysis to conformational changes of their β-hairpin and two other RNA-binding patches in RecA2 (termed catalytic core. This movement results in translocation along RNA, “Hook-loop” and “motif V”; SI Appendix, Fig. S1) have to shift 1 which is held in place by auxiliary C-terminal domains. The activity nucleotide (nt) toward the 5′ end of the RNA. Thus, when the of DEAH proteins is strongly enhanced by the large and diverse RecA domains close back up, at the start of the next hydrolysis class of G-patch activators. Despite their central roles in RNA me- cycle, the RNA is pushed by 1 nt through the RNA channel. -
“The Impact of ART on Genome‐Wide Oxidation of 5‐Methylcytosine and the Transcriptome During Early Mouse Development”
“The impact of ART on genome‐wide oxidation of 5‐methylcytosine and the transcriptome during early mouse development” Dissertation zur Erlangung des Grades “Doktor der Naturwissenschaften” am Fachbereich Biologie der Johannes Gutenberg-Universität Mainz Elif Diken geb. Söğütcü geb. am 22.07.1987 in Giresun-TURKEY Mainz 2016 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: Summary Summary The use of assisted reproductive technologies (ART) has been increasing over the past three decades due to the elevated frequency of infertility problems. Other factors such as easier access to medical aid than in the past and its coverage by health insurance companies in many developed countries also contributed to this growing interest. Nevertheless, a negative impact of ART on transcriptome and methylation reprogramming is heavily discussed. Methylation reprogramming directly after fertilization manifests itself as genome-wide DNA demethylation associated with the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in the pronuclei of mouse zygotes. To investigate the possible impact of ART particularly on this process and the transcriptome in general, pronuclear stage mouse embryos obtained upon spontaneous ovulation or superovulation through hormone stimulation representing ART were subjected to various epigenetic analyses. A whole- transcriptome RNA-Seq analysis of pronuclear stage embryos from spontaneous and superovulated matings demonstrated altered expression of the Bbs12 gene known to be linked to Bardet-Biedl syndrome (BBS) as well as the Dhx16 gene whose zebrafish ortholog was reported to be a maternal effect gene. Immunofluorescence staining with antibodies against 5mC and 5hmC showed that pronuclear stage embryos obtained by superovulation have an increased incidence of abnormal methylation and hydroxymethylation patterns in both maternal and paternal pronuclear DNA compared to their spontaneously ovulated counterparts. -
Supplementary Materials
Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented. -
Immune Adaptation to Chronic Intense Exercise Training: New Microarray Evidence Dongmei Liu1†, Ru Wang1†, Ana R
Liu et al. BMC Genomics (2017) 18:29 DOI 10.1186/s12864-016-3388-5 RESEARCHARTICLE Open Access Immune adaptation to chronic intense exercise training: new microarray evidence Dongmei Liu1†, Ru Wang1†, Ana R. Grant2, Jinming Zhang3, Paul M. Gordon4, Yuqin Wei1 and Peijie Chen1* Abstract Background: Endurance exercise training, especially the high-intensity training, exhibits a strong influence on the immune system. However, the mechanisms underpinning the immune-regulatory effect of exercise remain unclear. Consequently, we chose to investigate the alterations in the transcriptional profile of blood leukocytes in young endurance athletes as compared with healthy sedentary controls, using Affymetrix human gene 1.1 ST array. Results: Group differences in the transcriptome were analyzed using Intensity-based Hierarchical Bayes method followed by a Logistic Regression-based gene set enrichment method. We identified 72 significant transcripts differentially expressed in the leukocyte transcriptome of young endurance athletes as compared with non-athlete controls with a false discovery rate (FDR) < 0.05, comprising mainly the genes encoding ribosomal proteins and the genes involved in mitochondrial oxidative phosphorylation. Gene set enrichment analysis identified three major gene set clusters: two were up-regulated in athletes including gene translation and ribosomal protein production, and mitochondria oxidative phosphorylation and biogenesis; one gene set cluster identified as transcriptionally downregulated in athletes was related to inflammation and immune activity. Conclusion: Our data indicates that in young healthy individuals, intense endurance exercise training (exemplifed by athletic training) can chronically induce transcriptional changes in the peripheral blood leukocytes, upregulating genes related to protein production and mitochondrial energetics, and downregulating genes involved in inflammatory response. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Spermatozoal Gene KO Studies for the Highly Present Paternal Transcripts
