Structural Remodeling of Proteoglycans Upon Retinoic Acid-Induced Differentiation of NCCIT Cells

Total Page:16

File Type:pdf, Size:1020Kb

Structural Remodeling of Proteoglycans Upon Retinoic Acid-Induced Differentiation of NCCIT Cells Glycoconj J (2013) 30:497–510 DOI 10.1007/s10719-012-9450-x Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells Leyla Gasimli & Hope E. Stansfield & Alison V. Nairn & Haiying Liu & Janet L. Paluh & Bo Yang & Jonathan S. Dordick & Kelley W. Moremen & Robert J. Linhardt Received: 19 July 2012 /Revised: 8 September 2012 /Accepted: 10 September 2012 /Published online: 2 October 2012 # Springer Science+Business Media, LLC 2012 Abstract Pluripotent and multipotent cells become in- retinoic acid-induced changes in the cellular proteogly- creasingly lineage restricted through differentiation. can composition of the well-characterized teratocarcino- Alterations to the cellular proteoglycan composition ma line NCCIT. Our analysis revealed changes in the and structure should accompany these changes to influ- abundance of transcripts for genes encoding core pro- ence cell proliferation, delineation of tissues and acqui- teins, enzymes that are responsible for early and late sition of cell migration capabilities. Retinoic acid plays linkage region biosynthesis, as well as enzymes for an important role in pre-patterning of the early embryo. GAG chain extension and modification. Transcript lev- Retinoic acid can be used in vitro to induce differenti- els for genes encoding core proteins used as backbones ation, causing pluripotent and multipotent cells to be- for polysaccharide synthesis revealed highly significant come increasingly lineage restricted. We examined increases in expression of lumican and decorin, 1,500- Electronic supplementary material The online version of this article (doi:10.1007/s10719-012-9450-x) contains supplementary material, which is available to authorized users. L. Gasimli : J. S. Dordick : R. J. Linhardt H. E. Stansfield Department of Biology, Center for Biotechnology Department of Orthopedics, Center for Muscoloskeletal Research, and Interdisciplinary Studies, Rensselaer Polytechnic Institute, University of Rochester Medical Center, Troy, NY 12180, USA Rochester, NY 14642, USA H. Liu : B. Yang : R. J. Linhardt Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA A. V. Nairn : K. W. Moremen J. S. Dordick : R. J. Linhardt Complex Carbohydrate Research Center, University of Georgia, Department of Chemical and Biological Engineering, Athens, GA 30602, USA Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA J. S. Dordick : R. J. Linhardt (*) Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, J. L. Paluh 110 8th Street, Nanobioscience Constellation, College of Nanoscale Science Troy, NY 12180, USA and Engineering, University at Albany, SUNY, e-mail: [email protected] Albany, NY 12203, USA 498 Glycoconj J (2013) 30:497–510 fold and 2,800-fold, respectively. Similarly, glypican 3, Introduction glypican 5, versican and glypican 6 showed increases be- tween 5 and 70-fold. Significant decreases in biglycan, ser- New strategies in medical therapies, such as induced differ- glycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 entiation of cancer cells to block metastasis, require the were observed. Disaccharide analysis of the glycans in hepa- ability to redirect cell behavior. In addition, optimizing the rin/heparan sulfate and chondroitin/dermatan sulfate revealed efficacy of cell-based therapies in a multicellular environ- retinoic acid-induced changes restricted to chondroitin/derma- ment will require an understanding of how the cellular tan sulfate glycans. Our study provides the first detailed glycome can respond. In disease states, an inappropriate analysis of changes in the glycosaminoglycan profile of hu- glycome may also provide abnormal cellular capabilities man pluripotent cells upon treatment with the retinoic acid for a given tissue environment by facilitating new signaling morphogen. pathways. Systematic analysis can help to provide a data- base of responses that can predict cellular outcomes. The tissue multicellular environment is complex, requir- Keywords Glycomics . Teratocarcinoma . Pluriotent . ing internal epigenome, transcriptome and proteome Glycosaminoglycans changes that are coordinated to remodel the extracellular