Organic Sulfenyl Chlorides As Precursors for the Modification of Gold Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Organic Sulfenyl Chlorides As Precursors for the Modification of Gold Surfaces Organic Sulfenyl Chlorides as Precursors for the Modification of Gold Surfaces by Hamida Sultan Muhammad A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Chemistry Guelph, Ontario, Canada © Hamida Sultan Muhammad, May, 2013 ABSTRACT ORGANIC SULFENYL CHLORIDES AS PRECURSORS FOR THE MODIFICATION OF GOLD SURFACES Hamida Sultan Muhammad Advisor: University of Guelph, 2013 Professor A. Houmam Self-assembled monolayers (SAMs) of organosulfur precursors on gold have been extensively used since they offer a wide range of technological applications such as corrosion inhibition, lubrication, adhesion promotion/inhibition, nanofabrication, chemical and biosensors, catalysis, and molecular electronics. Furthermore, the electronic and optical properties of aromatic SAMs make them a potential candidate for molecular electronics. However, these practical applications are limited by the short-range ordering, low packing density, irreproducibility, and inferior quality of SAMs, which are more critical for aromatic SAMs. Therefore, the discovery of alternative precursors is essential. This thesis reports for the first time, the use of organic sulfenyl chlorides as precursors for the modification of gold surfaces. These precursors may help to overcome some practical limitations of the traditional organosulfur precursors. The modification is done in a non-aqueous medium. Characterization of the modified surfaces is performed by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and scanning tunnelling microscopy (STM). Through the use of 4-nitrophenyl sulfenyl chloride, evidence for the formation of well-ordered aromatic SAMs formation on gold is provided. XPS data shows that the modification involves the scission of the S-Cl bond. PM-IRRAS studies further indicate that the adsorbed molecules are nearly vertically oriented on the surface. Both short and long-range well- ordered aromatic SAMs (a 4 x √3 rectangular and √3 x √3 hexagonal unit cells) are obtained from the STM images using two different modification conditions. This molecular density is usually only observed for aliphatic SAMs using the traditional precursors. Along with the main hexagonal lattice, the reversible distinct superstructures including hexagons, partial hexagons, parallelograms, and zigzags resulting from specific arrangements of adsorbed molecules provide submolecular details. This is the first direct experimental example, where the STM has shown its effectiveness to provide physical structure information of standing-up aromatic SAMs at room temperature. This work also provides some insight into a heavily debated issue regarding the origin of the various features and contrasts obtained in STM images of SAMs. The use of 2-nitrophenyl sulfenyl chloride and 2,4-dinitrophenyl sulfenyl chloride for the formation of aromatic SAMs on Au provides some insight regarding the modification extent and the effect of a nitro substituent (at ortho position ) on the quality of nitrophenyl thiolate SAMs on gold. XPS, PM-IRRAS, electrochemistry and STM provide evidence for the formation of less ordered, low density and less stable SAMs that may decompose to sulfur at longer modification times. The efficient deposition of sulfur on gold is observed using a series of substituted methane sulfenyl chlorides (triphenylmethane sulfenyl chloride, trichloromethane sulfenyl chloride and chlorocarbonyl sulfenyl chloride). The XPS, STM and electrochemical data show the formation of high density sulfur phases. These include rhombus, rectangular, and zig-zag sulfur structures. A mechanism is suggested involving the cleavage of the S-Cl bond and the ejection of the molecular backbone. This study also suggests that substituted methane sulfenyl chlorides do not form long-range ordered SAMs. Acknowledgements First off all, I