Regulation of Neuronal Plasticity by the Transcription Factor NFIL3 Van Der Kallen, L.R

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Neuronal Plasticity by the Transcription Factor NFIL3 Van Der Kallen, L.R VU Research Portal Regulation of neuronal plasticity by the transcription factor NFIL3 van der Kallen, L.R. 2016 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) van der Kallen, L. R. (2016). Regulation of neuronal plasticity by the transcription factor NFIL3. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 27. Sep. 2021 Regulation of neuronal plasticity by the transcription factor NFIL3 Loek van der Kallen The research described in this thesis was performed at the department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. Cover by Loek van der Kallen VRIJE UNIVERSITEIT Regulation of neuronal plasticity by the transcription factor NFIL3 ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. V. Subramaniam, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de Faculteit der Aard- en Levenswetenschappen op dinsdag 2 februari om 15.45 uur in de aula van de universiteit, De Boelelaan 1105 door Loek van der Kallen Geboren te Utrecht promotoren: prof.dr. A.B. Smit prof.dr. J Verhaagen copromotor: dr. R.E. van Kesteren The knack of flying is learning how to throw yourself at the ground and miss Douglas Adams Leescommissie: prof.dr. M.P. Smidt prof.dr. S. Spijker dr. H.D. MacGillavry dr. K. Bossers dr. A.J.A. Groffen Contents Chapter 1 ................................................................................................................ General introduction ........................................................................................ 9 Chapter 2 ................................................................................................................ Genetic deletion of the transcriptional repressor NFIL3 enhances axon growth in vitro but not axonal repair in vivo .................................................. 29 Chapter 3 ................................................................................................................ Behavioral characterization of Nfil3 knockout mice ...................................... 57 Chapter 4 ................................................................................................................ Behavioral inflexibility in mice lacking the transcriptional repressor NFIL3 .. 71 Chapter 5 ................................................................................................................ CAGE sequencing reveals aberrant immediate-early gene expression during memory reconsolidation in Nfil3 knockout mice ........................................... 87 Chapter 6 ................................................................................................................ General discussion ........................................................................................ 107 English summary .............................................................................................. 119 References ........................................................................................................ 125 Acknowledgements .......................................................................................... 143 About the author .............................................................................................. 151 Chapter 1 General introduction Chapter 1 Neurons retain a level of plasticity in order to adapt to external needs and stimuli throughout adult life. This plasticity occurs at the level of neuronal structure and function. In particular, plasticity of neurons can be observed at their numerous points of contact, the synapses. These synapses are built of axonal pre- and dendritic postsynaptic elements (spines). At the structural level, for instance, a continuous turnover of dendritic spines is observed in many brain areas, which affects synapse density and can be modified by neuronal activity [1], aging [2], in diseases, such as schizophrenia [3] and fragile-x syndrome [4], and during and after drug use [5]. Dendrite morphology can also be affected, for instance, by stress [6,7], in Alzheimer’s [8] and Huntington’s disease [9], fragile-x syndrome [4] and after drug use [5]. Axons also show variation in length and arborisation throughout adulthood, both under normal conditions [10,11] and, for instance, after diverse forms of brain injury [12]. Thus, dendritic and axonal plasticity enable synaptogenesis, i.e. the creation of new synapses, whenever this is required [13,14]. More specifically, an increase in synapse densities results from differences in the rates of spine generation, stabilization and elimination [15], processes that persist into adulthood [14]. In addition to apparent structural plasticity, in the CNS other forms of plasticity are found. Modulation of the firing strength of existing synapses occurs, both pre- [16,17] and postsynaptically [18,19], and either directly, or indirectly through signals from glia [20]. Collectively, all these different forms of neuronal plasticity enable changes at a circuitry level that allow individuals to optimally cope with a continuously changing environment. Forms of plasticity that occur over longer