glycome. Glycosaminoglycans (GAGs) localize mainly to Abbreviations the external membrane of cells and reside within the extra- Ac Acetyl cellular matrix. They are attached to core proteins to form BCA assay Bicinchoninic acid assay cellular proteoglycans (PGs) that are critical for a variety of BEH Ethylene bridged hybrid cell signaling and migration roles as well as mammalian C5Epi C5Epimerase organ development [1, 2]. GAGs therefore act as molecular cDNA Complementary deoxyribonucleic acid co-receptors in cell signaling for cell–cell interactions and as CHAPS 3-[(3-cholamidopropyl)dimethylammonio]- regulators of cell adhesion, cell growth and differentiation 1-propanesulfonate [2, 3]. By defining temporal changes in GAG profiles on CS/DS Chondroitin sulfate/dermatan sulfate cells during cellular quiescence, proliferation, and lineage ΔUA 4-deoxy-α-L-threo-hex-4-enopryanosyluronic differentiation, we refine our global view of development in acid the multicellular environment. This is particularly critical GAG Glycosaminoglycan for novel therapeutic applications with stem cells or tissue GalN Galactosamine progenitors as well as efforts to optimize the in vitro stem GFAP Glial fibrillary acid protein cell niche for cell, tissue and organ based therapies [2, 3]. GlcA Glucuronic acid Teratocarcinomas are malignant germ cell tumors con- IdoA Iduronic acid sisting of embryonal carcinoma (EC) cells. They are malig- GlcN Glucosamine nant equivalents of normal pluripotent embryonic cells from HRP Horseradish peroxidase the pre-implantation stage of embryos [4, 5]. Single embry- HFIP 1,1,1,3,3,3-hexafluoro-2-propanol onal carcinoma cells from teratocarcinomas develop into HP/HS Heparin/heparan sulfate tumors that contain a mixed population of more than two HXA Hexylamine dozen well-differentiated adult tissues from all three germ KRTAP3-2 Keratin associated protein 3-2 layers, including brain, muscle, bone, teeth, bone marrow, LC/MS Liquid chromatography/mass spectrometry eyes, secretory glands, skin and intestine, as well as placen- NDST N-deacetylase-N-sulfotransferase tal and yolk sac tissue. The ability of in vitro cultured PVDF Polyvinyl difluoride embryonal carcinoma cells to form organized structures that qRT-PCR Quantitative reverse transcription- resemble the developing embryo has promoted their use as a polymerase chain reaction model system for the study of early embryonic development RA Retinoic acid [6]. The widely studied NCCIT cell line, derived from a RPS18 Ribosomal protein S18 mediastinal mixed germ cell tumor, has been shown to RNA Ribonucleic acid differentiate into derivatives of all three embryonic germ S Sulfo layers (ectoderm, mesoderm, and endoderm) and extraem- TrBA Tributylamine bryonic cell lineages [7]. The NCCIT line is responsive to UPLC Ultra-performance liquid chromatography retinoic acid (RA), inducing cellular differentiation accom- WB Western immunoblotting panied by the disappearance of oligosaccharide surface anti- HS2ST 2-O-sulfotransferase gens associated with pluripotency [8]. For these reasons, HS3ST 3-O-sulfotransferase coupled with their ease of manipulation, NCCIT cells are a HS6ST 6-O-sulfotransferase useful model to quantify the concomitant changes to the Glycoconj J (2013) 30:497–510 499 glycan profile upon RA treatment to reveal promotive and/ altered drastically upon differentiation (Fig. 1b). We observed or restrictive changes associated with the action of this flattened cells, including some with branched elongated cyto- morphogen for inducing loss of pluripotency and increased plasmic processes typical of neuronal morphology. Changes lineage restriction. in morphology were accompanied by reduced expression of The biosynthetic pathways and enzymes involved in Oct-3/4 (3-fold) (Fig. 2 and Table 1), which has been shown to GAG biosynthesis are well defined and the enzymes and be a pluripotency marker [3]. The expression of Nestin, a their isoforms have been found to be differentially expressed marker for neural differentiation [16], increased 3-fold sug- in various cell types [9–12]. GAGs are linear, sulfated and gesting proliferation of neural progenitor cells. There were no highly charged heterogeneous polysaccharides consisting of changes in expression of beta-III-tubulin (mature neuronal a repeating disaccharide unit. Polysaccharide