Role of Cellular Prion Protein in Central Nervous System Myelination

Total Page:16

File Type:pdf, Size:1020Kb

Role of Cellular Prion Protein in Central Nervous System Myelination Scuola Internazionale Superiore di Studi Avanzati - SISSA Trieste, Italy ROLE OF CELLULAR PRION PROTEIN IN CENTRAL NERVOUS SYSTEM MYELINATION Thesis submitted for the degree of “Philosophiae Doctor” CANDIDATE SUPERVISORS Elisa Meneghetti Prof. Giuseppe Legname, Ph.D. Dr.Federico Benetti, Ph.D. Academic year 2014/2015 2 DECLARATION The work described in this thesis has been carried out at Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy, from November 2011 to October 2015. During my Ph.D. course I contributed to two research articles: - Gasperini, L., E. Meneghetti, B. Pastore, F. Benetti and G. Legname (2015). "Prion Protein and Copper Cooperatively Protect Neurons by Modulating NMDA Receptor Through S-nitrosylation." Antioxidants & Redox Signaling 22(9): 772-784. Included in the “APPENDIX” section. - Gasperini, L., Meneghetti, E., Legname, G. and Benetti, F. “The Absence of the Cellular Prion Protein Impairs Copper Metabolism and Copper-Dependent Ferroxidase Activity, Thus Affecting Iron Mobilization.” To be submitted. 3 4 INDEX LIST OF ABBREVIATIONS .............................................................................................................. 7 ABSTRACT ............................................................................................................................................ 11 INTRODUCTION ............................................................................................................................... 13 PRION DISEASES ............................................................................................................................... 13 PRION PARADIGM ............................................................................................................................ 15 PRION NEUROTOXICITY ................................................................................................................... 16 THE CELLULAR PRION PROTEIN ................................................................................................. 17 PrPC EXPRESSION AND SUBCELLULAR LOCALIZATION ................................................................ 19 PrP KNOCK-OUT AND TRANSGENIC MICE ..................................................................................... 21 C PHYSIOLOGICAL FUNCTION OF PrP ........................................................................................ 25 PrPC ROLE IN METAL HOMEOSTASIS .............................................................................................. 26 PrPC PROTECTIVE ROLE IN OXIDATIVE STRESS ............................................................................. 29 PrPC AND SYNAPTIC FUNCTIONALITY ............................................................................................ 32 PrPC ROLE IN MYELINATION ............................................................................................................ 36 AIM ........................................................................................................................................................... 51 MATERIALS AND METHODS .................................................................................................... 53 ANIMALS ............................................................................................................................................. 53 TISSUE HOMOGENIZATION AND MEMBRANE PURIFICATION ..................................... 53 ENZYMATIC CHOLESTEROL .......................................................................................................... 54 PROTEIN EXPRESSION ANALYSIS ............................................................................................... 54 ANTIBODIES ....................................................................................................................................... 55 RNA EXTRACTION AND TEAL TIME PCR ................................................................................. 55 ELECTRON MICROSCOPY .............................................................................................................. 58 5 ORGANOTYPIC HIPPOCAMPAL CULTURES PREPARATION ............................................. 58 ORGANOTYPIC HIPPOCAMPAL CULTURES CUPRIZONE TREATMENT ....................................... 58 MTS CELL VIABILITY ASSAY .............................................................................................................. 59 STATISTICAL ANALYSES ................................................................................................................. 59 RESULTS ................................................................................................................................................ 61 ANALYSIS OF PERIPHERAL NERVOUS SYSTEM MYELINATION IN Prnp+/+ AND 0/0 Prnp MICE ....................................................................................................................................... 61 SCIATIC NERVE CHOLESTEROL CONTENT ...................................................................................... 