would like to thank my supervisor, Dr. Abdelaziz Houmam for accepting me into his research group and for all his help and guidance while pursuing my PhD degree. His ideas and patience made the experience an enjoyable one. Also I would like to thank my advisory committee members, Dr. Daniel F. Thomas and Dr. Wojciech Gabryelski for their helpful suggestions, and my examination committee members Dr. Tong Leung, Dr. Paul Rowntree and Dr. Peter Kruse. I would also like to thank Dr. Mario Monteiro for agreeing to chair my thesis defense. Lab members, former and current, I would like to thank, Dr. Emad Hamed, Dr. Md. Golam Moula, Dr. Kallum M. Koczkur, Nusrat Serhat Un, Yimeng He and Goli Pourmand, all of who made my time in the Houmam lab a lot of fun. A special thank you goes to Dr. Daniel F. Thomas, Dr. Kallum M. Koczkur and Ryan Seenath for helping me editing my PhD thesis. I would also like to appreciate Dr. Kallum M. Koczkur for conducting XPS experiments and his help during other lab work. I would like to thank Dr. Grzegorz Szymanski for his help and assistance in working on Raman spectrometer and ellipsometer and Dr. Md.Golam Moula for his advices on the use of STM, vapour deposition system and electrochemical etching of STM tips. I am also grateful to Dr. Paul Rowntree, Stuart Read and Ann Vandergust for their help in keeping Midas operational. Also, to Dr. Md. Golam Moula, Ann Vandergust, Dr. Annia H. Kycia and Jay Leitch for their help in performing surface IR experiments and all of my neighbours in the MacNaughton building and Science Complex. Finally, I would like to thank my parents and siblings for their continuous support and encouragement. iv Dedicated to My Parents and Siblings v Table of Contents Page no. i) Acknowledgements iv ii) Dedication v iii) List of Tables x iv) List of Schemes x v) List of Charts xi vi) List of Figures xii vii) List of Abbreviations xxiv viii) List of Symbols xxviii Preamble 1 Chapter I: Introduction and Background Information I-1 General Background 3 I-2 Common Methodologies used for Surface Modification 5 I-3 Self-Assembled Monolayers (SAMs) 7 I-4 Organosulfur SAMs on Au 11 I-4a Building Blocks of Organosulfur SAMs on Au 11 I-4b Significance of Organosulfur SAMs on Au 14 I-4c Thermodynamics and Kinetics of Formation of Organosulfur 16 SAMs on Au I-4d Mechanism of Formation of Organosulfur SAMs on Au 20 I-4e Modification Conditions for Organosulfur SAMs on Au 24 I-4f Structures of Organosulfur SAMs on Au 27 I-4g Debated Au-S Interface 30 vi I-4h The Quality of Organosulfur SAMs 45 I-4i Aromatic Organosulfur SAMs on Au 49 I-4j Interpretation of STM Images of Organosulfur SAMs 54 I-5 Motivation of the Research 59 I-6 Scope of Thesis 62 Chapter II: Experimental Part II-1 Chemicals 65 II-2 Preparation of Au(111) Substrates 65 II-3 Modification of the Gold Surfaces 66 II-4 Characterization of the Modified Surfaces 67 II-4a Scanning Tunnelling Microscopy 67 II-4b X-ray Photoelectron Spectroscopy 73 II-4c Polarization Modulation Infrared Reflection Absorption 78 Spectroscopy II-4d Cyclic Voltammetry 85 Chapter III. 4-Nitrophenyl Sulfenyl Chloride as a New Precursor for the Formation of Aromatic SAMs on Gold Sulfaces III-1 Introduction 91 III-2 Modification under Condition 1 93 III-2a Modification Procedure 93 III-2b Results and Discussion 94 III-3 Modification under Condition 2 105 vii III-3a Modification Procedure 105 III-3b Results and Discussion 106 III-4 Proposed Mechanism of SAM Formation 125 III-5 Summary and Conclusions 126 Chapter IV. The Effect of Substituent(s) Position(s) on SAMs of Nitro Aromatic Sulfenyl Chlorides on Gold Surfaces IV-1 Introduction 128 IV-2 Modification using Compound 2 130 IV-2a Modification Procedure 130 IV-2b Results and Discussion 130 IV-3 Modification using Compound 3 140 IV-3a Modification Procedure 140 IV-3b Results and Discussion 140 IV-4 Comparison of Compounds 1-3 149 IV-5 Proposed Adsorption Mechanism for Compounds 2 and 3 153 IV-6 Summary and Conclusions 153 Chapter V. Substituted