Traceability of the Mycorrhizal Symbiosis in the Controlled Production of Edible Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

Traceability of the Mycorrhizal Symbiosis in the Controlled Production of Edible Mushrooms Traceability of the mycorrhizal symbiosis in the controlled production of edible mushrooms Traçabilitat de la simbiosi micorízica en la producció controlada de fongs comestibles Herminia De la Varga Pastor Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – SenseObraDerivada 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – SinObraDerivada 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 3.0. Spain License. TRACEABILITY OF THE MYCORRHIZAL SYMBIOSIS ON THE CONTROLLED PRODUCTION OF EDIBLE FUNGI Traçabilitat de la simbiosi micorízica en la producció controlada de fongs comestibles Herminia De la Varga Pastor DOCTORAL THESIS 2013 Tesi realitzada al Institut de Recerca i Programa de Doctorat en Biodiversitat: Tecnologia Agroalimentàries, Centre de 2008-2013. Facultat de Biologia de la Cabrils. Subprograma de Patologia Vegetal. Universitat de Barcelona Traceability of the mycorrhizal symbiosis in the controlled production of edible mushrooms Traçabilitat de la simbiosi micorízica en la producció controlada de fongs comestibles Memòria presentada per Herminia De la Varga Pastor per optar al grau de Doctora per la Universitat de Barcelona Doctoranda Tutor de Tesi Herminia De la Varga Pastor Jaume Llistosella Vidal (UB, Biologia) Director de Tesi Codirector de Tesi Joan Pera Álvarez (IRTA, Cabrils) Xavier Parladé Izquierdo (IRTA, Cabrils) 2 Traceability of the mycorrhizal symbiosis in the controlled production of edible mushrooms %0_+#,21 Amb aquestes línies prèvies m’agradaria mostrar el meu agraïment a totes aquelles persones que d’una manera o una altra han contribuït a que el treball realitzat durant el últims quatre anys, hagi acabat sent una realitat reflectida en aquesta tesi. En primer lloc mostrar el meu agraïment al Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) per donar-me l’oportunitat de realitzar el doctorat en atorgar-me una beca del Programa de Becas Predoctorales para la formación de personal investigador. Beca que he pogut gaudir i realitzar a l’Institut de Recerca i Tecnologia Agroalimentàries (IRTA), al Centre de Cabrils, a qui també agraeixo l’haver-me permès formar part del seu equip i fer us de les seves instal·lacions. En especial agrair l’excel·lent acollida per part de totes les persones que formen el subprograma de Patologia vegetal, tots heu contribuït d’alguna manera a aquesta tesi; però sobretot, res d’aquesta feina hagués estat possible sense el Dr. Joan Pera i el Dr. Xavier Parladé, director i codirector d’aquesta tesi doctoral. A tots dos agrair l’oportunitat de formar part del seu equip, per bolcar-me tots els seus coneixements i contagiar-me les ganes d’investigar i fer ciència així com per l’excel·lent tracte personal i totes les oportunitats que m’han obert al treballar amb ells. Al Dr. Jaume Llistosella, professor del departament de Biologia Vegetal de la Universitat de Barcelona i tutor d’aquesta tesi, per acceptar tutoritzar la tesi i per tots els bons consells que sempre he rebut d’ell. La feina feta a aquesta tesi ha estat finançada pels diferents projectes en els que he format part de l’equip investigador: RTA2006-00095-CO2-02 INIA (Ministerio de Educación y Ciencia-MEC), AGL2009-12884-C03-01 Ministerio de Ciencia e Innovación (MICINN) i RM2010-00002-C03-02 INIA (Ministerio de Economia y Competitividad-MINECO). Agrair també a tots als companys d’aquests projectes els coneixements, la feina, les mostres i les experiències compartides, en especial a Beatriz Águeda, Teresa Ágreda, al Dr. Fernándo Martínez Peña, a la Dra. Ana María De Miguel, a la Dra. Luz Marina Fernández i a la Dra. Sara Hortal gran part d’aquesta tesi no hagués estat possible sense la seva col·laboració i els seus coneixements. 