DIABETOLOGY SGLT2 Inhibitors: a Novel Therapy for Type 2 Diabetes Mellitus

Total Page:16

File Type:pdf, Size:1020Kb

DIABETOLOGY SGLT2 Inhibitors: a Novel Therapy for Type 2 Diabetes Mellitus 2016 DIABETOLOGY SGLT2 Inhibitors: A Novel Therapy for Type 2 Diabetes Mellitus PG RAMAN ABSTRACT Sodium-linked glucose transporter (SGLT)2 inhibitors are new antidiabetic drugs with an insulin-independent mechanism of action. They increase urinary glucose excretion without inducing hypoglycemia, thereby promoting body weight reduction due to loss of ~300 kcal/day. Several drug candidates have been developed or are currently undergoing clinical trials, including - dapagliflozin, canagliflozin, ipragliflozin, tofogliflozin, empagliflozin, remogliflozin etabonate and ertugliflozin. Of these dapagliflozin and canagliflozin have been launched in India recently. Keywords: SGLT2 inhibitors, insulin-independent mechanism, dapagliflozin, canagliflozin odium-linked glucose transporter (SGLT)2 an unique feature of renal tubules, but also exists in inhibitors are new antidiabetic drugs with an other organs, such as the intestine. Whereas in the Sinsulin-independent mechanism of action. They gastrointestinal tract especially SGLT1 is expressed, increase urinary glucose excretion without inducing renal tubules express SGLT2.5 hypoglycemia, thereby promoting body weight Both transporters are able to reabsorb glucose. reduction due to loss of ~300 kcal/day.1 However, they show significant differences in Several drug candidates have been developed or affinities and transport capacity: SGLT2 has a are currently undergoing clinical trials, including - greater transport capacity and reabsorbs glucose in dapagliflozin, canagliflozin, ipragliflozin, tofogliflozin, combination with sodium in the ratio 1:1. SGLT1 has empagliflozin, remogliflozin etabonate and a higher affinity for glucose and reabsorbs glucose ertugliflozin.2 in combination with sodium in the ratio 1:2. These REGULATION OF GLUCOSE HOMEOSTASIS BY THE different transport properties are used by the kidneys KIDNEYS3 to reabsorb all energy, leading to glucose-free urine. SGLT2 is localized mainly in the first two segments The kidneys regulate the homeostasis of numerous of the proximal tubular system (S1 and S2 segment). substances of the body. The role of the kidneys Owing to its high transport capacity, it is capable of in glucose metabolism is important and includes, reabsorbing about 90% of glucose from the urine. gluconeogenesis, glucose utilization, glucose filtration Ten percent of initially filtered glucose is recovered in and reabsorption.4 Daily 180 g is filtered and recovered the third section of the proximal tubule (S3 segment) by afterwards. This mechanism was important for survival SGLT1 because of its high affinity. in times of food scarcity. Glucose recovery is mediated Both transporters are secondarily active owing to their by a tubular transport system that can reabsorb glucose dependence on the activity of the Na+/K+-ATPase in the in combination with sodium. This mechanism is not basolateral membrane for the active removal of sodium. Glucose transporters (GLUT2 and GLUT1) facilitate glucose transport across the basolateral membrane in the early and more distal regions of the proximal Ex-Professor and HOD 6 MGM Medical College, Indore, Madhya Pradesh tubule. Inhibition of the SGLT transport system results Address for correspondence in increased urinary glucose excretion due to reduced Dr PG Raman 72, Dhar Kothi, Indore - 452 001, Madhya Pradesh glucose reabsorption. As a consequence plasma glucose E-mail: [email protected] levels are lowered, resulting in loss of calories. 