length and fine marker) or Olig2 (oligodendrocyte marker) observed, whereas structure, in addition to the placement of protein-binding expression of glial fibrillary acidic protein (GFAP), a type III domains, are critical to the functioning of PGs in cell sig- intermediate filament protein common to cells of the central naling. Four distinct types of GAGs are present in eukary- nervous system (particularly astrocytes) was not detected. otic cells: chondroitin sulfate/dermatan sulfate (CS/DS), Expression of keratin associated protein 3-2 remained un- heparin/heparan sulfate (HP/HS), keratan sulfate, and hyalur- changed. Expression of an example marker of mesodermal onan. Modification of GAG profiles with RA treatment to origin RET9 decreased 6-fold. Expression of MYH6 was low induce the loss of pluripotency and lineage commitment
Recommended publications
  • Multiple Antibodies Identify Glypican-1 Associated with Exosomes from Pancreatic
    bioRxiv preprint doi: https://doi.org/10.1101/145706; this version posted July 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Multiple antibodies identify glypican-1 associated with exosomes from pancreatic cancer cells and serum from patients with pancreatic cancer Chengyan Dong1*, Li Huang1*, Sonia A. Melo2,3,4, Paul Kurywchak1, Qian Peng1, Christoph Kahlert5, Valerie LeBleu1# & Raghu Kalluri1# 1Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005 2Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (iI3S), 4200 Porto, Portugal; 3Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200 Porto, Portugal; 4Medical School, Porto University (FMUP), 4200 Porto, Portugal 5 Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Germany * co-first authors # co-corresponding authors Exosomes are man-sized vesicles shed by all cells, including cancer cells. Exosomes can serve as novel liquid biopsies for diagnosis of cancer with potential prognostic value. The exact mechanism/s associated with sorting or enrichment of cellular components into exosomes are still largely unknown. We reported Glypican-1 (GPC1) on the surface of cancer exosomes and provided evidence for the enrichment of GPC1 in exosomes from patients with pancreatic cancer1. Several different laboratories have validated this novel conceptual advance and reproduced the original experiments using multiple antibodies from different sources. These include anti-GPC1 antibodies from ThermoFisher (PA5- 28055 and PA-5-24972)1,2, Sigma (SAB270028), Abnova (MAB8351, monoclonal antibodies clone E9E)3, EMD Millipore (MAB2600-monoclonal antibodies)4, SantaCruz5, and R&D Systems (BAF4519)2.
    [Show full text]
  • Derived Cytotoxic T-Lymphocyte Epitope Peptide
    INTERNATIONAL JOURNAL OF ONCOLOGY 42: 831-838, 2013 Identification of an H2-Kb or H2-Db restricted and glypican-3- derived cytotoxic T-lymphocyte epitope peptide TATSUAKI IWAMA1,2, KAZUTAKA HORIE1, TOSHIAKI YOSHIKAWA1, DAISUKE NOBUOKA1, MANAMI SHIMOMURA1, YU SAWADA1 and TETSUYA NAKATSURA1,2 1Division of Cancer Immunotherapy, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577; 2Research Institute for Biomedical Sciences, Tokyo University of Science, Japan Received November 15, 2012; Accepted December 28, 2012 DOI: 10.3892/ijo.2013.1793 Abstract. Glypican-3 (GPC3) is overexpressed in human cholangiocarcinoma (ICC), with HCC as the most common. hepatocellular carcinoma (HCC) but not expressed in normal Regarding HCC therapy, hepatectomy, percutaneous local tissues except for placenta and fetal liver and therefore is an therapy and transcatheter arterial embolization (TAE) are ideal target for cancer immunotherapy. In this study, we common, but the recurrence rate with conventional therapies for identified an H2-Kb or H2-Db restricted and murine GPC3 advanced HCC patients is still high (2). Therefore, developing a (mGPC3)-derived cytotoxic T-lymphocyte (CTL) epitope novel curative therapy or an effective adjuvant therapy for HCC peptide in C57BL/6 (B6) mice, which can be used in the design is important. of preclinical studies of various therapies with GPC3-target Recently, immunotherapy, which consists of a peptide immunotherapy in vivo. First, 11 types of 9- to 10-mer peptides vaccine, protein vaccine, or DNA vaccine, has become a predicted to bind with H2-Kb or H2-Db were selected from the potentially promising option for HCC (3,4).
