Controlling Mice and Rats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rodent Identification and Signs of Stowaways Key Features of UK Target Rodents
FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Rodent identification and signs of stowaways Key features of UK target rodents Black rat Brown rat House mouse FROM RSPB BIOSECURITY MANUAL CHAPTER 2: RODENT SURVEILLANCE & IDENTIFICATION Identifying rodent droppings Rodent droppings can be very variable (depending on diet), including in colour, but as a guide: Brown rat Black rat House mouse -13-19mm long, -7-14mm long -4-8mm long -3-4mm thick -3-4mm thick -2mm thick -Rounded ends, one end may go to -Tapered ends -Small and thin a point (as pictured) -Often slightly curved -A bit like grains of rice -Likely to contain fur -Likely to contain fur -Strong smell of ammonia. -Often located in latrines along tracks, at feeding sites and on prominent rocks Figure 2.9 Droppings of UK invasive rodents. Images: taken from Morton & Cole 2013 Rabbit or goat droppings be mistaken for rat droppings, though they are usually more spherical (particularly rabbit) and uniform. Goat droppings may be more cylindrical but with flatter or round, rather than tapered ends. Breaking up droppings should help (wear gloves): rabbit and goat droppings just contain vegetation, whereas rat droppings are likely to contain fur and a range of food stuffs. Shrew droppings – typically 2-4mm long and 1-2mm thick, these should be smaller than rat or mouse droppings. However, evidence from St Agnes and Gugh (Isles of Scilly) shows shrew droppings can be much larger than this. They are of a sandy consistency and are largely comprised of insect remains, whereas rodent droppings generally contain a wider array of food sources. -
BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry. -
Table S1. Nakharuthai and Srisapoome (2020)
Primer name Nucleotide sequence (5’→3’) Purpose CXC-1F New TGAACCCTGAGCTGAAGGCCGTGA Real-time PCR CXC-1R New TGAAGGTCTGATGAGTTTGTCGTC Real-time PCR CXC-1R CCTTCAGCTCAGGGTTCAAGC Genomic PCR CXC-2F New GCTTGAACCCCGAGCTGAAAAACG Real-time PCR CXC-2R New GTTCAGAGGTCGTATGAGGTGCTT Real-time PCR CXC-2F CAAGCAGGACAACAGTGTCTGTGT 3’RACE CXC-2AR GTTGCATGATTTGGATGCTGGGTAG 5’RACE CXC-1FSB AACATATGTCTCCCAGGCCCAACTCAAAC Southern blot CXC-1RSB CTCGAGTTATTTTGCACTGATGTGCAA Southern blot CXC1Exon1F CAAAGTGTTTCTGCTCCTGG Genomic PCR On-CXC1FOverEx CATATGCAACTCAAACAAGCAGGACAACAGT Overexpression On-CXC1ROverEx CTCGAGTTTTGCACTGATGTGCAATTTCAA Overexpression On-CXC2FOverEx CATATGCAACTCAAACAAGCAGGACAACAGT Overexpression On-CXC2ROverEx CTCGAGCATGGCAGCTGTGGAGGGTTCCAC Overexpression β-actinrealtimeF ACAGGATGCAGAAGGAGATCACAG Real-time PCR β-actinrealtimeR GTACTCCTGCTTGCTGATCCACAT Real-time PCR M13F AAAACGACGGCCAG Nucleotide sequencing M13R AACAGCTATGACCATG Nucleotide sequencing UPM-long (0.4 µM) CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT RACE PCR UPM-short (2 µM) CTAATAC GACTCACTATA GGGC RACE PCR Table S1. Nakharuthai and Srisapoome (2020) On-CXC1 Nucleotide (%) Amino acid (%) On-CXC2 Nucleotide (%) Amino acid (%) Versus identity identity similarity Versus identity identity Similarity Teleost fish 1. Rock bream, Oplegnathus fasciatus (AB703273) 64.5 49.1 68.1 O. fasciatus 70.7 57.7 75.4 2. Mandarin fish, Siniperca chuatsi (AAY79282) 63.2 48.1 68.9 S. chuatsi 70.5 54.0 78.8 3. Atlantic halibut, Hippoglossus hippoglossus (ACY54778) 52.0 39.3 51.1 H. hippoglossus 64.5 46.3 63.9 4. Common carp IL-8, Cyprinus carpio (ABE47600) 44.9 19.1 34.1 C. carpio 49.4 21.9 42.6 5. Rainbow trout IL-8, Oncorhynchus mykiss (CAC33585) 44.0 21.3 36.3 O. mykiss 47.3 23.7 44.4 6. Japanese flounder IL-8, Paralichthys olivaceus (AAL05442) 48.4 25.4 45.9 P. -
Mouse Models of Human Disease an Evolutionary Perspective Robert L
170 commentary Evolution, Medicine, and Public Health [2016] pp. 170–176 doi:10.1093/emph/eow014 Mouse models of human disease An evolutionary perspective Robert L. Perlman* Department of Pediatrics, The University of Chicago, 5841 S. Maryland Ave, MC 5058, Chicago, IL 60637, USA *E-mail: [email protected] Received 31 December 2015; revised version accepted 12 April 2016 ABSTRACT The use of mice as model organisms to study human biology is predicated on the genetic and physio- logical similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. KEYWORDS: allometry; cancer; gene networks; life history; model organisms transgenic, knockout, and knockin mice, have If you have cancer and you are a mouse, we can provided added impetus and powerful tools for take good care of you. Judah Folkman [1] mouse research, and have led to a dramatic increase in the use of mice as model organisms. -