128 Indian Journal of Clinical Practice, Vol. 27, No. 2, July 2016 DIABETOLOGY Table 1. The Salient Features of SGLT2 Inhibitors, Canagliflozin and Dapagliflozin Canagliflozin Dapagliflozin Indication T2DM T2DM Dose 100-300 mg 5-10 mg Renal impairment Contraindicated in end-stage renal disease Contraindicated in end-stage renal disease Hepatic disorders Not to be used Not to be used Drug interaction With digoxin No significant interaction Oral administration Prior to first meal Morning with/without food Pharmacokinetics Onset of action within 24 hours Onset of action within 24 hours 90% protein bound 91% protein bound Oral bioavailability 65% Oral bioavailability 78% Half-life 13.1 hours Half-life 12 hours Adverse reactions Hyperkalemia UTI and genital infection UTI UTI = Urinary tract infection. Table 2. SGLT2 Inhibitors the glomerulus depends not only on plasma glucose levels, but also on the glomerular filtration rate (GFR). Advantages Disadvantages Therefore, it can be expected that with decreasing renal Acts by noninsulin pathway Genital infection function a decrease of activity is paralleled. Unlike Weight loss UTI with other antidiabetic drugs, such as metformin or BP reduction Hypotension glimepiride, with impaired renal function there is no No hypoglycemia Hyperkalemia risk to the patient, but the treatment becomes gradually ineffective. As a consequence, canagliflozin therapy should not be initiated in patients with end-stage renal SGLT2 INHIBITION disease, on dialysis or with renal impairment at an In type 2 diabetes mellitus (T2DM), renal glucose estimated GFR 60 mL/min/1.73 m2. handling and transport is increased, likely due to upregulation of SGLT2. As a result, glucose excretion in PHARMACOLOGY OF CANAGLIFLOZIN—EFFECTS the urine occurs only at higher plasma glucose levels, ON GLUCOSE METABOLISM, BODY WEIGHT AND 10,11 causing conservation of glucose and prolongation of THE CARDIOVASCULAR SYSTEM hyperglycemia. Inhibition of SGLT2 activity reduces Canagliflozin is a competitive, reversible, highly reabsorption of filtered glucose and lowers the selective SGLT2 inhibitor with a 250-fold selectivity blood glucose concentration at which glucose is no towards SGLT2 over SGLT1. Inhibition of SGLT2 longer reabsorbed from the proximal tubule but is by canagliflozin leads to a reduction of glucose instead excreted. This concentration is known as the reabsorption. The induced glucosuria of ~70 g/day renal threshold for glucose.7-9 The salient features results in a loss of glucose and optimized plasma glucose of canagliflozin and dapagliflozin, the two SGLT2 inhibitors are summarized in Table 1. The advantages control. Canagliflozin is indicated in patients with and disadvantages of SGLT2 inhibitors are given in T2DM to improve glycemic control as monotherapy Table 2. and in patients for whom the use of metformin is considered inappropriate owing to intolerance or PHARMACOKINETICS OF CANAGLIFLOZIN8 contraindications. It is indicated as add-on therapy with other antihyperglycemic medicinal products including Canagliflozin has an oral bioavailability of 65% insulin. In poorly controlled diabetic patients even a with a maximum effect after 30-120 minutes. Its reduction of up to - 2.42% was achieved. pharmacokinetic profile is independent of age, body weight, gender, ethnicity and administration with The favorable effect on glycosylated hemoglobin food. Importantly, the amount of glucose filtered in (HbA1C) values was consistent with an improvement Indian Journal of Clinical Practice, Vol. 27, No. 2, July 2016 129 DIABETOLOGY of secondary endpoints such as fasting plasma glucose. 2. Wright EM, Loo DD, Hirayama BA. Biology of human The efficacy of canagliflozin was reduced in patients sodium glucose transporters. Physiol Rev. 2011;91(2): with moderate renal impairment. The weight loss is 733-94. caused by loss of fat mass and not osmotic diuresis. 3. Mather A, Pollock C. Glucose handling by the kidney. The weight reducing characteristics of SGLT2 inhibitors Kidney Int Suppl. 2011;(120):S1-6. in T2DM patients also might be effective in nondiabetic 4. Gerich JE. Role of the kidney in normal glucose overweight subjects. This creates the option to widen homeostasis and in the hyperglycaemia of diabetes the indication for the use of SGLT2 inhibitors as mellitus: therapeutic implications. Diabet Med. 2010;27(2):136-42. antiobesity drugs. 