61 MYELIN PROTEIN EXPRESSION ANALYSIS IN SCIATIC NERVES ................................................... 62 TRANSCRIPTIONAL ANALYSIS OF MYELIN GENES IN THE PNS ................................................... 65 ANALYSIS OF CENTRAL NERVOUS SYSTEM MYELINATION IN Prnp+/+ AND Prnp0/0 MICE ...................................................................................................................................................... 66 BRAIN CHOLESTEROL MEASUREMENT .......................................................................................... 66 MYELIN PROTEIN EXPRESSION ANALYSIS IN THE BRAIN ............................................................ 67 TRANSCRIPTIONAL ANALYSIS OF GENES INVOLVED IN CNS MYELINATION ............................. 71 ELECTRON MICROSCOPY ANALYSIS OF CNS MYELIN................................................................... 74 ORGANOTYPIC HIPPOCAMPAL SLICE CULTURES AS AN EX VIVO MODEL FOR MYELINATION ................................................................................................................................... 76 MYELIN PROTEIN EXPRESSION ANALYSIS IN OHC ........................................................................ 76 TRANSCRIPTIONAL ANALYSIS OF MYELIN GENES IN OHC .......................................................... 78 OHC TREATMENT WITH CUPRIZONE ............................................................................................. 80 DISCUSSION ........................................................................................................................................ 83 CONCLUSIONS AND PERSPECTIVES ................................................................................... 92 ACKNOWLEDGEMENTS .............................................................................................................. 95 BIBLIOGRAPHY ................................................................................................................................. 97 APPENDIX .......................................................................................................................................... 117 6 LIST OF ABBREVIATIONS AD: Alzheimer’s disease AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ATP: adenosine triphosphate Atp7a: ATPase 1 BACE1: β-secretase 1 BCA: bicinchoninic acid BrdU: 5’-bromo-2’-deoxyuridine BSA: bovine serum albumin BSE: bovine spongiform encephalopathy CaM: calmodulin CaMKII: Ca2+/calmodulin-dependent protein kinase II CC: charged cluster CD: central domain CDP: chronic demyelinating polyneuropathy CJD: Creutzfeldt-Jakob disease CNS: central nervous system CTR1: copper transporter 1 CWD: chronic wasting disease CZ: cuprizone DAPI: 4',6-diamidino-2-phenylindole DIV: days in vitro Dpl: Doppel EAE: experimental allergic encephalitis 7 ER: endoplasmic reticulum fALS: familial amyotrophic lateral sclerosis fALS: familial amyotrophic lateral sclerosis FFI: fatal familial insomnia Gapdh: glyceraldehyde 3-phosphate dehydrogenase GluN(1, 2A-D, 3A-B): NMDAR subunit (1, 2A-D, 3A-B) GPI: glycosylphosphatidylinositol GSS: Gerstmann, Sträussler and Scheinker syndrome HC: hydrophobic core HRP: horseradish peroxidase KO: knock-out L-MAG: long myelin-associated glycoprotein L-MPZ: large-myelin protein zero LPC: lysolecithin, lysophosphatidylcholine MAG: myelin-associated glycoprotein MBP: myelin basic protein MOG: myelin oligodendrocyte glycoprotein MPZ: myelin protein zero MS: multiple sclerosis MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium NeuN: neuronal nuclei NG2: neural/glial antigen 2 NMDA: N-methyl-D-aspartate NMDAR: N-methyl-D-aspartate receptor nNOS: neuronal nitric oxide synthase 8 NO: nitric oxide NRG: neuregulin NTC: non-template control OHC: organotypic hippocampal cultures OPC: oligodendrocyte precursor cells OR: octapeptide repeat P: postnatal day PBS: phosphate-buffered saline PD: Parkinson’s disease PES: phenazine ethosulfate PFA: paraformaldehyde PKA: protein kinase A PKC: protein kinase C PLP: proteolipid protein PNS: periferal nervous system PrPC: cellular prion protein PrPSc: scrapie prion protein ROS: reactive oxygen species RT: room temperature S-MAG: short myelin-associated glycoprotein SN: sciatic nerve SNO: S-nitrosylation SOD: superoxide dismutase Sox10: (sex determining region Y)-box 10 TBST: Tris-Buffered Saline plus Tween 20 9 TGN: trans-Golgi network TSE: transmissible spongiform encephalopathies Tubb3: βIII-tubulin WB: Western
Recommended publications
  • Human Plasma and Recombinant Hemopexins: Heme Binding Revisited
    International Journal of Molecular Sciences Article Human Plasma and Recombinant Hemopexins: Heme Binding Revisited Elena Karnaukhova 1,*, Catherine Owczarek 2, Peter Schmidt 2, Dominik J. Schaer 3 and Paul W. Buehler 4,5,* 1 Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA 2 CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; [email protected] (C.O.); [email protected] (P.S.) 3 Division of Internal Medicine, University Hospital of Zurich, 8091 Zurich, Switzerland; [email protected] 4 Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA 5 The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA * Correspondence: [email protected] (E.K.); [email protected] (P.W.B.) Abstract: Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system.