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • A Krasg12d-Driven Genetic Mouse Model of Pancreatic Cancer Requires Glypican-1 for Efficient Proliferation and Angiogenesis
    Oncogene (2012) 31, 2535–2544 & 2012 Macmillan Publishers Limited All rights reserved 0950-9232/12 www.nature.com/onc ORIGINAL ARTICLE A KrasG12D-driven genetic mouse model of pancreatic cancer requires glypican-1 for efficient proliferation and angiogenesis CA Whipple1,2, AL Young1,2 and M Korc1,2 1Departments of Medicine and Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH, USA and 2The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA Pancreatic ductal adenocarcinomas (PDACs) exhibit Introduction multiple molecular alterations and overexpress heparin- binding growth factors (HBGFs) and glypican-1 (GPC1), Pancreatic ductal adenocarcinoma (PDAC) is a highly a heparan sulfate proteoglycan that promotes efficient metastatic malignancy that is the fourth leading cause signaling by HBGFs. It is not known, however, whether of cancer death in the United States, with an overall GPC1 has a role in genetic mouse models of PDAC. 5-year survival rate of o6% (Siegel et al., 2011). PDAC Therefore, we generated a GPC1 null mouse that exhibits a wide range of genetic and epigenetic altera- combines pancreas-specific Cre-mediated activation of tions including a high frequency (90–95%) of activating oncogenic Kras (KrasG12D) with deletion of a conditional Kras mutations, homozygous deletion (85%) and INK4A/Arf allele (Pdx1-Cre;LSL-KrasG12D;INK4A/ epigenetic silencing (15%) of the tumor suppressor Arflox/lox;GPC1À/À mice). By comparison with Pdx1- genes p16INK4A/p14ARF (INK4A), as well as an over- Cre;LSL-KrasG12D;INK4A/Arflox/lox mice that were wild abundance of heparin-binding growth factors (HBGFs) type for GPC1, the Pdx1-Cre;LSL-KrasG12D;INK4A/ (Korc, 2003; Schneider and Schmid, 2003).
    [Show full text]
  • Is Osteopontin a Friend Or Foe of Cell Apoptosis in Inflammatory
    International Journal of Molecular Sciences Review Is Osteopontin a Friend or Foe of Cell Apoptosis in Inflammatory Gastrointestinal and Liver Diseases? Tomoya Iida ID , Kohei Wagatsuma, Daisuke Hirayama and Hiroshi Nakase * Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo 060-8543, Japan; [email protected] (T.I.); [email protected] (K.W.); [email protected] (D.H.) * Correspondence: [email protected]; Tel.: +81-11-611-2111; Fax: +81-11-611-2282 Received: 22 November 2017; Accepted: 19 December 2017; Published: 21 December 2017 Abstract: Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed. Keywords: osteopontin; apoptosis; gastrointestinal; liver; inflammation; cacinogenesis 1. Introduction Cancer epidemiologists have described three carcinogenesis factors: daily diet, smoking, and inflammation [1].