Methane Sulfenyl Chlorides as Precursors for the Modification of Gold Surfaces V-1 Introduction 155 V-2 Modification Procedure 156 V-3 Results and Discussion 156 V-3a XPS Characterization 156 viii V-3b Stripping Voltammetry 160 V-3c STM imaging 170 V-4 Proposed Mechanism of Sulfur Deposition for Compounds 4-6 on Au 178 V-5 Summary and Conclusions 180 Chapter VI: Summary and Future Work VI-1 Summary 182 VI-2 Future Work 186 Chapter VII: References 190 Appendix A: Copyright Permissions 227 ix List of Tables Chapter I: Table 1-1. Energies of adsorption (kcal/mol) for methanethiol SAM on Au(111) at different adsorption sites. Table 1-2. Bond dissociation energies (S-Y bonds) and reduction potentials of compounds 4- RPhSY. List of Schemes Chapter III: Scheme 3-1. Global reduction reaction of arene sulfenyl chlorides and arene thiocyanates. Scheme 3-2. Proposed deposition mechanism. Chapter IV: Scheme 4-1. Proposed deposition mechanism. Chapter V: Scheme 5-1. Proposed deposition mechanism for compound 4-6 on Au. Chapter VI: Scheme 6-1. Proposed reactions of the terminal nitro group of the 4-nitrophenyl thiolate SAM on Au in an electrochemical environment. Scheme 6-2. Proposed reactions of the terminal group of the 4- phenyl thiolate SAM on Au in an electrochemical environment using SECM tip. x Scheme 6-3. Scheme for the synthesis of mixed-ligand CdS nanoclusters containing 1 mol % of 4-(4-Nitrophenylazo) thiophenol ligand. List of Charts Chapter III: Chart 3-1. Structure of 4-nitrophenyl sulfenyl chloride (1). Chapter IV: Chart 4-1. Structures of 2-nitrophenyl sulfenyl chloride (2) and 2,4-dinitrophenyl sulfenyl chloride (3). Chapter V: Chart 5-1. Structures of compounds 4-6. xi List of Figures Chapter I: Figure 1-1. Illustrations of Langmuir, Langmuir-Blodgett and Langmuir-Schaefer films deposition methods. Figure 1-2. Schematics showing (a) a trichlorosilane SAM on SiO2, (b) an alkanethiol SAM on Au, (c) a fatty acid SAM on Al2O3, and (d) a fatty acid SAM on Ag2O.
Recommended publications
  • Free-Radical Chain Reactions of Organic Mercury and Tin Compounds Hasan I
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 Free-radical chain reactions of organic mercury and tin compounds Hasan I. Tashtoush Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Tashtoush, Hasan I., "Free-radical chain reactions of organic mercury and tin compounds " (1984). Retrospective Theses and Dissertations. 7733. https://lib.dr.iastate.edu/rtd/7733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • THE CHEMISTRY of SULFENIMIDES by Barbara Ann Orwig a Thesis
    THE CHEMISTRY OF SULFENIMIDES by Barbara Ann Orwig A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science Department of Chemistry McGill University Montreal, P.Q. Canada May 1971 @) Barbara Ann Orwig 1972 Dedicated to My Parents Il Thanx Il i ACKNOWLEDGEMENTS 3l MY thanks to Dr. D.F.R. Gilson for the p nmr spectra, to Victor Yu for the A-60 nmr spectra, and to Peter Currie for the mass spectra. For helpful discussions and worthwhile suggestions l thank David Ash 1 Errol Chang 1 and John Gleason. For his guidance and help as my research director l thank Dr. David N. Harpp. And to Elva and Hermann Heyge go special thanks for their help and for "putting up wi th œil. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i INTRODUcrION 1 EXPERIMENTAL SECTION 22 RESULTS AND DISCUSSION 42 TABLES 1 Preparation of Sulfenyl Chlorides 72 2 Preparation of N-(alkyl/aryl thio)phthalimides 73 3 Desulfurization Reactions of N-(alkyl/aryl thio)phthalimides 76 4 Mass Spectra of N-(alkyl/aryl thio)phthalimides 77 FIGURES (Spectra) 78 - 87 BIBLIOGRAPHY 88 INTRODUcrION AND BACKGROUND Sulfenic acids Cl), in which sulfur exists in its R-S-OH l lcwest oxidation state, are highly lmstable compolmds and only a few l have been isolated. The derivatives of sulfenic acid {~.> however, are generally isolable and usually stable. 2 R-S-Y 2 When Y is -NH ' -~HR, or -NR ' the resulting class of compolmds is 2 2 ter.med sulfenamides.