    [Show full text]
  • Mrna Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection
    International Journal of Molecular Sciences Review mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection 1, 1, 2 1,3, Shuqin Xu y, Kunpeng Yang y, Rose Li and Lu Zhang * 1 State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; [email protected] (S.X.); [email protected] (K.Y.) 2 M.B.B.S., School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] 3 Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China * Correspondence: [email protected]; Tel.: +86-13524278762 These authors contributed equally to this work. y Received: 30 July 2020; Accepted: 30 August 2020; Published: 9 September 2020 Abstract: Messenger ribonucleic acid (mRNA)-based drugs, notably mRNA vaccines, have been widely proven as a promising treatment strategy in immune therapeutics. The extraordinary advantages associated with mRNA vaccines, including their high efficacy, a relatively low severity of side effects, and low attainment costs, have enabled them to become prevalent in pre-clinical and clinical trials against various infectious diseases and cancers. Recent technological advancements have alleviated some issues that hinder mRNA vaccine development, such as low efficiency that exist in both gene translation and in vivo deliveries. mRNA immunogenicity can also be greatly adjusted as a result of upgraded technologies. In this review, we have summarized details regarding the optimization of mRNA vaccines, and the underlying biological mechanisms of this form of vaccines. Applications of mRNA vaccines in some infectious diseases and cancers are introduced. It also includes our prospections for mRNA vaccine applications in diseases caused by bacterial pathogens, such as tuberculosis.
    [Show full text]
  • Nano-Lactoferrin in Diagnostic, Imaging and Targeted Delivery for Cancer and Infectious Diseases Jagat R
    cer Scien an ce C & f o T Kanwar et al., J Cancer Sci Ther 2012, 4.3 l h a e n r a Journal of 1000107 r p u DOI: 10.4172/1948-5956. y o J ISSN: 1948-5956 Cancer Science & Therapy Review Article Open Access Nano-Lactoferrin in Diagnostic, Imaging and Targeted Delivery for Cancer and Infectious Diseases Jagat R. Kanwar1*, Rasika M. Samarasinghe1, Rakesh Sehgal2 and Rupinder K. Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), Centre for Biotechnology and Interdisciplinary Biosciences (BioDeakin), Institute for Technology & Research Innovation (ITRI), Deakin University, Geelong, Technology Precinct (GTP), Pigdons Road, Waurn Ponds, Geelong, Victoria 3217, Australia 2Professor, Department of Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, India-160012 Abstract Lactoferrin (Lf) is a natural occurring iron binding protein present in many mammalian excretions and involved in various physiological processes. Lf is used in the transport of iron along with other molecules and ions from the digestive system. However its the modulatory functions exhibited by Lf in connection to immune response, disease regression and diagnosis that has made this protein an attractive therapeutic against chronic diseases. Further, the exciting potentials of employing nanotechnology in advancing drug delivery systems, active disease targeting and prognosis have also shown some encouraging outcomes. This review focuses on the role of Lf in diagnosing infection, cancer, neurological and inflammatory diseases and the recent nanotechnology based strategies. Keywords: Lactoferrin; Nanodelivery; Cancer; Inflammation; fluids, mucosal secretions, pancreatic fluids and in neutrophils cells [8]. Infection; Oral administration Structurally, Lf weighs approximately 80kDa and the polypeptide folds into two globular lobes.
    [Show full text]
  • Multiple Antibodies Identify Glypican-1 Associated with Exosomes from Pancreatic
    bioRxiv preprint doi: https://doi.org/10.1101/145706; this version posted July 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Multiple antibodies identify glypican-1 associated with exosomes from pancreatic cancer cells and serum from patients with pancreatic cancer Chengyan Dong1*, Li Huang1*, Sonia A. Melo2,3,4, Paul Kurywchak1, Qian Peng1, Christoph Kahlert5, Valerie LeBleu1# & Raghu Kalluri1# 1Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77005 2Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (iI3S), 4200 Porto, Portugal; 3Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), 4200 Porto, Portugal; 4Medical School, Porto University (FMUP), 4200 Porto, Portugal 5 Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Germany * co-first authors # co-corresponding authors Exosomes are man-sized vesicles shed by all cells, including cancer cells. Exosomes can serve as novel liquid biopsies for diagnosis of cancer with potential prognostic value. The exact mechanism/s associated with sorting or enrichment of cellular components into exosomes are still largely unknown. We reported Glypican-1 (GPC1) on the surface of cancer exosomes and provided evidence for the enrichment of GPC1 in exosomes from patients with pancreatic cancer1. Several different laboratories have validated this novel conceptual advance and reproduced the original experiments using multiple antibodies from different sources. These include anti-GPC1 antibodies from ThermoFisher (PA5- 28055 and PA-5-24972)1,2, Sigma (SAB270028), Abnova (MAB8351, monoclonal antibodies clone E9E)3, EMD Millipore (MAB2600-monoclonal antibodies)4, SantaCruz5, and R&D Systems (BAF4519)2.