5. Wright EM, Hirayama BA, Loo DF. Active sugar transport SAFETY OF CANAGLIFLOZIN12,13 in health and disease. J Intern Med. 2007;261(1):32-43. 6. Oliva RV, Bakris GL. Blood pressure effects of sodium-  Low risk for hypoglycemia. glucose co-transport 2 (SGLT2) inhibitors. J Am Soc  Carbohydrate malabsorption. Hypertens. 2014;8(5):330-9.  Increased calcium absorption from the gut probably 7. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghosh A, causing hyperosteosis and renal tubular tumors Vaccaro N, et al. Canagliflozin lowers postprandial glucose in rats. and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results  Urinary tract infections. of a randomized, placebo-controlled study. Diabetes Care.  Female mycotic genital infections. 2013;36(8):2154-61.  Osmotic diuresis and subsequent water loss. 8. Invokana [package insert]. Gurabo, PR: Janssen Ortho,  Decrease in blood pressure and increased LLC; 2013. in hemoconcentration reflected by increased 9. Farxiga [package insert]. Princeton, NJ: Bristol-Myers hemoglobin and hematocrit. Squibb Company; 2014.  Dehydration and unstable blood pressure or 10. Ghosh RK, Ghosh SM, Chawla S, Jasdanwala SA. SGLT2 syncope. inhibitors: a new emerging therapeutic class in the treatment of type 2 diabetes mellitus. J Clin Pharmacol.  Bladder cancer (with dapagliflozin) (0.16%) versus 2012;52(4):457-63. (0.03%) placebo. 11. Musso G, Gambino R, Cassader M, Pagano G. A novel  Does not increase cardiovascular risk. approach to control hyperglycemia in type 2 diabetes:  SGLT2 inhibitors slightly increase HDL and LDL sodium glucose co-transport (SGLT) inhibitors: systematic
Recommended publications
  • View a Copy of This Licence, Visit Tivecommons.Org/Licenses/By/4.0
    Katakami et al. Cardiovasc Diabetol (2020) 19:110 https://doi.org/10.1186/s12933-020-01079-4 Cardiovascular Diabetology ORIGINAL INVESTIGATION Open Access Tofoglifozin does not delay progression of carotid atherosclerosis in patients with type 2 diabetes: a prospective, randomized, open-label, parallel-group comparative study Naoto Katakami1,2* , Tomoya Mita3, Hidenori Yoshii4, Toshihiko Shiraiwa5, Tetsuyuki Yasuda6, Yosuke Okada7, Keiichi Torimoto7, Yutaka Umayahara8, Hideaki Kaneto9, Takeshi Osonoi10, Tsunehiko Yamamoto11, Nobuichi Kuribayashi12, Kazuhisa Maeda13, Hiroki Yokoyama14, Keisuke Kosugi15, Kentaro Ohtoshi16, Isao Hayashi17, Satoru Sumitani18, Mamiko Tsugawa19, Kayoko Ryomoto20, Hideki Taki21, Tadashi Nakamura22, Satoshi Kawashima23, Yasunori Sato24, Hirotaka Watada3 and Iichiro Shimomura1 on behalf of the UTOPIA study investigators Abstract Background: This study aimed to investigate the preventive efects of tofoglifozin, a selective sodium-glucose cotransporter 2 (SGLT2) inhibitor, on atherosclerosis progression in type 2 diabetes (T2DM) patients without apparent cardiovascular disease (CVD) by monitoring carotid intima-media thickness (IMT). Methods: This prospective, randomized, open-label, blinded-endpoint, multicenter, parallel-group, comparative study included 340 subjects with T2DM and no history of apparent CVD recruited at 24 clinical units. Subjects were randomly allocated to either the tofoglifozin treatment group (n 169) or conventional treatment group using drugs other than SGLT2 inhibitors (n 171). Primary outcomes were changes= in mean and maximum common carotid IMT measured by echography during= a 104-week treatment period. Results: In a mixed-efects model for repeated measures, the mean IMT of the common carotid artery (mean- IMT-CCA), along with the right and left maximum IMT of the CCA (max-IMT-CCA), signifcantly declined in both the tofoglifozin ( 0.132 mm, SE 0.007; 0.163 mm, SE 0.013; 0.170 mm, SE 0.020, respectively) and the control group ( 0.140 mm,− SE 0.006; 0.190 mm,− SE 0.012; 0.190 mm,− SE 0.020, respectively).