    [Show full text]
  • The Use of Chlorosulfonic Acid in the Identification Of' Halogen Substitute):) Aromatic Compounds
    THE USE OF CHLOROSULFONIC ACID IN THE IDENTIFICATION OF' HALOGEN SUBSTITUTE):) AROMATIC COMPOUNDS UI\LAt!UlU !GHirULTITRE & MECHANICAL COU"RI. ; LIBRA ]{Y i OCT 26 1937 THE USE OF CHLOROSULFONIC ACID IN THE IDENTIFICATION OF HALOGEN SUBSTITUTED AROMATIC COMPOUNDS By Elton Murray Baker,. Bachelor of Soience North.. estern State Teachers College 1955 Submitted to the Department of Chemistry Oklahoma Agricultural. and Mechanical. College In partial fulfillment of the requirements for the Degree of MASrER OF SCIENCE 1957 - ' ' • ~9 ! . • • • • r •: .. : : ... ..... .. ' .. .. ... ... .. .. ·.... ... .... ~ ~ ( . .. : : ( ~ · : ·. ... ' . • '' . OKLAHOMA ~liBICUL TURE &MECIL\NIO AL eniLEal ii LIBR ARY OCT 261937 APPROVED: In Charge of Thesis Head of the Department of Chemistry ~'~~Dean of the Graduate School. 100711 iii TABLE OF CONTENTS Page Introduction . • • • • • • • 1 Historical Review • • • 2 Experimental • • • • • • • • • 9 Discussion of Results • • .. • • • • 29 Summary • • • • • • • • • • • . 51 Bibliography . • • • ... • • • • • • 52 Autobiography • • • • • • • • • • • • • • • 56 iv ACKNOWLEDGEMENT The author wishes to express his sincere appreciation to Dr. o. c. Dermer under whose direction this work was done. He also .wishes to acknowledge the service rendered by t he Oklahoma Agricultural and Mechanical College Librarians and Chemistry Storeroom assistants. 1 INTBOOOO!'ION The identification of aromatic halides is generally accomplished by converting them into mono or pol.ynitro derivatives. The reaction is not always easy to control., however_. and sometimes gives mixtures hard to purify. In View of the rea<V' con'Vereion of aroma.tie hydrocarbons into solid s-ulfonyl chloride deri.Yatives by chloro.eulfonic acid~ it seemed profitable to extend the reaction to include aromatic halides. The method has the added advantage that, if a sulfonyl chloride is hard to plil'ify or does not uniquely identify a compound, it may he very ee{!ily converted into the suli'onamide,, which is general.ly a satisfactory derivative.
    [Show full text]
  • Nbcl5-Mg Reagent System in Regio- and Stereoselective Synthesis of (2Z)-Alkenylamines and (3Z)-Alkenylols from Substituted 2-Alkynylamines and 3-Alkynylols
    molecules Article NbCl5-Mg Reagent System in Regio- and Stereoselective Synthesis of (2Z)-Alkenylamines and (3Z)-Alkenylols from Substituted 2-Alkynylamines and 3-Alkynylols Rita N. Kadikova *, Azat M. Gabdullin, Oleg S. Mozgovoj, Ilfir R. Ramazanov and Usein M. Dzhemilev Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia; [email protected] (A.M.G.); [email protected] (O.S.M.); ilfi[email protected] (I.R.R.); [email protected] (U.M.D.) * Correspondence: [email protected] Abstract: The reduction of N,N-disubstituted 2-alkynylamines and substituted 3-alkynylols using the NbCl5–Mg reagent system affords the corresponding dideuterated (2Z)-alkenylamine and (3Z)- alkenylol derivatives in high yields in a regio- and stereoselective manner through the deuterolysis (or hydrolysis). The reaction of substituted propargylamines and homopropargylic alcohols with the in situ generated low-valent niobium complex (based on the reaction of NbCl5 with magnesium metal) is an efficient tool for the synthesis of allylamines and homoallylic alcohols bearing a 1,2-disubstituted double bond. It was found that the well-known approach for the reduction of alkynes based on the use of the TaCl5-Mg reagent system does not work for 2-alkynylamines and 3-alkynylols. Thus, this article reveals a difference in the behavior of two reagent systems—NbCl5-Mg and TaCl5-Mg, Citation: Kadikova, R.N.; Gabdullin, in relation to oxygen- and nitrogen-containing alkynes. A regio- and stereoselective method was A.M.; Mozgovoj, O.S.; Ramazanov, developed for the synthesis of nitrogen-containing E-β-chlorovinyl sulfides based on the reaction of I.R.; Dzhemilev, U.M.