timescales, e.g. 2 hours and more, require de novo gene transcription and protein synthesis [21,22,23]. Transcription factors that regulate the transcriptional response to diverse forms of stimulation are key elements in the signaling pathways leading to long-term neuronal plasticity. In this chapter, I will discuss the role of transcription factors in various forms of neuronal plasticity. Specifically, I will introduce two forms of plasticity; regenerative plasticity following peripheral nerve injury and synaptic plasticity underlying cognitive processing, and the role of gene expression in 10 General introduction each. Subsequently, I will discuss transcriptional regulation and gene regulatory networks in more detail, and introduce the two transcription factors that are the main focus of this thesis. Finally, I will briefly introduce the techniques that were used in this thesis to study neuronal regeneration, cognition and transcriptional regulation. Neural plasticity and the regeneration of injured axons Regenerating neurons show a large degree of plasticity. Damaged axons need to grow new arbors in appropriate directions, identify and connect with appropriate targets, and fine-tune their firing strength. When lesions occur in the central nervous system (CNS), for instance the spinal cord, during adult life, axons will not regenerate, likely due to non-permissive signals expressed by oligodendrocytes and glial scar tissue, and the debilitating effects are enormous [24,25]. However, when a nerve lesion occurs in the peripheral nervous system (PNS), axons are better capable of entering a state of plasticity and growth. One of the main differences between the CNS and the PNS environment is that PNS axons are not myelinated by oligodendrocytes but by Schwann cells, which provide a more permissive environment for regenerative axon growth. The growth-promoting properties of Schwann cells have been exploited for instance to generate permissive nerve grafts for spinal cord injury sites [26,27]. In human patients, autologous Schwann cells have been transplanted into spinal cord injury sites during clinical trials with results ranging from no adverse effects [28] to positive effects on motor and sensory functions [29]. Another cell type that is efficient at inducing a regenerative growth state in neurons is olfactory ensheathing cells, which are currently also used in clinical trials with some cautiously promising results [30]. The regenerative plasticity of a neuron is in part determined intrinsically, as was demonstrated by the so-called conditioning lesion paradigm, where a CNS injury shows better regeneration when preceded by a PNS lesion [31]. Three types of injury signals together prepare and induce the cell body to respond to the specific needs of axonal regeneration [32]. Firstly, a 11 Chapter 1 rapid influx of calcium and sodium induces depolarization and a train of action potentials, resulting in swelling of the neuronal cell body and a strong increase in cellular metabolism and protein synthesis (Fig. 1.1) [33]. Secondly, disruption of molecular transport from the originally innervated target prevents retrograde flow of negative regulators of plasticity (Fig. 1.2) [34]. Thirdly, positive injury signals, including proteins derived from neighboring axons and glia, but also locally translated proteins and activated kinases, induce plasticity in the cell body (Fig.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • NFIL3 Mutations Alter Immune Homeostasis and Sensitise For
    Ann Rheum Dis: first published as 10.1136/annrheumdis-2018-213764 on 14 December 2018. Downloaded from Basic and translational research EXTENDED REPORT NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology Susan Schlenner,1,2 Emanuela Pasciuto,1,2 Vasiliki Lagou,1,2 Oliver Burton,1,2 Teresa Prezzemolo,1,2 Steffie Junius,1,2 Carlos P Roca,1,2 Cyril Seillet,3,4 Cynthia Louis,3 James Dooley,1,2 Kylie Luong,3,4 Erika Van Nieuwenhove,1,2,5 Ian P Wicks,3,4 Gabrielle Belz,3,4 Stéphanie Humblet-Baron,1,2 Carine Wouters,1,5 Adrian Liston1,2 Handling editor Josef S ABSTRact Key messages Smolen Objectives NFIL3 is a key immunological transcription factor, with knockout mice studies identifying functional ► Additional material is Homozygous NFIL3 mutations identified in roles in multiple immune cell types. Despite the importance ► published online only. To view monozygotic twins with juvenile idiopathic please visit the journal online of NFIL3, little is known about its function in humans. arthritis. (http:// dx. doi. org/ 10. 1136/ Methods Here, we characterised a kindred of two Enhanced susceptibility to arthritis induction in annrheumdis- 2018- 213764). monozygotic twin girls with juvenile idiopathic arthritis at ► Nfil3-knockout mice. 1 the genetic and immunological level, using whole exome Department of Microbiology NFIL3 loss in patients and mice is associated sequencing, single cell sequencing and flow cytometry. ► and Immunology, KUL - with elevated production of IL-1 . University of Leuven, Leuven, Parallel studies were performed in a mouse model. β Knockdown of NFIL3 in healthy macrophages Belgium Results The patients inherited a novel p.M170I in NFIL3 ► 2VIB Center for Brain and drives IL-1β production.