3 Je veux remercier l'INRA de Nancy, Ecogenomics of Interactions Lab, de me permettre de procéder à un séjour de recherche avec eux. Une partie de ce travail a été réalisé grâce à eux. Je veux surtout remercier le Dr. Claude Murat, pour diriger mon travail là; le Dr. Francis Matrin, le Dr. Françoise Le Tacon et le Dr. Jean Garbaye, pour leur comportement exceptionnel avec moi. Je veux également remercier tous les gens avec qui j’ai partagé mon séjour à l'INRA, j'ai excellents souvenirs de vous. Agrair també a les companyes i amigues Vicky Barnés, Olga Jurado, Olga González, Bárbara López, Maria Blanco i Montse Prat pel seu suport, i també per tots aquells moments extralaborals compartits. Al tots els companys i companyes de l’IRTA així com als que han anat passant pel centre en les seves estades, treballs curts, pràctiques, etc. amb qui he compartit els migdies, els esmorzars, mil converses, rialles i molt bons moments. No em puc oblidar dels meus companys de viatge cap a l’obtenció del doctorat, els becaris que encara ho son i els que ja han passat a ser doctors: Marta, Priscila, Carolina, Manu, Georgina, Chelo, Lorena, Laura, Rafa, Amaia, Nati, Lola i Kathy. Durant aquests quatre anys de treball a l’IRTA he après moltes coses, no tant sols referents a les micorizes, els fongs comestibles, la biologia molecular… sinó a nivell personal, gracies a la gran gent que m’ha envoltat fent el treball més fàcil i agradable. Gracies a tots i a totes els que en algun moment d’aquests últims anys s’hagi creuat en la meva vida, perquè de ben segur que d’una manera o altra han influït en que aquest treball sigui avui una realitat. Per últim vull dedicar unes línies als amics, amigues i a la família (Herminia, Dionisio, Aitana i Abel) que sempre han estat al meu costat donant-me suport durant aquests anys i en l’elaboració d’aquest treball. En especial agrair a l’Alejandro el seu suport incondicional, els seus ànims i els “sacrificis” fets per aquesta tesi. 4 Traceability of the mycorrhizal symbiosis in the controlled production of edible mushrooms -,2#,21 AGRAÏMENTS 3 CONTENTS 5 List of Figures 10 List of Tables 12 GENERAL INTRODUCTION 15 1. Edible mushrooms and their importance 17 2. Species studied in this thesis 20 2.1. Boletus edulis 20 2.2. Lactarius deliciosus 21 2.3. Rhizopogon roseolus 22 2.4. Tuber melanosporum 22 3. Molecular techniques used 26 3.1. Conventional PCR 26 3.2. Real-time PCR 28 3.3. Simple sequence repeat (SSR) analysis 31 PURPOSE AND GENERAL OBJECTIVES 34 CHAPTER 1 37 Production of Boletus edulis inoculated plants in pure cultures and in nursery conditions 1. Introduction 39 2. Materials and Methods 44 2.1. Synthesis of mycorrhizas in pure culture conditions 44 2.1.1. Preparation of host plant seedlings under axenic conditions 44 2.1.2. Isolation and maintenance of B. edulis pure cultures 45 2.1.3. Synthesis of mycorrhizas in pure culture conditions 47 2.2. Synthesis of mycorrhizas in nursery conditions 47 2.2.1. Acclimatization of in vitro mycorrhizal plants 47 2.2.2. Controlled inoculations of Cistus spp. plants with species of the B. edulis complex for the production of mycorrhizal plants in nursery conditions. 50 5 Contents 2.3. Viability of B. edulis complex cultures stored in water at 4°C 52 3. Results 53 3.1. Synthesis of mycorrhizas in pure culture 53 3.2. Production of mycorrhizal plants in nursery conditions 57 3.2.1. Acclimatization of in vitro mycorrhizal plants 57 3.2.1.1. Acclimatization of plants inoculated under pure culture synthesis conditions 57 3.2.1.2. Acclimatization of plants inoculated under pure culture synthesis conditions in two different substrates 57 3.2.2. Controlled inoculations of Cistus spp. plants with species of the B. edulis complex for theproduction of mycorrhizal plants in nursery conditions. 58 3.2.2.1. Inoculations with spores suspension 58 3.2.2.2. Inoculations with mycelial inoculum 58 3.3. Viability of B. edulis complex cultures stored in water at 4°C 60 4. Discussion 62 CHAPTER 2 69 Use of molecular techniques for the traceability of ectomycorrhizal fungi: Seasonal dynamics of Boletus edulis and Lactarius deliciosus mycelium in pine forests of central Spain 1. Introduction 71 2. Materials and Methods 74 2.1. Design of B. edulis probes and primers for their mycelium detection. 