    [Show full text]
  • Dapagliflozin – Structure, Synthesis, and New Indications
    Pharmacia 68(3): 591–596 DOI 10.3897/pharmacia.68.e70626 Review Article Dapagliflozin – structure, synthesis, and new indications Stefan Balkanski1 1 Bulgarian Pharmaceutical Union, Sofia, Bulgaria Corresponding author: Stefan Balkanski ([email protected]) Received 24 June 2021 ♦ Accepted 4 July 2021 ♦ Published 4 August 2021 Citation: Balkanski S (2021) Dapagliflozin – structure, synthesis, and new indications. Pharmacia 68(3): 591–596.https://doi. org/10.3897/pharmacia.68.e70626 Abstract Dapagliflozin is a sodium-glucose co-transporter-2 (SGLT2) inhibitors used in the treatment of patients with type 2 diabetes. An aryl glycoside with significant effect as glucose-lowering agents, Dapagliflozin also has indication for patients with Heart Failure and Chronic Kidney Disease. This review examines the structure, synthesis, analysis, structure activity relationship and uses of the prod- uct. The studies behind this drug have opened the doors for the new line of treatment – a drug that reduces blood glucoses, decreases the rate of heart failures, and has a positive effect on patients with chronic kidney disease. Keywords Dapagliflozin, SGLT2-inhibitor, diabetes, heart failure Structure of dapagliflozin against diabetes (Lee et al. 2005; Lemaire 2012; Mironova et al. 2017). Embodiments of (SGLT-2) inhibitors include C-glycosides have a remarkable rank in medicinal chemis- dapagliflozin, canagliflozin, empagliflozin and ipragliflozin, try as they are considered as universal natural products shown in Figure 1. It has molecular formula of C24H35ClO9. (Qinpei and Simon 2004). Selective sodium-dependent IUPAC name (2S,3R,4R,5S,6R)-2-[4-chloro-3-[(4- glucose cotransporter 2 (SGLT-2) inhibitors are potent ethoxyphenyl)methyl]phenyl]-6-(hydroxymethyl)oxa- medicinal candidates of aryl glycosides that are functional ne-3,4,5-triol;(2S)-propane-1,2-diol;hydrate.