Brown Rat Rattus Norvegicus
brown rat Rattus norvegicus Kingdom: Animalia Division/Phylum: Chordata Class: Mammalia Order: Rodentia Family: Muridae ILLINOIS STATUS common, nonnative FEATURES The brown rat is large (head-body length seven to 10 inches, tail length five to eight inches) for a rat. It has a salt-and-pepper look with brown, black and gold hairs. There are darker hairs down the middle of the back. The belly fur is gray- or cream-colored. The feet have white fur. The ringed, scaly, one-colored tail is nearly hairless. BEHAVIORS The brown rat may be found statewide in Illinois. It lives in buildings, barns, houses, dumps and other areas associated with humans. This rodent will eat almost anything. It does eat food intended for human use and can contaminate food supplies. It is usually associated with poor sanitary conditions and livestock areas. This rat will carry food to its nest instead of eating it where the food is found. The brown rat is known to spread diseases. This nocturnal mammal is a good climber. It produces some sounds. Mating may occur at any time throughout the year. The average litter size is seven. Young are born helpless but develop rapidly. They are able to live on their own in about one month. Females begin reproducing at the age of about three months. If conditions are favorable, a female may reproduce once per month. The average life span of the brown rat is about one and one-half years. This species was introduced to the United States from Europe by humans. HABITATS Aquatic Habitats none Woodland Habitats none Prairie and Edge Habitats edge © Illinois Department of Natural Resources. -
Micromys Minutus)
Acta Theriol (2013) 58:101–104 DOI 10.1007/s13364-012-0102-0 SHORT COMMUNICATION The origin of Swedish and Norwegian populations of the Eurasian harvest mouse (Micromys minutus) Lars Råberg & Jon Loman & Olof Hellgren & Jeroen van der Kooij & Kjell Isaksen & Roar Solheim Received: 7 May 2012 /Accepted: 17 September 2012 /Published online: 29 September 2012 # Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2012 Abstract The harvest mouse (Micromys minutus) occurs the Mediterranean, from France to Russia and northwards throughout most of continental Europe. There are also two to central Finland (Mitchell-Jones et al. 1999). Recently, isolated and recently discovered populations on the it has also been found to occur in Sweden and Norway. Scandinavian peninsula, in Sweden and Norway. Here, we In 1985, an isolated population was discovered in the investigate the origin of these populations through analyses province of Dalsland in western Sweden (Loman 1986), of mitochondrial DNA. We found that the two populations and during the last decade, this population has been on the Scandinavian peninsula have different mtDNA found to extend into the surrounding provinces as well haplotypes. A comparison of our haplotypes to published as into Norway. The known distribution in Norway is sequences from most of Europe showed that all Swedish and limited to a relatively small area close to the Swedish Norwegian haplotypes are most closely related to the border, in Eidskog, Hedmark (van der Kooij et al. 2001; haplotypes in harvest mice from Denmark. Hence, the two van der Kooij et al., unpublished data). In 2007, another populations seem to represent independent colonisations but population was discovered in the province of Skåne in originate from the same geographical area. -
Mammals of the Finger Lakes ID Guide
A Guide for FL WATCH Camera Trappers John Van Niel, Co-PI CCURI and FLCC Professor Nadia Harvieux, Muller Field Station K-12 Outreach Sasha Ewing, FLCC Conservation Department Technician Past and present students at FLCC Virginia Opossum Eastern Coyote Eastern Cottontail Domestic Dog Beaver Red Fox Muskrat Grey Fox Woodchuck Bobcat Eastern Gray Squirrel Feral Cat Red Squirrel American Black Bear Eastern Chipmunk Northern Raccoon Southern Flying Squirrel Striped Skunk Peromyscus sp. North American River Otter North American Porcupine Fisher Brown Rat American Mink Weasel sp. White-tailed Deer eMammal uses the International Union for Conservation of Nature (IUCN) for common and scientific names (with the exception of Domestic Dog) Often the “official” common name of a species is longer than we are used to such as “American Black Bear” or “Northern Raccoon” Please note that it is Grey Fox with an “e” but Eastern Gray Squirrel with an “a”. Face white, body whitish to dark gray. Typically nocturnal. Found in most habitats. About Domestic Cat size. Can climb. Ears and tail tip can show frostbite damage. Very common. Found in variety of habitats. Images are often blurred due to speed. White tail can overexpose in flash. Snowshoe Hare (not shown) is possible in higher elevations. Large, block-faced rodent. Common in aquatic habitats. Note hind feet – large and webbed. Flat tail. When swimming, can be confused with other semi-aquatic mammals. Dark, naked tail. Body brown to blackish (darker when wet). Football-sized rodent. Common in wet habitats. Usually doesn’t stray from water. Pointier face than Beaver. -