    [Show full text]
  • Bcl11b and Combinatorial Resolution of Cell Fate in the T-Cell Gene
    PAPER Bcl11b and combinatorial resolution of cell fate in the COLLOQUIUM T-cell gene regulatory network William J. R. Longabaugha,1,2, Weihua Zengb,1, Jingli A. Zhangc,3, Hiroyuki Hosokawac, Camden S. Jansenb, Long Lic,4,5, Maile Romero-Wolfc, Pentao Liud, Hao Yuan Kuehc,6, Ali Mortazavib,2, and Ellen V. Rothenbergc,2 aInstitute for Systems Biology, Seattle, WA 98109; bDepartment of Developmental and Cell Biology, University of California, Irvine, CA 92697; cDivision of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125; and dWellcome Trust Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 30, 2017 (received for review October 25, 2016) T-cell development from hematopoietic progenitors depends on The robust change in potential from DN2a to DN2b is also multiple transcription factors, mobilized and modulated by intra- accompanied by dynamic transcription factor expression changes thymic Notch signaling. Key aspects of T-cell specification network (8, 9) At least 20 regulatory genes have expression patterns that architecture have been illuminated through recent reports de- can be classed as “phase 1” (expressed in ETP and DN2a, then fining roles of transcription factors PU.1, GATA-3, and E2A, their down-regulated) or “phase 2” (turned on or significantly up- interactions with Notch signaling, and roles of Runx1, TCF-1, and regulated around commitment in DN2b) (5). To date, the most- Hes1, providing bases for a comprehensively updated model of the studied regulators of the phase 1 to phase 2 transition have been Notch signaling, GATA-3, TCF-1, and E2A, and PU.1 as a T-cell specification gene regulatory network presented herein.
    [Show full text]
  • Integrated Computational Approach to the Analysis of RNA-Seq Data Reveals New Transcriptional Regulators of Psoriasis
    OPEN Experimental & Molecular Medicine (2016) 48, e268; doi:10.1038/emm.2016.97 & 2016 KSBMB. All rights reserved 2092-6413/16 www.nature.com/emm ORIGINAL ARTICLE Integrated computational approach to the analysis of RNA-seq data reveals new transcriptional regulators of psoriasis Alena Zolotarenko1, Evgeny Chekalin1, Alexandre Mesentsev1, Ludmila Kiseleva2, Elena Gribanova2, Rohini Mehta3, Ancha Baranova3,4,5,6, Tatiana V Tatarinova6,7,8, Eleonora S Piruzian1 and Sergey Bruskin1,5 Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide novel insights into the regulatory molecular mechanisms of the disease, we performed RNA sequencing analysis of 14 pairs of skin samples collected from patients with psoriasis. Subsequent pathway analysis and extraction of the transcriptional regulators governing psoriasis-associated pathways was executed using a combination of the MetaCore Interactome enrichment tool and the cisExpress algorithm, followed by comparison to a set of previously described psoriasis response elements. A comparative approach allowed us to identify 42 core transcriptional regulators of the disease associated with inflammation (NFκB, IRF9, JUN, FOS, SRF), the activity of T cells in psoriatic lesions (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1), the hyper- proliferation and migration of keratinocytes (JUN, FOS, NFIB, TFAP2A, TFAP2C) and lipid metabolism (TFAP2, RARA, VDR). In addition to the core regulators, we identified 38 transcription factors previously not associated with the disease that can clarify the pathogenesis of psoriasis. To illustrate these findings, we analyzed the regulatory role of one of the identified transcription factors (TFs), FOXA1. Using ChIP-seq and RNA-seq data, we concluded that the atypical expression of the FOXA1 TF is an important player in the disease as it inhibits the maturation of naive T cells into the (CD4+FOXA1+CD47+CD69+PD-L1(hi) FOXP3 − ) regulatory T cell subpopulation, therefore contributing to the development of psoriatic skin lesions.
    [Show full text]
  • Human Tregs at the Maternal-Fetal Interface Show Site-Specific Adaptation Reminiscent of Tumor Tregs
    Human Tregs at the maternal-fetal interface show site-specific adaptation reminiscent of tumor Tregs Judith Wienke, … , Bas B. van Rijn, Femke van Wijk JCI Insight. 2020. https://doi.org/10.1172/jci.insight.137926. Research In-Press Preview Immunology Reproductive biology Regulatory T cells (Tregs) are crucial for maintaining maternal immune-tolerance against the semi-allogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (=maternal-fetal interface) and incision site (=control), and blood were obtained from women with uneventful pregnancies undergoing Caesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell level by flow cytometry. Placental bed uterine Tregs (uTregs) showed elevated expression of Treg signature markers, including FOXP3, CTLA-4 and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, 4-1BB, genes associated with suppressive capacity (HAVCR2, IL10, LAYN, PDCD1), and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue-residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs, and was remarkably pronounced at the placental bed compared to uterine control site. Concluding, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the maternal-fetal interface. This introduces the novel concept of site-specific transcriptional adaptation of Tregs within one organ. Find the latest version: https://jci.me/137926/pdf Human Tregs at the maternal-fetal interface show site-specific adaptation reminiscent of tumor Tregs Judith Wienke MD/PhD,1 Laura Brouwers MD/PhD,2 Leone M.