    [Show full text]
  • Studies on the Mechanism of the Alkaline Hydrolysis of Thiolsulfinates
    AN ABSTRACT OF THE THESIS OF WAYNE HARVIE STANLEY for the . M. S. in Chemistry (Name) (Degree) (Major) Date this thesis presented 40 ,sr /7 jc/64. Title STUDIES ON THE MECHANISM OF THE ALKALINE HY- DROLYSIS OF THIOLSULFINATES Redacted for Privacy Abstract approved c (Major professor) í- The alkaline hydrolysis of phenylbenzenethiolsulfinate was studied at various pHs in an aqueous solution of 25% dioxane. A pH stat was constructed to follow the rate of disappearance of hydroxide ion under pseudo- first -order conditions. Comparative studies were made under identical conditions by following the disappearance of the thiolsulfin- ate in a buffered solution in the ultraviolet at 296 m,t(. A product study was made which indicates that the reaction fol- lows the course indicated in Equation 1. 3(pSóS() + 20H 2COSS1) + 20S02 + H2O (Eq. 1) The kinetic studies indicate that the reaction does not follow simple first -order kinetics but is quite complex. The first -order plots exhibit a marked curvature, being fast initially and slowing to a final lesser first -order rate. Possible schemes are discussed which can explain this curvature but no mechanistic conclusions are dr awn. The extreme complexity of the data suggests that the glass elec- trode response is altered by the presence of the dioxane to such a degree as to render it unreliable as a mechanistic tool. For this reason, it is suggested that further studies on the mechanism of the reaction be carried out in purely aqueous media. To this end the synthesis of a sufficiently water - soluble thiolsulfinate was attempted. The results of this work indicate that the alkaline hydrolysis of thiolsulfinates is a complex and very facile reaction, requiring study in several systems to fully elucidate its mechanism.
    [Show full text]
  • The Mechanisms of Some Reactions of Thiolsulfinates (Sulfenic Anhydrides)
    AN ABSTRACT OF THE THESIS OF CLIFFORD GEORGE VENIER for the Ph. D. in Chemistry (Organic) (Name) (Degree) (Major) .tt. .r_,,,/ Date thesis is presented L /j, Title THE MECHANISMS OF SOME REACTIONS OF THIOLSULFINATES (SULFENIC ANHYDRIDES) Abstract approved Redacted for Privacy , " (Major p ofessor) Thiolsulfinates ( sulfenic anhydrides) have been found to react readily with sulfinic acids (equation 1) in acetic acid solvent. Kinetic O AASAr + 2 Ar'SO2H -> 2 Ar'SO2SAr + H20 (1) studies show that the reaction is first -order in thiolsulfinate and first -order in sulfinic acid. The dependence of the rate on acidity and a solvent isotope effect of kH /kD = 1. 27 suggest that the reac- tion is general acid -catalyzed. The results seem best accommo- dated by the mechanism shown in equation 2. OH G 6® bO OH + Ì ACD+ HO2SAr'+ --H (2) b® L I I O+ Ar' Ar J HA + Ar'SO2SAr + ArSOH %- ArSOH + Ar'SO2H > Ar'SO2SAr + H20 Both the sulfinic acid- thiolsulfinate reaction and the dispro- portionation of thiolsulfinates, equation 3, can be markedly accelerated by the addition of small amounts of organic sulfides. Both sulfide- catalyzed reactions have the same formal rate laws, O 2 ArSSAr > ArSO2SAr + ArSSAr (3) being first -order in catalyzing sulfide, first -order in thiolsulfinate and respond to acidity according to the Hammett acidity function, Ho. They show, however, a rather different dependence of rate on sulfide k /k = 27, 000 for catalyzed reaction 1, but structure, Et2S Ph2S only 47 for the catalyzed disproportionation. A plot of the loga- rithm of the rate constant for catalyzed reaction 1 versus o* gives p = -2.