A Guide to Mites
A GUIDE TO MITES concentrated in areas where clothes constrict the body, or MITES in areas like the armpits or under the breasts. These bites Mites are arachnids, belonging to the same group as can be extremely itchy and may cause emotional distress. ticks and spiders. Adult mites have eight legs and are Scratching the affected area may lead to secondary very small—sometimes microscopic—in size. They are bacterial infections. Rat and bird mites are very small, a very diverse group of arthropods that can be found in approximately the size of the period at the end of this just about any habitat. Mites are scavengers, predators, sentence. They are quite active and will enter the living or parasites of plants, insects and animals. Some mites areas of a home when their hosts (rats or birds) have left can transmit diseases, cause agricultural losses, affect or have died. Heavy infestations may cause some mites honeybee colonies, or cause dermatitis and allergies in to search for additional blood meals. Unfed females may humans. Although mites such as mold mites go unnoticed live ten days or more after rats have been eliminated. In and have no direct effect on humans, they can become a this area, tropical rat mites are normally associated with nuisance due to their large numbers. Other mites known the roof rat (Rattus rattus), but are also occasionally found to cause a red itchy rash (known as contact dermatitis) on the Norway rat, (R. norvegicus) and house mouse (Mus include a variety of grain and mold mites. Some species musculus). -
A Phylogeographic Survey of the Pygmy Mouse Mus Minutoides in South Africa: Taxonomic and Karyotypic Inference from Cytochrome B Sequences of Museum Specimens
A Phylogeographic Survey of the Pygmy Mouse Mus minutoides in South Africa: Taxonomic and Karyotypic Inference from Cytochrome b Sequences of Museum Specimens Pascale Chevret1*, Terence J. Robinson2, Julie Perez3, Fre´de´ric Veyrunes3, Janice Britton-Davidian3 1 Laboratoire de Biome´trie et Biologie Evolutive, UMR CNRS 5558, Universite´ Lyon 1, Villeurbanne, France, 2 Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa, 3 Institut des Sciences de l’Evolution de Montpellier, UMR CNRS 5554, Universite´ Montpellier 2, Montpellier, France Abstract The African pygmy mice (Mus, subgenus Nannomys) are a group of small-sized rodents that occur widely throughout sub- Saharan Africa. Chromosomal diversity within this group is extensive and numerous studies have shown the karyotype to be a useful taxonomic marker. This is pertinent to Mus minutoides populations in South Africa where two different cytotypes (2n = 34, 2n = 18) and a modification of the sex determination system (due to the presence of a Y chromosome in some females) have been recorded. This chromosomal diversity is mirrored by mitochondrial DNA sequences that unambiguously discriminate among the various pygmy mouse species and, importantly, the different M. minutoides cytotypes. However, the geographic delimitation and taxonomy of pygmy mice populations in South Africa is poorly understood. To address this, tissue samples of M. minutoides were taken and analysed from specimens housed in six South African museum collections. Partial cytochrome b sequences (400 pb) were successfully amplified from 44% of the 154 samples processed. Two species were identified: M. indutus and M. minutoides. The sequences of the M. indutus samples provided two unexpected features: i) nuclear copies of the cytochrome b gene were detected in many specimens, and ii) the range of this species was found to extend considerably further south than is presently understood. -
Of Mice and Men Tracing the Global Invasion History of the Common House Mouse (Mus Musculus)