Spermatozoal gene KO studies for the highly present paternal Potential maternal interactions Conclusions of the KO studies on the maternal gene transcripts detected by GeneMANIA candidates for interaction with the paternal Fbxo2 Selective cochlear degeneration in mice lacking Cul1, Fbxl2, Fbxl3, Fbxl5, Cul-1 KO causes early embryonic lethality at E6.5 before Fbxo2 Fbxo34, Fbxo5, Itgb1, Rbx1, the onset of gastrulation http://www.jneurosci.org/content/27/19/5163.full Skp1a http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641602/. Loss of Cul1 results in early embryonic lethality and Another KO study showed the following: Loss of dysregulation of cyclin E F-box only protein 2 (Fbxo2) disrupts levels and http://www.ncbi.nlm.nih.gov/pubmed/10508527?dopt=Abs localization of select NMDA receptor subunits, tract. and promotes aberrant synaptic connectivity http://www.ncbi.nlm.nih.gov/pubmed/25878288. Fbxo5 (or Emi1): Regulates early mitosis. KO studies shown lethal defects in preimplantation embryo A third KO study showed that Fbxo2 regulates development http://mcb.asm.org/content/26/14/5373.full. amyloid precursor protein levels and processing http://www.jbc.org/content/289/10/7038.long#fn- Rbx1/Roc1: Rbx1 disruption results in early embryonic 1. lethality due to proliferation failure http://www.pnas.org/content/106/15/6203.full.pdf & Fbxo2 has been found to be involved in http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732615/. neurons, but it has not been tested for potential decreased fertilization or pregnancy rates. It Skp1a: In vivo interference with Skp1 function leads to shows high expression levels in testis, indicating genetic instability and neoplastic transformation potential other not investigated functions http://www.ncbi.nlm.nih.gov/pubmed/12417738?dopt=Abs http://biogps.org/#goto=genereport&id=230904 tract. -
Investigation of the Protein-Protein Interaction Between PCBP1 and Y -Synuclein Amanda Hunkele Seton Hall University
Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) 2010 Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein Amanda Hunkele Seton Hall University Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Biology Commons Recommended Citation Hunkele, Amanda, "Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein" (2010). Seton Hall University Dissertations and Theses (ETDs). 685. https://scholarship.shu.edu/dissertations/685 Investigation of the protein-protein interaction between PCBPl and y-synuclein Amanda Hunkeie Submitted in partial fulfiient of the requiremenk for the Degree of Master of Science in Biology from the Department of Biology of Seton HaU University September 2010 APPROVED BY I I Jane L. K0,'Ph.D. Mentor &2_3 -kfeping Zhou, Pb. D. Committee Member Tin-Chun C~U,Ph.D. Committee Member - ~arrohhawn,Ph.D. Director of Graduate Studies Chairperson, Department of Biological Sciences Acknowledgements I first want to thank my mentor, Dr. Jane KO, for her continued support and encouragement throughout my research project. Her patience and enthusiasm made this a very rewarding experience. I would also like to thank my committee members, Dr. Zhou and Dr. Chu, for their time and contribution to this project. Also, I would like to thank the Biology department faculty for all their guidance and contributions to my academic development. Additionally I would like to thank the other members of Dr. KO's lab for all their help academically and their f?iendship. Their support tmly helped me through this research experience. -
Characterization of Poly (Rc) Binding Protein (Pcbp2) and Frataxin Sudipa Ghimire-Rijal Wayne State University
Wayne State University Wayne State University Theses 1-1-2011 Characterization of poly (rc) binding protein (pcbp2) and frataxin Sudipa Ghimire-Rijal Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biochemistry Commons Recommended Citation Ghimire-Rijal, Sudipa, "Characterization of poly (rc) binding protein (pcbp2) and frataxin" (2011). Wayne State University Theses. Paper 71. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. CHARACTERIZATION OF POLY (rC) BINDING PROTEIN (PCBP2) AND FRATAXIN by SUDIPA GHIMIRE-RIJAL THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTERS IN SCIENCE 2011 MAJOR: BIOCHEMISTRY AND MOLECULAR BIOLOGY Approved by: Advisor Date ACKNOWLEDGMENTS My deepest gratitude goes to my adviser Dr. Timothy L. Stemmler for all his support, encouragement and enthusiasm for the research. He has been very supportive and encouraging through the times which helped me to grow as a budding scientist. I will be forever grateful to you for all the support and guidance that I received while pursuing my MS degree. I am also thankful to my committee members Dr. Brian F. P. Edwards and Dr. Bharati Mitra for their encouragement and constructive comments which helped me to develop a passion for research. I am thankful to my former and present lab members; Jeremy, Swati, Madhusi, Poorna, Andrea, April, Yogapriya for creating a friendly lab environment.