    [Show full text]
  • RHAMM, CD44 EXPRESSION and ERK ACTIVATION ARE LINKED in MALIGNANT HUMAN BREAST CANCER CELLS and ARE ASSOCIATED Wlth CELL Motlllty
    RHAMM, CD44 EXPRESSION AND ERK ACTIVATION ARE LINKED IN MALIGNANT HUMAN BREAST CANCER CELLS AND ARE ASSOCIATED WlTH CELL MOTlLlTY Frouz Frozan Paiwand A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Laboratory Medicine and Pathobiology University of Toronto O Copyright by Frouz Frozan Paiwand 1999 National Library Bibliothèque nationale 1*1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Sewîes senrices bibliographiques 395 Wellington Street 395. rua Ws(lingt0ri OaawaON K1AW OFtswaON K1AONI canada CaMde The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/nlm, de reproduction sur papier ou sur format électronique. The author retains owaership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. I dedicate this Master's thesis to my rnother, who is the source of my inspiration, and to rny family for their never-ending love and support. RHAMM, CD44 Expression and ERK Activation are Linked in Human Breast Cancer Cells and are Associated with Cell Motility Frouz Frozan Paiwand Master of Science, 1999 Department of Laboratory Medicine and Pathobiology University of Toronto ABSTRACT We assessed CD44 RHAMM,erk, and ras expression in human breast cancer ce11 lines that Vary as xenografts in nude mice.
    [Show full text]
  • Regulation of Intracellular Heme Trafficking Revealed by Subcellular Reporters
    Regulation of intracellular heme trafficking revealed by subcellular reporters Xiaojing Yuana,b, Nicole Rietzschela,b, Hanna Kwonc, Ana Beatriz Walter Nunod, David A. Hannae,f, John D. Phillipsg, Emma L. Ravenh, Amit R. Reddie,f, and Iqbal Hamzaa,b,1 aDepartment of Animal & Avian Sciences, University of Maryland, College Park, MD 20742; bDepartment of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742; cDepartment of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom; dInstituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; eSchool of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332; fParker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332; gDivision of Hematology, University of Utah School of Medicine, Salt Lake City, UT 84132; and hDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom Edited by Sabeeha S. Merchant, University of California, Los Angeles, CA, and approved July 11, 2016 (received for review June 20, 2016) Heme is an essential prosthetic group in proteins that reside in synthesized in the mitochondria or imported from the environ- virtually every subcellular compartment performing diverse bi- ment, heme has to be translocated across membrane barriers (22, ological functions. Irrespective of whether heme is synthesized in the 23). It has been suggested that the majority of extracellular heme mitochondria or imported from the environment, this hydrophobic is degraded through the heme oxygenase pathway to extract iron and potentially toxic metalloporphyrin has to be trafficked across from the porphyrin in mammalian cells (22, 24–28).
    [Show full text]
  • Systematic Mapping of BCL-2 Gene Dependencies in Cancer Reveals Molecular Determinants of BH3 Mimetic Sensitivity
    ARTICLE DOI: 10.1038/s41467-018-05815-z OPEN Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity Ryan S. Soderquist1, Lorin Crawford 2,3, Esther Liu1, Min Lu1, Anika Agarwal1, Grace R. Anderson1, Kevin H. Lin1, Peter S. Winter1, Merve Cakir1 & Kris C. Wood1 1234567890():,; While inhibitors of BCL-2 family proteins (BH3 mimetics) have shown promise as anti-cancer agents, the various dependencies or co-dependencies of diverse cancers on BCL-2 genes remain poorly understood. Here we develop a drug screening approach to define the sen- sitivity of cancer cells from ten tissue types to all possible combinations of selective BCL-2, BCL-XL, and MCL-1 inhibitors and discover that most cell lines depend on at least one combination for survival. We demonstrate that expression levels of BCL-2 genes predict single mimetic sensitivity, whereas EMT status predicts synergistic dependence on BCL- XL+MCL-1. Lastly, we use a CRISPR/Cas9 screen to discover that BFL-1 and BCL-w promote resistance to all tested combinations of BCL-2, BCL-XL, and MCL-1 inhibitors. Together, these results provide a roadmap for rationally targeting BCL-2 family dependencies in diverse human cancers and motivate the development of selective BFL-1 and BCL-w inhibitors to overcome intrinsic resistance to BH3 mimetics. 1 Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA. 2 Department of Statistics, Duke University, Durham, NC 27710, USA. 3Present address: Department of Biostatistics, Brown University School of Public Health, Providence, RI 02903, USA.