    [Show full text]
  • Systematic Analysis of Differential Rhythmic Liver Gene Expression Mediated by the Circadian Clock and Feeding Rhythms
    Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms Benjamin D. Wegera,b,c, Cédric Gobeta,b, Fabrice P. A. Davidb,d,e, Florian Atgera,f,1, Eva Martina,2, Nicholas E. Phillipsb, Aline Charpagnea,3, Meltem Wegerc, Felix Naefb,4, and Frédéric Gachona,b,c,4 aSociété des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland; bInstitute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; cInstitute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia; dGene Expression Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; eBioInformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; and fDepartment of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland Edited by Joseph S. Takahashi, The University of Texas Southwestern Medical Center, Dallas, TX, and approved November 25, 2020 (received for review July 29, 2020) The circadian clock and feeding rhythms are both important via E-box motifs. These include Period (Per) and Cryptochrome regulators of rhythmic gene expression in the liver. To further (Cry), factors of the negative limb of the core loop, which then in dissect the respective contributions of feeding and the clock, we turn inhibit the transcriptional activity of BMAL1. In addition to analyzed differential rhythmicity of liver tissue samples across this core loop, another crucial loop exists in which BMAL1 several conditions. We developed a statistical method tailored to heterodimers target RORα, RORγ, REV-ERBα (also named compare rhythmic liver messenger RNA (mRNA) expression in NR1D1), and REV-ERBβ (also named NR1D2) regulate ex- mouse knockout models of multiple clock genes, as well as pression of Bmal1 and its heterodimeric partners by binding to Hlf Dbp Tef PARbZip output transcription factors ( / / ).
    [Show full text]
  • 1 Type I Interferon Transcriptional Network Regulates Expression Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362947; this version posted October 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Type I Interferon Transcriptional Network Regulates Expression of Coinhibitory Receptors in Human T cells Tomokazu S. Sumida*1, Shai Dulberg2*, Jonas Schupp3*, Helen A. Stillwell1, Pierre-Paul Axisa1, Michela Comi1, Matthew Lincoln1, Avraham Unterman3, Naftali Kaminski3, Asaf Madi2,4, Vijay K. Kuchroo4,5,†, David A. Hafler1,5,† 1Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA. 2 Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. 3Section of Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA. 4 Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA. 5Broad Institute of MIT and Harvard, Cambridge, MA, USA. *Equal Contributions † Correspondence to Drs. Vijay Kuchroo ([email protected]) or David Hafler ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362947; this version posted October 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors
    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
    [Show full text]
  • Nfil3/E4bp4 Is Required for the Development and Maturation of NK Cells in Vivo
    Published Online: 7 December, 2009 | Supp Info: http://doi.org/10.1084/jem.20092176 Downloaded from jem.rupress.org on February 14, 2019 Brief Definitive Report Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo Shintaro Kamizono,1,4 Gordon S. Duncan,1 Markus G. Seidel,4 Akira Morimoto,6,7 Koichi Hamada,1 Gerard Grosveld,6,7 Koichi Akashi,5 Evan F. Lind,1 Jillian P. Haight,1 Pamela S. Ohashi,1,2,3 A. Thomas Look,4 and Tak W. Mak1,2,3 1The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, and 2Department of Immunology and 3Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada 4Department of Pediatric Oncology and 5Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115 6Department of Tumor Cell Biology and 7Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105 Nuclear factor interleukin-3 (Nfil3; also known as E4-binding protein 4) is a basic region leucine zipper transcription factor that has antiapoptotic activity in vitro under conditions of growth factor withdrawal. To study the role of Nfil3 in vivo, we generated gene-targeted Nfil3-deficient Nfil3( /) mice. Nfil3/ mice were born at normal Mendelian frequency and were grossly normal and fertile. Although numbers of T cells, B cells, and natural killer (NK) T cells were normal in Nfil3/ mice, a specific disruption in NK cell development resulted in severely reduced numbers of mature NK cells in the periphery. This defect was NK cell intrin- sic in nature, leading to a failure to reject MHC class I–deficient cells in vivo and reductions in both interferon production and cytolytic activity in vitro.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano Et Al