    [Show full text]
  • Correlation of Glypican-1 Expression with TGF-ß, BMP, and Activin Receptors in Pancreatic Ductal Adenocarcinoma
    1139-1148 3/10/06 15:55 Page 1139 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 1139-1148, 2006 Correlation of glypican-1 expression with TGF-ß, BMP, and activin receptors in pancreatic ductal adenocarcinoma HANY KAYED1, JÖRG KLEEFF1, SHEREEN KELEG1, XIAOHUA JIANG1, ROLAND PENZEL2, THOMAS GIESE3, HANSWALTER ZENTGRAF4, MARKUS W. BÜCHLER1, MURRAY KORC5 and HELMUT FRIESS1 1Department of General Surgery, Institutes of 2Pathology and 3Immunology, University of Heidelberg; 4Department of Applied Tumor Virology, German Cancer Research Center, Heidelberg, Germany; 5Departments of Medicine, Pharmacology and Toxicology, Dartmouth Hitchcock Medical Center, Dartmouth Medical School, Lebanon, NH 03756, USA Received March 23, 2006; Accepted May 29, 2006 Abstract. Glypican1 (GPC1) is a cell surface heparan sulfate induction and Smad2 phosphorylation. In conclusion, enhanced proteoglycan that acts as a co-receptor for heparin-binding GPC1 expression correlates with BMP and activin receptors growth factors as well as for members of the TGF-ß family. in pancreatic cancer. GPC1 down-regulation suppresses GPC1 plays a role in pancreatic cancer by regulating growth pancreatic cancer cell growth and slightly modifies signaling factor responsiveness. In view of the importance of members of members of the TGF-ß family of growth factors. of the TGF-ß family in pancreatic cancer, in the present study, the role of GPC1 in TGF-ß, BMP and activin signaling was Introduction analyzed. Quantitative RT-PCR and immunohistochemistry were utilized to analyze GPC1 and TGF-ß, BMP and activin Glypican1 (GPC1) is a member of the family of heparan sulfate receptor expression levels. Panc-1 and T3M4 pancreatic cancer proteoglycans (HSPG), which are ubiquitous proteins that cells were transfected in a stable manner with a GPC1 antisense are attached to the extracytoplasmic surface of the cell expression construct.
    [Show full text]
  • Papillomavirus Binding and Entry
    PAPILLOMAVIRUS BINDING AND ENTRY The heparan sulfate receptor and inhibition by lactoferrin by Peter Drobni Department of Clinical Microbiology, Virology Umeå University, Sweden 2005 Front cover: Binding of papillomavirus to glycoseaminoglycans. Aquarelle by Mirva Drobni © 2005 Peter Drobni Printed in Sweden by Solfjädern Offset AB Umeå 2005 tom tom Till Elliot & Mirva TABLE OF CONTENTS 1. Abstract 9 2. List of papers 10 3. Abbreviations 11 4. Sammanfattning 12 5. Summary of papers 14 5.1 Paper I 14 5.2 Paper II 14 5.3 Paper III 15 5.4 Paper IV 15 6. Introduction 17 6.1 Human papillomavirus (HPV) 17 6.1.1 HPV History 17 6.1.2 Phylogeny 18 6.1.3 Genome organization 19 6.1.4 Structure 19 6.1.5 Life cycle 21 6.1.6 VLPs as research tools 22 6.1.7 Receptors for human papillomaviruses 23 6.1.8 Internalization 23 6.1.9 PV proteins 24 6.1.10 Disease 27 6.1.11 Therapy 29 6.1.12 Immune response 31 6.1.13 Vaccines 33 7 6.2 Glycosaminoglycans 35 6.2.1 General 35 6.2.2 As viral receptors 36 6.3 Lactoferrin 36 6.3.1 Structure 37 6.3.2 Antiviral mechanism 38 6.3.3 Lactoferricin 38 7. Aim of the thesis 39 8. Materials and methods 40 8.1 Cell lines 40 8.2 VLP production 40 8.3 CFDA-SE labeling 40 8.4 Binding assays 41 8.5 Internalization assays 41 9. Results and discussion 42 9.1 As a tool to study infection 42 9.2 CFDA-SE as an internalization assay 42 9.3 Heparan sulfate as an HPV receptor 43 9.4 Lactoferrin and lactoferricin as HPV inhibitors 44 9.5 Results from paper I 46 9.6 Results from paper II 46 9.7 Results from paper III 47 9.8 Results from paper IV 48 10.