Of mice and men Tracing the global invasion history of the common house mouse (Mus musculus) Level: Master Start: Any time Project duration: 4-6 months Location: This desktop study can be done from home Project form: Literature research, database construction and analysis, GIS Supervision: Rob Lenders [email protected] The common house mouse (Mus musculus) is generally considered to be an indigenous species in most of its distribution area. Yet this cosmopolitan rodent is in fact – together with its cousins black rat (Rattus rattus) and brown rat (Rattus norvegicus) – one of the most successful invasive species globally. The species most likely spread from its probable area of origin North India to the Mediterranean and from there to the rest of Europe, Asia and parts of Africa and subsequently to the Americas, Australia and a large number of Islands in Oceania. Compared to black and brown rat, the house mouse seems to have less adverse effects on human societies and biodiversity. Like the brown rat house mice are often kept as pets or as model species in scientific research. Yet the species also has proven negative effects on bird, reptile and invertebrate species around the world, especially on islands, and can cause damage to agricultural crops and stored food. In an earlier study we examined the global spread of three invasive rat species, viz., black rat (Rattus rattus), brown rat (Rattus norvegicus) and Pacific rat (Rattus exulans), during the Holocene as a result of human agency. The distribution history of the house mouse seems to compare very well with those of the black and brown rat. -
Norway Or Brown Rat (Rattus Norvegicus), Roof Or Black Rat (Rattus Rattus)
Norway or Brown Rat (Rattus norvegicus), Roof or Black Rat (Rattus rattus) Figure 1 Brown rat Figure 2 Black Rat The two species of rats commonly found in Wisconsin are the Norway (brown) rat and the Roof (black) Rat. The Norway rat is stocky and tends to burrow along building foundations, beneath rubbish or wood piles and in moist areas around gardens and fields. The roof rat is generally smaller with a very long tail. Roof rats are good climbers and usually live in above ground nests in shrubs or trees. Damage Rats eat a wide variety of foods as well as cause damage to structures, packaging materials (such as seed packages) and containers by gnawing. They are particularly problematic because they can spread disease through their feces, urine and through biting. They may be infested with fleas and mites which also can spread disease. When Are They Active Rats do not hibernate and are active throughout the year. Because they are mostly active at night they often are not seen, however, they leave evidence such as gnaw marks, droppings, tracks, burrows and nests made of shredded materials. Susceptible Plants Rats are omnivores, eating a variety of food, but generally prefer cereal grains, nuts and fruit. The more common problem associated with rats is contamination of food stuff and animal feed from droppings and urination as well as damage caused by gnawing. Prevention/Control Methods Successful management of rats is dependent on maintaining good housekeeping in and around gardens and garden structures to reduce shelter and food sources. Off the ground storage of gardening equipment, supplies, boxes and containers as well as keeping the garden free of debris and trash will create an environment less suitable for rats. -
Rats and Mice Have Always Posed a Threat to Human Health
Rats and mice have always posed a threat to human health. Not only do they spread disease but they also cause serious damage to human food and animal feed as well as to buildings, insulation material and electricity cabling. Rats and mice - unwanted house guests! RATS AND MICE ARE AGILE MAMMALS. A mouse can get through a small, 6-7 mm hole (about the diameter of a normal-sized pen) and a rat can get through a 20 mm hole. They can also jump several decimetres at a time. They have no problem climbing up the inside of a vertical sewage pipe and can fall several metres without injuring themselves. Rats are also good swimmers and can be underwater for 5 minutes. IN SWEDEN THERE ARE BASICALLY four different types of rodent that affect us as humans and our housing: the brown rat, the house mouse and the small and large field mouse. THE BROWN RAT (RATTUS NORVEGICUS) THRIVES in all human environments, and especially in damp environments like cellars and sewers. The brown rat is between 20-30 cm in length not counting its tail, which is about 15-23 cm long. These rats normally have brown backs and grey underbellies, but there are also darker ones. They are primarily nocturnal, often keep together in large family groups and dig and gnaw out extensive tunnel systems. Inside these systems, they build large chambers where they store food and build their nests. A pair of rats can produce between 800 and 1000 offspring a year. Since their young are sexually mature and can have offspring of their own at just 2-4 months old, rats reproduce extraordinarily quickly.