    [Show full text]
  • Supplementary Material
    Supplementary material Table S1. Search strategy performed on the following databases: PubMed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL). 1. Randomi*ed study OR random allocation OR Randomi*ed controlled trial OR Random* Control* trial OR RCT Epidemiological study 2. sodium glucose cotransporter 2 OR sodium glucose cotransporter 2 inhibitor* OR sglt2 inhibitor* OR empagliflozin OR dapagliflozin OR canagliflozin OR ipragliflozin OR tofogliflozin OR ertugliflozin OR sotagliflozin OR sergliflozin OR remogliflozin 3. 1 AND 2 1 Table S2. Safety outcomes of empagliflozin and linagliptin combination therapy compared with empagliflozin or linagliptin monotherapy in treatment naïve type 2 diabetes patients Safety outcome Comparator 1 Comparator 2 I2 RR [95% CI] Number of events Number of events / / total subjects total subjects i. Empagliflozin + linagliptin vs empagliflozin monotherapy Empagliflozin + Empagliflozin linagliptin monotherapy ≥ 1 AE(s) 202/272 203/270 77% 0.99 [0.81, 1.21] ≥ 1 drug-related 37/272 38/270 0% 0.97 [0.64, 1.47] AE(s) ≥ 1 serious AE(s) 13/272 19/270 0% 0.68 [0.34, 1.35] Hypoglycaemia* 0/272 5/270 0% 0.18 [0.02, 1.56] UTI 32/272 25/270 29% 1.28 [0.70, 2.35] Events suggestive 12/272 13/270 9% 0.92 [0.40, 2.09] of genital infection i. Empagliflozin + linagliptin vs linagliptin monotherapy Empagliflozin + Linagliptin linagliptin monotherapy ≥ 1 AE(s) 202/272 97/135 0% 1.03 [0.91, 1.17] ≥ 1 drug-related 37/272 17/135 0% 1.08 [0.63, 1.84] AE(s) ≥ 1 serious AE(s) 13/272 2/135 0% 3.22 [0.74, 14.07] Hypoglycaemia* 0/272 1/135 NA 0.17 [0.01, 4.07] UTI 32/272 12/135 0% 1.32 [0.70, 2.49] Events suggestive 12/272 4/135 0% 1.45 [0.47, 4.47] of genital infection RR, relative risk; AE, adverse event; UTI, urinary tract infection.
    [Show full text]
  • Steglujan, INN-Ertugliflozin-Sitagliptin
    25 January 2018 EMA/86941/2018 Committee for Medicinal Products for Human Use (CHMP) Assessment report Steglujan International non-proprietary name: ertugliflozin / sitagliptin Procedure No. EMEA/H/C/004313/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 7 1.1. Submission of the dossier ...................................................................................... 7 1.2. Steps taken for the assessment of the product ......................................................... 8 2. Scientific discussion ................................................................................ 9 2.1. Problem statement ............................................................................................... 9 2.1.1. Disease or condition ........................................................................................... 9 2.1.2. Epidemiology .................................................................................................... 9 2.1.3. Clinical presentation ..........................................................................................
    [Show full text]
  • CDR Clinical Review Report for Soliqua
    CADTH COMMON DRUG REVIEW Clinical Review Report Insulin glargine and lixisenatide injection (Soliqua) (Sanofi-Aventis) Indication: adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin (less than 60 units daily) alone or in combination with metformin. Service Line: CADTH Common Drug Review Version: Final (with redactions) Publication Date: January 2019 Report Length: 118 Pages Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Glucose Cotransporter 2 Inhibitor, Attenuates Body Weight Gain and Fat Accumulation in Diabetic and Obese Animal Models
    OPEN Citation: Nutrition & Diabetes (2014) 4, e125; doi:10.1038/nutd.2014.20 & 2014 Macmillan Publishers Limited All rights reserved 2044-4052/14 www.nature.com/nutd ORIGINAL ARTICLE Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models M Suzuki1, M Takeda1, A Kito1, M Fukazawa1, T Yata2, M Yamamoto1, T Nagata1, T Fukuzawa1, M Yamane1, K Honda1, Y Suzuki1 and Y Kawabe1 OBJECTIVE: Tofogliflozin, a highly selective inhibitor of sodium/glucose cotransporter 2 (SGLT2), induces urinary glucose excretion (UGE), improves hyperglycemia and reduces body weight in patients with Type 2 diabetes (T2D). The mechanisms of tofogliflozin on body weight reduction were investigated in detail with obese and diabetic animal models. METHODS: Diet-induced obese (DIO) rats and KKAy mice (a mouse model of diabetes with obesity) were fed diets containing tofogliflozin. Body