    [Show full text]
  • The Synthesis of Anthranilic Acid, Tryptophan, and Sulfenyl Chloride Analogues, and Enzymatic Studies
    THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som (Under the Direction of ROBERT S. PHILLIPS) Abstract This dissertation includes four chapters. Chapter 1 includes the introduction and literature review. Chapter 2 covers the enzymatic synthesis of tryptophan via anthranilic acid analogues. Chapter 3 covers the nitration and resolution of tryptophan and synthesis of tryptophan derivatives. Chapter 4 covers the synthesis of sulfenyl chloride derivatives. Tryptophan is important in many aspects in the studies of proteins and also serves as precursors for important compounds. The enzymatic synthesis of tryptophan analogues from anthranilic acid analogues is important and could provide a more efficient route for incorporation of non-canonical amino acids onto proteins. Nitration of tryptophan is also important because it provides a synthetic route for synthesizing other derivatives of tryptophan. Sulfenyl chloride derivatives can be used for labeling proteins and the tryptophan analogues can be determined by mass spectrometry analysis with proteins with a limited number of tryptophan residues makes this application useful. INDEX WORDS: Tryptophan, Anthranilic acid, Enzymatic synthesis, Non-canonical amino acid, Nitration, Sulfenyl chloride, Incorporation THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES by Phanneth Som B.S., Georgia State University, 2003 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2009 © 2009 Phanneth Som All Rights Reserved THE SYNTHESIS OF ANTHRANILIC ACID, TRYPTOPHAN, AND SULFENYL CHLORIDE ANALOGUES, AND ENZYMATIC STUDIES By Phanneth Som Major Professor: Robert S.
    [Show full text]
  • [Beta]-Keto Sulfoxides Leo Arthur Ochrymowycz Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1969 Chemistry of [beta]-keto sulfoxides Leo Arthur Ochrymowycz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Ochrymowycz, Leo Arthur, "Chemistry of [beta]-keto sulfoxides " (1969). Retrospective Theses and Dissertations. 3766. https://lib.dr.iastate.edu/rtd/3766 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 70-7726 OCHRYMOWYCZ, Leo Arthur, 1943- CHEMISTRY OF p -KETO SULFOXIDES. Iowa State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan CHEMISTRY OF jg-KETO SULFOXIDES by Leo Arthur Ochrymowycz A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject ; Organic Chemistry Approved : Signature was redacted for privacy. f Major Work Signature was redacted for privacy. d of Maj Department Signature was redacted for privacy. Graduate College Iowa State University Of Science and Technology Ames, Iowa 1969 il TABLE OP CONTENTS Page
    [Show full text]
  • Improved Processes for the Preparation of 1-Aryl-5-Alkyl Pyrazole Compounds
    (19) TZZ¥__Z_T (11) EP 3 184 510 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 28.06.2017 Bulletin 2017/26 C07D 231/18 (2006.01) (21) Application number: 16199220.1 (22) Date of filing: 22.04.2013 (84) Designated Contracting States: • LEE, Hyoung, Ik AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Cary, NC 27519 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • ZHAN, Xinxi PL PT RO RS SE SI SK SM TR BDA, Beijing 100176 (CN) Designated Extension States: • LABROSSE, Jean-Robert BA ME F-34160 Saint Hilaire De Beauvoir (FR) • MULHAUSER, Michel (30) Priority: 20.04.2012 US 201261635969 P F-69370 Saint Didier au Mont d’Or (FR) (62) Document number(s) of the earlier application(s) in (74) Representative: D Young & Co LLP accordance with Art. 76 EPC: 120 Holborn 13720198.4 / 2 852 577 London EC1N 2DY (GB) (71) Applicant: Merial, Inc. Remarks: Georgia 30096 (US) •This application was filed on 16-11-2016 as a divisional application to the application mentioned (72) Inventors: under INID code 62. • MENG, Charles, Q •Claims filed after the date of filing of the Grayson, GA 30017 (US) application/dateof receipt of the divisional application • LE HIR DE FALLOIS, Loic, Patrick (Rule 68(4) EPC). Atlanta, Georgia 30305 (US) (54) IMPROVED PROCESSES FOR THE PREPARATION OF 1-ARYL-5-ALKYL PYRAZOLE COMPOUNDS (57) Provided are improved processes for the preparation of 1-aryl pyrazole compounds of formula (I) and (IB): which are substituted at the 5-position of the pyrazole ring with a carbon-linked functional group.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,634,291 PRIMARY and SECONDARY ALKYL SULFENYLTRITHIOCARBONATES Philip M