    [Show full text]
  • Quantitative Immunological Determination of 12 Plasma Proteins Excreted in Human Urine Collected Before and After Exercise
    Quantitative immunological determination of 12 plasma proteins excreted in human urine collected before and after exercise Jacques Poortmans, Roger W. Jeanloz J Clin Invest. 1968;47(2):386-393. https://doi.org/10.1172/JCI105735. Research Article Urine was collected from 6 healthy male adults at rest and from 20 male adults after a marathon race (25 miles). The concentrated urines were quantitatively analyzed, by single radial immunodiffusion, for their content in 12 different plasma proteins: tryptophan-rich prealbumin, albumin, α1-acid glycoprotein, α1-antitrypsin, ceruloplasmin, haptoglobin, Gc- globulin, transferrin, hemopexin, β2-glycoprotein I, γA-globulin, and γG-globulin. Albumin, γA-globulin, and γG-globulin represent the major part of the plasma proteins detected in normal urine excreted by humans at rest (12, 0.5, and 2.5 mg respectively, out of a total excretion of 17.5 mg of plasma proteins per 24 hr). The other plasma proteins were excreted at a lower rate (< 0.4 mg/24 hr). The relative content of tryptophan-rich prealbumin, α1-antitrypsin, Gc-globulin, transferrin, and γG-globulin was lower in normal urine than in normal serum, whereas that of α1-acid glycoprotein, β2-glycoprotein I, and γA-globulin was higher. The ratio of γG-globulin to γA-globulin was 4.9:1. When plotted on a logarithmic scale, no direct relationship between the molecular weight of a protein and the value of its renal clearance could be observed. Strenuous exercise increased (up to 50-fold) the excretion of plasma proteins which represent 82% of the total proteins found in urine, instead of 57% in urine collected from humans at rest.
    [Show full text]
  • Uncoupling of Myelin Assembly and Schwann Cell Differentiation by Transgenic Overexpression of Peripheral Myelin Protein 22
    The Journal of Neuroscience, June 1, 2000, 20(11):4120–4128 Uncoupling of Myelin Assembly and Schwann Cell Differentiation by Transgenic Overexpression of Peripheral Myelin Protein 22 Stephan Niemann,1 Michael W. Sereda,1 Ueli Suter,2 Ian R. Griffiths,3 and Klaus-Armin Nave1 1Zentrum fu¨ r Molekulare Biologie (ZMBH), University of Heidelberg, D-69120 Heidelberg, Germany, 2Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, Eidgeno¨ ssische Technische Hochschule- Hoenggerberg, CH-8093 Zu¨ rich, Switzerland, and 3Applied Neurobiology Group, Department of Veterinary Clinical Studies, University of Glasgow, Glasgow G61 1QH, United Kingdom We have generated previously transgenic rats that overexpress thermore, an aberrant coexpression of early and late Schwann peripheral myelin protein 22 (PMP22) in Schwann cells. In the cell markers was observed. PMP22 itself acquires complex nerves of these animals, Schwann cells have segregated with glycosylation, suggesting that trafficking of the myelin protein axons to the normal 1:1 ratio but remain arrested at the pro- through the endoplasmic reticulum is not significantly impaired. myelinating stage, apparently unable to elaborate myelin We suggest that PMP22, when overexpressed, accumulates in sheaths. We have examined gene expression of these dysmy- a late Golgi–cell membrane compartment and uncouples mye- elinating Schwann cells using semiquantitative reverse lin assembly from the underlying program of Schwann cell transcription-PCR and immunofluorescence analysis. Unex- differentiation. pectedly, Schwann cell differentiation appears to proceed nor- Key words: transgenic disease model; Charcot-Marie-Tooth mally at the molecular level when monitored by the expression neuropathy; myelin disease; axon-Schwann cell interaction; ab- of mRNAs encoding major structural proteins of myelin.