weight, body composition, biochemical parameters and metabolic parameters were evaluated. RESULTS: In DIO rats tofogliflozin was administered for 9 weeks, UGE was induced and body weight gain was attenuated. Body fat mass decreased without significant change in bone mass or lean body mass. Food consumption (FC) increased without change in energy expenditure, and deduced total calorie balance (deduced total calorie balance ¼ FC À UGE À energy expenditure) decreased. Respiratory quotient (RQ) and plasma triglyceride (TG) level decreased, and plasma total ketone body (TKB) level increased. Moreover, plasma leptin level, adipocyte cell size and proportion of CD68-positive cells in mesenteric adipose tissue decreased. In KKAy mice, tofogliflozin was administered for 3 or 5 weeks, plasma glucose level and body weight gain decreased together with a reduction in liver weight and TG content without a reduction in body water content.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Remogliflozin A Item No. 14340 CAS Registry No.: 329045-45-6 OH Formal Name: 5-methyl-4-[[4-(1-methylethoxy) N O OH phenyl]methyl]-1-(1-methylethyl)- N 1H-pyrazol-3-yl β-D- O glucopyranoside OH Synonym: GSK189074 OH MF: C23H34N2O7 FW: 450.5 Purity: ≥98% λ: 229 nm UV/Vis.: max O Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Remogliflozin A is supplied as a crystalline solid. A stock solution may be made by dissolving the remogliflozin A in the solvent of choice. Remogliflozin A is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of remogliflozin A in these solvents is approximately 30 mg/ml. Remogliflozin A is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, remogliflozin A should first be dissolved in ethanol and then diluted with the aqueous buffer of choice. Remogliflozin A has a solubility of approximately 0.5 mg/ml in a 1:1 solution of ethanol:PBS (pH 7.2) using this method. We do not recommend storing the aqueous solution for more than one day. Description Remogliflozin A is a potent inhibitor of sodium-glucose transporter 2 (SGLT2; Kis = 12.4 and 26 nM 1 for human and rat SGLT2, respectively). It is selective for SGLT2 over SGLT1 (Kis = 4,520 and 997 nM for human and rat SGLT1, respectively). Following administration of a prodrug, remogliflozin etabonate, that is rapidly converted to remogliflozin A in vivo, rat urinary glucose excretion increases and plasma glucose and insulin concentrations decrease.
    [Show full text]
  • Steglujan (Ertugliflozin/Sitagliptin), Segluromet
    Steglatro™ (ertugliflozin), Steglujan™ (ertugliflozin/sitagliptin), Segluromet™ (ertugliflozin/metformin) – New drug approval • On December 19, 2017, the FDA approved Merck’s Steglatro (ertugliflozin), Steglujan (ertugliflozin/sitagliptin), and Segluromet (ertugliflozin/metformin) as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus (T2DM). — Steglujan is indicated when treatment with both ertugliflozin and sitagliptin is appropriate. — Segluromet is indicated when patients are not adequately controlled on a regimen containing ertugliflozin or metformin, or in patients who are already treated with both ertugliflozin and metformin. — These drugs are not recommended in patients with type 1 diabetes mellitus (T1DM) or for the treatment of diabetic ketoacidosis. — Steglujan has not been studied in patients with a history of pancreatitis. It is unknown whether patients with a history of pancreatitis are at increased risk for the development of pancreatitis while using Steglujan. • Ertugliflozin is the fourth sodium-glucose co-transoporter-2 (SGLT2) inhibitor approved by the FDA. Other marketed SGLT2 inhibitors include Jardiance® (empagliflozin), Farxiga® (dapagliflozin), and Invokana® (canagliflozin). • The efficacy and safety of ertugliflozin were evaluated in multiple clinical studies involving patients with T2DM. Ertugliflozin was studied as monotherapy and in combination with metformin and/or a dipeptidyl peptidase 4 (DPP-4) inhibitor. Ertugliflozin was also studied in combination with other antidiabetic medications, including insulin and a sulfonylurea, and in T2DM patients with moderate renal impairment. — In patients with T2DM, treatment with ertugliflozin, ertugliflozin + sitagliptin, and ertugliflozin + metformin reduced hemoglobin A1c (HbA1c) vs. placebo or the active comparator. — In patients with T2DM and moderate renal impairment, treatment with ertugliflozin did not result in a reduction in HbA1c vs.