    Patented Apr. 7, 1953 2,634,291 UNITED STATES PATENT OFFICE 2,634,291 PRIMARY AND SECONDARY ALKYL SULFENYLTRITHIOCARBONATES Philip M. Arnold, Bartlesville, Okla., assignor to Phillips Petroleum Company, a corporation of Delaware No Drawing. Application November 13, 1951. Serial No. 256,119 - 3 Claims. (CI. 260-545) 1. The following examples are specific illustra The present invention relates to a new class of tions of the preparation of one of the novel Com organic sulfur compounds, and more particularly pounds of this invention, but the procedure de to novel compounds having the general formula, Scribed therein may be considered as exemplary SSR of that applicable to the preparation of the other members of the class of primary and secondary N SSR dialkyl sulfenyl trithiocarbonates described. in which R is a primary or secondary alkyl group. A Solution of n-butylsulfenyl chloride in iso The new compounds are the primary and secon pentane was prepared in a one liter, three necked 10 flask equipped with a stirrer, a Dry-Ice cooled dary dialkyl sulfenyl trithiocarbonates, and are condenser, a heating Inantle, and a chlorine inlet derivatives of trithiocarbonic acid, H2CS3, in bubbler. Di - n - butyldisulfide and isopentane Which the hydrogen atoms have been replaced were charged to the flask using approximately by the alkyl sulfenyl groups, RS-, wherein S is connected with the the alkyl group at a primary 1200 ml, of isopentane per mol of disulfide. The 5 solution was heated until the isopentane refluxed or a secondary carbon atom. vigorously. The heating mantle was removed The new compounds of the present invention and agitation started.
    [Show full text]
  • New CO2 Chemistry for Fine Chemical Synthesis
    New CO2 Chemistry for Fine Chemical Synthesis By Ath’enkosi Msutu Town Cape Thesis presentedof for the degree of Master of Science In the Department of Chemistry University University of Cape Town January 2011 Supervisor: Professor Roger Hunter The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Plagiarism Declaration 1. I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is one’s own. 2. I have used the Royal Society of Chemistry convention for citation and referencing. Each contribution to, and quotation in, this thesis from the work(s) of other people has been attributed, and has been cited and referenced. 3. This thesis is my own work. 4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. 5. I acknowledge that copying someone else’s work, or part of it, is wrong, and declare that this is my own work. Abstract There is a great need in the chemical industry for developing CO2 as a C1 building block as an important step towards “green chemistry”. CO2 is also attractive as a chemical feedstock because it is readily available, inexpensive, nontoxic and it can replace toxic building blocks such as phosgene and CO.
    [Show full text]
  • Ice . Patented Feb
    2,824,890 ice ._ Patented Feb. 25, 1958 2 fenyl chloride, 3,4-dichlorobenzenesulfenyl chloride, 2,5 2,824,890 dichlorobenzenesulfenyl chloride, 2,4,5-trichlorobenzene sulfenyl chloride, 2-bromo-3,4-dichlorobenzenesulfenyl AlDDUCTS 6F HALQGENATED BENZENE SUL FENYL HALmES AND VINYL ESTERS AND bromide, 2,3,4,5 -tetrachlorobenzenesulfenyl chloride, PROCESS pentachlorobenzenesulfenyl chloride, etc. The vinyl esters useful in preparing the products of Samuel Alien Heininger and Gail H. Birurn, Dayton, this invention are the esters of saturated aliphatic car Ohio, assignors to Monsanto Chemical Company, St. boxylic acids of from 1 to 6 carbon atoms. Such esters Louis, Mo, a corporation of Delaware can be obtained, e. g., by the addition of acetylene to No Drawing. Application February 21, 1957 10 the. corresponding acids. Vinyl acetate is the preferred Serial No. 641,491 ester for the preparation of the present products; other vinyl esters which may be reacted with the sulfenyl halide 8 Claims. (Cl. 260-488) in accordance with this invention include, e. g., vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl n This invention relates to ester products and more par hexanoate, etc. ticularly to the products of the reaction of vinyl esters The new ester products are prepared by reacting a of carboxylic acids with halogenated aromatic sulfenyl halobenzenesulfenyl halide as de?ned above with one of halides. the presently useful vinyl esters to form a reaction prod In accordance with this invention, a halobenzenesul uct comprising compounds containing sulfur atoms and fenyl halide is reacted with the vinyl ester of an aliphatic 20 carboxylate radicals, where by a carboxylate radical is carboxylic acid to produce a complex reaction product here meant a radical of the form comprising compounds containing sulfur atoms and car boxylate radicals.
    [Show full text]