    [Show full text]
  • Up-Regulation of Glypican-3 in Human Hepatocellular Carcinoma
    ANTICANCER RESEARCH 30: 5055-5062 (2010) Up-regulation of Glypican-3 in Human Hepatocellular Carcinoma MASAHIRO SUZUKI1, KAZUSHI SUGIMOTO1, JUNICHIRO TANAKA1, MASAHIKO TAMEDA1, YUJI INAGAKI1, SATOKO KUSAGAWA1, KEIICHIRO NOJIRI1, TETSUYA BEPPU1, KENTARO YONEDA1, NORIHIKO YAMAMOTO1, MASAAKI ITO1, MISAO YONEDA2, KAZUHIKO UCHIDA3, KOUJIRO TAKASE1 and KATSUYA SHIRAKI1 1Department of Internal Medicine, and 2Department of Pathology, Mie Graduate University School of Medicine, Tsu, Mie 514-8507, Japan; 3Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan Abstract. Aim: To investigate the expression and chronic liver disease and HCC found that serum GPC3 significance of glypican-3 (GPC3) in human hepatocellular protein levels were significantly elevated in the latter. carcinoma (HCC). Materials and Methods: DNA chips were Conclusion: GPC3 is highly expressed in HCC, and its used to measure the expression of mRNAs for members of the expression pattern differs according to the degree of cell glypican and syndecan families of heparan sulfate differentiation. In addition, the expression of GPC3 is proteoglycans (HSPGs) in normal liver tissue, non-tumor regulated by Janus kinase-STAT signaling. GPC3 shows tissues and HCC. GPC3 protein expression was investigated potential as a tumor biomarker for HCC that can be used for by immunohistochemical staining in the tissues samples and molecularly targeted therapy. Western blotting in human HCC cell lines. In addition, the levels of GPC3 protein in the blood were determined by Hepatocellular carcinoma (HCC) is one of the most common ELISA. Results: Only the expression of GPC3 was found to carcinomas worldwide. The prognosis of HCC is generally be markedly elevated in HCCs.
    [Show full text]
  • Therapeutically Targeting Glypican-2 Via Single-Domain Antibody-Based
    Therapeutically targeting glypican-2 via single-domain PNAS PLUS antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma Nan Lia, Haiying Fua,b, Stephen M. Hewittc, Dimiter S. Dimitrovd, and Mitchell Hoa,1 aLaboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bDepartment of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China; cLaboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and dCancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 Edited by Dennis A. Carson, University of California, San Diego, La Jolla, CA, and approved July 3, 2017 (received for review April 11, 2017) Neuroblastoma is a childhood cancer that is fatal in almost half of in the nervous system (7). It is known to participate in cellular patients despite intense multimodality treatment. This cancer is adhesion and is thought to regulate the growth and guidance of derived from neuroendocrine tissue located in the sympathetic axons (8). The role of GPC2 in the pathogenesis of neuroblastoma nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate or any other cancers has not been reported. proteoglycan that is important for neuronal cell adhesion and The Wnt/β-catenin signaling pathway is highly conserved and neurite outgrowth. In this study, we find that GPC2 protein is highly plays an essential role in various processes of embryonic devel- expressed in about half of neuroblastoma cases and that high opment (9). Additionally, it has been linked to pathogenesis of GPC2 expression correlates with poor overall survival compared numerous adult and pediatric tumors (10).