    [Show full text]
  • Newer Diabetes Treatments Drug Class Update with New Drug Evaluation: Semaglutide and Ertugliflozin
    © Copyright 2012 Oregon State University. All Rights Reserved Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35 Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 Newer Diabetes Treatments Drug Class Update with New Drug Evaluation: Semaglutide and Ertugliflozin Date of Review: July 2018 Date of Last Review: September 2017 End Date of Literature Search: 05/23/2018 Generic Name: semaglutide Brand Name (Manufacturer): Ozempic® (Novo Nordisk) Generic Name: ertugliflozin, ertugliflozin/sitagliptin, ertugliflozin/metformin Brand Name (Manufacturer): Steglatro™, Steglujan™, Segluromet™ (Merck & Co., Inc.) Dossier Received: ertugliflozin (yes), semaglutide (no) Current Status of PDL Class: See Appendix 1. Purpose for Class Update: To evaluate the safety and efficacy of semaglutide and ertugliflozin (and combinations) which were recently approved for blood glucose lowering in patients with type 2 diabetes mellitus (T2DM). High quality new evidence published since the last review will also be presented. Research Questions: 1. In patients with T2DM, is there any new comparative evidence for non-insulin antidiabetic therapies based on surrogate efficacy outcomes (e.g., hemoglobin A1c [HbA1c]) and long-term clinically meaningful effectiveness outcomes (e.g., microvascular outcomes, macrovascular outcomes and mortality)? 2. In patients with T2DM, is there any new comparative evidence for non-insulin diabetes treatments based on harms outcomes (e.g., severe hypoglycemia, heart failure, diabetic ketoacidosis, pancreatitis, etc.)? 3. Are there subpopulations of patients with T2DM for which specific therapies may be more effective or associated with less harm? 4. What are the efficacy and harms evidence for the two new non-insulin diabetes treatments, ertugliflozin and semaglutide? Conclusions: A Drug Effectiveness Review Project (DERP) update on newer diabetes therapies, three new guidelines/standards, one new randomized controlled trial and two new drug reviews were reviewed for this class update.
    [Show full text]
  • Remogliflozin Etabonate, a Selective Inhibitor of the Sodium-Glucose
    Clinical Care/Education/Nutrition/Psychosocial Research BRIEF REPORT Remogliflozin Etabonate, a Selective Inhibitor of the Sodium-Glucose Transporter 2, Improves Serum Glucose Profiles in Type 1 Diabetes 1,2 3 SUNDER MUDALIAR, MD JUNE YE, PHD placebo (placebo), 2) mealtime insulin 1 3 DEBRA A. ARMSTRONG, BA, RN, CCRC ELIZABETH K. HUSSEY, PHARMD 2 3 injection + RE placebo (prandial insulin), ANNIE A. MAVIAN, MD DEREK J. NUNEZ, MD 3 3 1,2 ) placebo insulin injection + 50 mg RE (RE ROBIN O’CONNOR-SEMMES, PHD ROBERT R. HENRY, MD 3 3 50 mg), 4) placebo insulin injection + 150 PATRICIA K. MYDLOW, BS ROBERT L. DOBBINS, MD, PHD mg RE (RE 150 mg), and 5) placebo insulin injection + 500 mg RE (RE 500 mg). d fl Each individual received 75-g oral OBJECTIVES Remogli ozin etabonate (RE), an inhibitor of the sodium-glucose transporter glucose and identical meals during all 2, improves glucose profiles in type 2 diabetes. This study assessed safety, tolerability, pharma- cokinetics, and pharmacodynamics of RE in subjects with type 1 diabetes. treatment periods. Frequent samples were obtained for measurement of plasma RESEARCH DESIGN AND METHODSdTen subjects managed with continuous sub- glucose and insulin concentrations. Urine cutaneous insulin infusion were enrolled. In addition to basal insulin, subjects received five samples were collected for 24 h to assess randomized treatments: placebo, prandial insulin, 50 mg RE, 150 mg RE, and mg RE 500. creatinine clearance and glucose excre- d tion. Plasma samples were collected for RESULTS Adverse events and incidence of hypoglycemia with RE did not differ from placebo fl and prandial insulin groups.