    [Show full text]
  • Derived Cytotoxic T-Lymphocyte Epitope Peptide
    INTERNATIONAL JOURNAL OF ONCOLOGY 42: 831-838, 2013 Identification of an H2-Kb or H2-Db restricted and glypican-3- derived cytotoxic T-lymphocyte epitope peptide TATSUAKI IWAMA1,2, KAZUTAKA HORIE1, TOSHIAKI YOSHIKAWA1, DAISUKE NOBUOKA1, MANAMI SHIMOMURA1, YU SAWADA1 and TETSUYA NAKATSURA1,2 1Division of Cancer Immunotherapy, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577; 2Research Institute for Biomedical Sciences, Tokyo University of Science, Japan Received November 15, 2012; Accepted December 28, 2012 DOI: 10.3892/ijo.2013.1793 Abstract. Glypican-3 (GPC3) is overexpressed in human cholangiocarcinoma (ICC), with HCC as the most common. hepatocellular carcinoma (HCC) but not expressed in normal Regarding HCC therapy, hepatectomy, percutaneous local tissues except for placenta and fetal liver and therefore is an therapy and transcatheter arterial embolization (TAE) are ideal target for cancer immunotherapy. In this study, we common, but the recurrence rate with conventional therapies for identified an H2-Kb or H2-Db restricted and murine GPC3 advanced HCC patients is still high (2). Therefore, developing a (mGPC3)-derived cytotoxic T-lymphocyte (CTL) epitope novel curative therapy or an effective adjuvant therapy for HCC peptide in C57BL/6 (B6) mice, which can be used in the design is important. of preclinical studies of various therapies with GPC3-target Recently, immunotherapy, which consists of a peptide immunotherapy in vivo. First, 11 types of 9- to 10-mer peptides vaccine, protein vaccine, or DNA vaccine, has become a predicted to bind with H2-Kb or H2-Db were selected from the potentially promising option for HCC (3,4).
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • Thrombocytopenia and Intracranial Venous Sinus Thrombosis After “COVID-19 Vaccine Astrazeneca” Exposure
    Journal of Clinical Medicine Article Thrombocytopenia and Intracranial Venous Sinus Thrombosis after “COVID-19 Vaccine AstraZeneca” Exposure Marc E. Wolf 1,2 , Beate Luz 3, Ludwig Niehaus 4 , Pervinder Bhogal 5, Hansjörg Bäzner 1,2 and Hans Henkes 6,7,* 1 Neurologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany; [email protected] (M.E.W.); [email protected] (H.B.) 2 Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, D-68167 Mannheim, Germany 3 Zentralinstitut für Transfusionsmedizin und Blutspendedienst, Klinikum Stuttgart, D-70174 Stuttgart, Germany; [email protected] 4 Neurologie, Rems-Murr-Klinikum Winnenden, D-71364 Winnenden, Germany; [email protected] 5 Department of Interventional Neuroradiology, The Royal London Hospital, Barts NHS Trust, London E1 1FR, UK; [email protected] 6 Neuroradiologische Klinik, Klinikum Stuttgart, D-70174 Stuttgart, Germany 7 Medical Faculty, University Duisburg-Essen, D-47057 Duisburg, Germany * Correspondence: [email protected]; Fax: +49-711-278-345-09 Abstract: Background: As of 8 April 2021, a total of 2.9 million people have died with or from the coronavirus infection causing COVID-19 (Corona Virus Disease 2019). On 29 January 2021, the European Medicines Agency (EMA) approved a COVID-19 vaccine developed by Oxford University Citation: Wolf, M.E.; Luz, B.; and AstraZeneca (AZD1222, ChAdOx1 nCoV-19, COVID-19 vaccine AstraZeneca, Vaxzevria, Cov- Niehaus, L.; Bhogal, P.; Bäzner, H.; ishield). While the vaccine prevents severe course of and death from COVID-19, the observation of Henkes, H. Thrombocytopenia and pulmonary, abdominal, and intracranial venous thromboembolic events has raised concerns. Objec- Intracranial Venous Sinus Thrombosis after “COVID-19 Vaccine tive: To describe the clinical manifestations and the concerning management of patients with cranial AstraZeneca” Exposure.
    [Show full text]