    US 20090269772A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0269772 A1 Califano et al. (43) Pub. Date: Oct. 29, 2009 (54) SYSTEMS AND METHODS FOR Publication Classification IDENTIFYING COMBINATIONS OF (51) Int. Cl. COMPOUNDS OF THERAPEUTIC INTEREST CI2O I/68 (2006.01) CI2O 1/02 (2006.01) (76) Inventors: Andrea Califano, New York, NY G06N 5/02 (2006.01) (US); Riccardo Dalla-Favera, New (52) U.S. Cl. ........... 435/6: 435/29: 706/54; 707/E17.014 York, NY (US); Owen A. (57) ABSTRACT O'Connor, New York, NY (US) Systems, methods, and apparatus for searching for a combi nation of compounds of therapeutic interest are provided. Correspondence Address: Cell-based assays are performed, each cell-based assay JONES DAY exposing a different sample of cells to a different compound 222 EAST 41ST ST in a plurality of compounds. From the cell-based assays, a NEW YORK, NY 10017 (US) Subset of the tested compounds is selected. For each respec tive compound in the Subset, a molecular abundance profile from cells exposed to the respective compound is measured. (21) Appl. No.: 12/432,579 Targets of transcription factors and post-translational modu lators of transcription factor activity are inferred from the (22) Filed: Apr. 29, 2009 molecular abundance profile data using information theoretic measures. This data is used to construct an interaction net Related U.S. Application Data work. Variances in edges in the interaction network are used to determine the drug activity profile of compounds in the (60) Provisional application No. 61/048.875, filed on Apr.
    [Show full text]
  • Repeated Evolution of Circadian Clock Dysregulation in Cavefish Populations 2 3 Katya L
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906628; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Repeated evolution of circadian clock dysregulation in cavefish populations 2 3 Katya L. Mack1, James B. Jaggard2, Jenna L. Persons3, Courtney N. Passow4, Bethany A. 4 Stanhope2, Estephany Ferrufino2, Dai Tsuchiya3, Sarah E. Smith3, Brian D. Slaughter3, Johanna 5 Kowalko5, Nicolas Rohner3,6, Alex C. Keene2, Suzanne E. McGaugh4 6 7 1Biology, Stanford University, Stanford, CA, USA 8 2Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, USA 9 3Stowers Institute for Medical Research, Kansas City, MO, USA 10 4Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA 11 5Wilkes Honors College, Florida Atlantic University, Jupiter FL, USA 12 6Department of Molecular and Integrative Physiology, The University of Kansas Medical 13 Center, Kansas City, KS, USA 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.14.906628; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Circadian rhythms are nearly ubiquitous throughout nature, suggesting they are critical for 18 survival in diverse environments.
    [Show full text]
  • Transcriptomic Profiles of Aging in Naïve and Memory CD4+ Cells From
    Taylor et al. Immunity & Ageing (2017) 14:15 DOI 10.1186/s12979-017-0092-5 RESEARCH Open Access Transcriptomic profiles of aging in naïve and memory CD4+ cells from mice Jackson Taylor1,2,3*, Lindsay Reynolds1, Li Hou1, Kurt Lohman1, Wei Cui1, Stephen Kritchevsky2, Charles McCall2 and Yongmei Liu1 Abstract Background: CD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process. It is unclear if and how these differences are reflected at the transcriptomic level. We performed microarray profiling on RNA derived from naïve (CD44low) and memory (CD44high) CD4+ T cells derived from young (2–3 month) and old (28 month) mice, in order to better understand the mechanisms of age-related functional alterations in both subsets. We also performed follow-up bioinformatic analyses in order to determine the functional consequences of gene expression changes in both of these subsets, and identify regulatory factors potentially responsible for these changes. Results: We found 185 and 328 genes differentially expressed (FDR ≤ 0.05) in young vs. old naïve and memory cells, respectively, with 50 genes differentially expressed in both subsets. Functional annotation analyses highlighted an increase in genes involved in apoptosis specific to aged naïve cells. Both subsets shared age-related increases in inflammatory signaling genes, along with a decrease in oxidative phosphorylation genes. Cis-regulatory analyses revealed enrichment of multiple transcription factor binding sites near genes with age-associated expression, in particular NF-κB and several forkhead box transcription factors. Enhancer associated histone modifications were enriched near genes down-regulated in naïve cells.
    [Show full text]