    [Show full text]
  • International Journal of Pharmacy & Life Sciences
    Research Article Nizami et al., 9(7): July, 2018:5860-5865] CODEN (USA): IJPLCP ISSN: 0976-7126 INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES (Int. J. of Pharm. Life Sci.) Analytical method development and validation for simultaneous estimation of Ipragliflozin and Sitagliptin in tablet form by RP-HPLC method Tahir Nizami*, Birendra Shrivastava and Pankaj Sharma School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, (RJ) - India Abstract An economical RP-HPLC method using a PDA detector at 224 nm wavelength for simultaneous estimation of Ipragliflozin and Sitagliptin in pharmaceutical dosage forms has been developed. The method was validated as per ICH guidelines over a range of 50-150 µg/mL for Ipragliflozin and Sitagliptin respectively. Analytical column used was ACE Column C18, (150 mm x 4.6 mm i.d, 5μm) with flow rate of 1.0 mL / min at a temperature of 30°C ± 0.5°C. The separation was carried out using a mobile phase consisting of orthophosphoric acid buffer and methanol in the ratio of 60: 40%v/v. Retention times of 3.092 and 4.549 min were obtained for Ipragliflozin and Sitagliptin respectively. The percentage recoveries of Ipragliflozin and Sitagliptin are 100.12% and 99.42% respectively. The goodness of fit was close to 1 for all the three components. The relative standard deviations are always less than 2%. Keywords: Ipragliflozin and Sitagliptin, RP -HPLC, Simultaneous analysis, Tablets Introduction Ipragliflozin (IPRA) a novel SGLT2 selective The empirical formulaC16H15F6N5O and the inhibitor was investigated. In vitro, the potency of molecular mass 523.32. Sitagliptin is an orally-active Ipragliflozin to inhibit SGLT2 and SGLT1 and inhibitor of the dipeptidyl peptidase-4 (DPP-4) stability were assessed.
    [Show full text]
  • Comparison of Tofogliflozin 20 Mg and Ipragliflozin 50 Mg Used Together
    2017, 64 (10), 995-1005 Original Comparison of tofogliflozin 20 mg and ipragliflozin 50 mg used together with insulin glargine 300 U/mL using continuous glucose monitoring (CGM): A randomized crossover study Soichi Takeishi, Hiroki Tsuboi and Shodo Takekoshi Department of Diabetes, General Inuyama Chuo Hospital, Inuyama 484-8511, Japan Abstract. To investigate whether sodium glucose co-transporter 2 inhibitors (SGLT2i), tofogliflozin or ipragliflozin, achieve optimal glycemic variability, when used together with insulin glargine 300 U/mL (Glargine 300). Thirty patients with type 2 diabetes were randomly allocated to 2 groups. For the first group: After admission, tofogliflozin 20 mg was administered; Fasting plasma glucose (FPG) levels were titrated using an algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using continuous glucose monitoring (CGM); Tofogliflozin was then washed out over 5 days; Subsequently, ipragliflozin 50 mg was administered; FPG levels were titrated using the same algorithm and stabilized at 80 mg/dL level with Glargine 300 for 5 days; Next, glucose levels were continuously monitored for 2 days using CGM. For the second group, ipragliflozin was administered prior to tofogliflozin, and the same regimen was maintained. Glargine 300 and SGLT2i were administered at 8:00 AM. Data collected on the second day of measurement (mean amplitude of glycemic excursion [MAGE], average daily risk range [ADRR]; on all days of measurement) were analyzed. Area over the glucose curve (<70 mg/dL; 0:00 to 6:00, 24-h), M value, standard deviation, MAGE, ADRR, and mean glucose levels (24-h, 8:00 to 24:00) were significantly lower in patients on tofogliflozin than in those on ipragliflozin.
    [Show full text]