    [Show full text]
  • CIC-DUX4 Induces Small Round Cell Sarcomas Distinct from Ewing
    Published OnlineFirst April 12, 2017; DOI: 10.1158/0008-5472.CAN-16-3351 Cancer Molecular and Cellular Pathobiology Research CIC-DUX4 Induces Small Round Cell Sarcomas Distinct from Ewing Sarcoma Toyoki Yoshimoto1,2, Miwa Tanaka1, Mizuki Homme1, Yukari Yamazaki1, Yutaka Takazawa3, Cristina R. Antonescu4, and Takuro Nakamura1 Abstract CIC-DUX4 sarcoma (CDS) or CIC-rearranged sarcoma is a short spindle cells. Gene-expression profiles of CDS and eMC subcategory of small round cell sarcoma resembling the morpho- revealed upregulation of CIC-DUX4 downstream genes such as logical phenotypes of Ewing sarcoma (ES). However, recent PEA3 family genes, Ccnd2, Crh, and Zic1. IHC analyses for both clinicopathologic and molecular genetic analyses indicate that mouse and human tumors showed that CCND2 and MUC5AC CDS is an independent disease entity from ES. Few ancillary are reliable biomarkers to distinguish CDS from ES. Gene silenc- markers have been used in the differential diagnosis of CDS, and ing of CIC-DUX4 as well as Ccnd2, Ret, and Bcl2 effectively additional CDS-specific biomarkers are needed for more defini- inhibited CDS tumor growth in vitro. The CDK4/6 inhibitor tive classification. Here, we report the generation of an ex vivo palbociclib and the soft tissue sarcoma drug trabectedin also mouse model for CDS by transducing embryonic mesenchymal blocked the growth of mouse CDS. In summary, our mouse cells (eMC) with human CIC-DUX4 cDNA. Recipient mice trans- model provides important biological information about CDS planted with eMC-expressing CIC-DUX4 rapidly developed an and provides a useful platform to explore biomarkers and ther- aggressive, undifferentiated sarcoma composed of small round to apeutic agents for CDS.
    [Show full text]
  • Heparan Sulfated Glypican-4 Is Released from Astrocytes by Proteolytic Shedding and GPI- Anchor Cleavage Mechanisms
    Research Article: New Research | Development Heparan sulfated Glypican-4 is released from astrocytes by proteolytic shedding and GPI- anchor cleavage mechanisms https://doi.org/10.1523/ENEURO.0069-21.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0069-21.2021 Received: 17 February 2021 Revised: 9 July 2021 Accepted: 15 July 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Huang and Park This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 1. Manuscript Title: Heparan sulfated Glypican-4 is released from astrocytes by proteolytic 2 shedding and GPI-anchor cleavage mechanisms 3 4 2. Abbreviated Title: GPC4 is released from astrocytes largely by proteolytic shedding 5 6 3. Authors: 7 Kevin Huang1, 2, Sungjin Park1 8 1 University of Utah School of Medicine, Department of Neurobiology, Salt Lake City, UT 84112 9 2 University of Utah, Interdepartmental Program in Neuroscience, Salt Lake City, UT 84112 10 11 4. Author Contributions: KH and SP designed research; KH performed research; KH and SP 12 analyzed data; KH and SP wrote the paper. 13 14 5. Correspondence should be addressed to: 15 Sungjin Park, PhD 16 Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake 17 City, UT 84112, USA.
    [Show full text]
  • Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates
    International Journal of Molecular Sciences Article Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates Anna Paola Carreca 1,† , Veronica Maria Pravatà 2,3,† , Danilo D’Apolito 4,5 , Simone Bonelli 1, Matteo Calligaris 1,6, Elisa Monaca 7 , Stephan A. Müller 3, Stefan F. Lichtenthaler 3,8,9 and Simone Dario Scilabra 1,* 1 Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; [email protected] (A.P.C.); [email protected] (S.B.); [email protected] (M.C.) 2 Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; [email protected] 3 German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Strasse 17, 81377 Munich, Germany; [email protected] (S.A.M.); [email protected] (S.F.L.) 4 Unità di Medicina di Laboratorio e Biotecnologie Avanzate, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Via E. Tricomi 5, 90127 Palermo, Italy; [email protected] 5 Unità Prodotti Cellulari (GMP), Fondazione Ri.MED c/o IRCCS-ISMETT, Via E. Tricomi 5, 90127 Palermo, Italy 6 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy 7 Fondazione Ri.MED, 90133 Palermo, Italy; [email protected] Citation: Carreca, A.P.; Pravatà, V.M.; 8 Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany D’Apolito, D.; Bonelli, S.; Calligaris, 9 Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany M.; Monaca, E.; Müller, S.A.; * Correspondence: [email protected]; Tel.: +39-(0)91-219-2430 Lichtenthaler, S.F.; Scilabra, S.D.
    [Show full text]