74 2.1.1. Design of primers and probes 74 2.1.2. DNA extractions 74 2.1.3. Construction of standard curves 74 2.1.4. Quantification of extraradical soil mycelium of standards and samples by real-time PCR 75 2.2. Validation method by comparison of conventional PCR and quantitative real time PCR. 76 2.2.1. Study site 76 2.2.2. Boletus edulis soil mycelium quantification 78 2.2.3. Quantification of ectomycorrhizas 78 2.3. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. 79 2.3.1. Study site 79 2.3.2. Soil sampling 81 6 Traceability of the mycorrhizal symbiosis in the controlled production of edible mushrooms 2.3.3. Soil DNA extraction 81 2.3.4. Quantification of extraradical soil mycelium by real-time PCR 81 2.4. Data analyses 82 3. Results 83 3.1. Validation by comparison of conventional PCR and quantitative real time PCR. 83 3.2. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain. 86 3.3. Quantification and dynamics of Boletus edulis and Lactarius deliciosus ectomycorrhizas. 91 3.4. Relation of extraradical mycelium and ectomycorrhiza of Boletus edulis and Lactarius deliciosus. 94 4. Discussion 9 CHAPTER 3 103 Traceability of ectomycorrhizal fungi in plantations: persistence and quantification of Rhizopogon roseolus and Tuber melanosporum extraradical soil mycelium in de novo and old plantations 1.
Recommended publications
  • Blood Mushroom
    Bleeding-Tooth Fungus Hydnellum Peckii Genus: Hydnellum Family: Bankeraceae Also known as: Strawberries and Cream Fungus, Bleeding Hydnellum, Red-Juice Tooth, or Devil’s Tooth. If you occasionally enjoy an unusual or weird sight in nature, we have one for you. Bleeding-Tooth Fungus fits this description with its strange colors and textures. This fungus is not toxic, but it is considered inedible because of its extremely bitter taste. Hydnoid species of fungus produce their spores on spines or “teeth”; these are reproductive structures. This fungus “bleeds” bright red droplets down the spines, so that it looks a little like blood against the whitish fungus. This liquid actually has an anticoagulant property similar to the medicine heparin; it keeps human or animal blood from clotting. This fungus turns brown with age. Bloody-Tooth Fungus establishes a relationship with the roots of certain trees, so you will find it lower down on the tree’s trunk. The fungus exchanges the minerals and amino acids it has extracted from the soil with its enzymes, for oxygen and carbon within the host tree that allow the fungus to flourish. It’s a great partnership that benefits both, called symbiosis. The picture above was taken at Kings Corner at the pine trees on the west side of the property. It was taken in early to mid-autumn. This part of the woods is moist enough to grow some really beautiful mushrooms and fungi. Come and see—but don’t touch or destroy. Fungi should be respected for the role they play in the woods ecology.
    [Show full text]
  • Regular Article Proximate and Chemical Properties of Some
    REGULAR ARTICLE PROXIMATE AND CHEMICAL PROPERTIES OF SOME UNDERUTILIZED NIGERIAN WILD MUSHROOMS Mobolaji Adenike Titilawo*1,2, Anthonia Olufunke Oluduro2, Olu Odeyemi2 Address(es): Mobolaji Adenike Titilawo, PhD 1Department of Microbiology, Osun State University, Oke-Baale, Osogbo, Nigeria 2Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria *Corresponding author: [email protected] ABSTRACT This investigation aims at determining the nutritional value of twenty-three underutilized wild macrofungi from a biodiversity forest in Southwest Nigeria. The mushroom species collected across the ligneous (woody) and terrestrial (soil) habitats were analysed for proximate (moisture, protein, fibre, lipid, ash and carbohydrate), minerals (potassium, sodium, phosphorus, magnesium, calcium, iron and zinc) and vitamins A and C content following standard analytical procedures. Interestingly, all the mushrooms had high moisture (>80.91%) and those harvested from soil debris in the terrestrial habitat contained significantly high protein content (26.80 - 48.68%). Dietary fibre was in the range of 0.20 and 42.37%; low lipid (0.12 - 9.89%) and ash (1.25 - 14.08%) were also recorded. Furthermore, all the samples contained high carbohydrate except Macrolepiota procera (2.01%). Minerals varied across the habitats and ranged as follows: potassium (268.13 - 8972.00 mg. 100 g-1), sodium (89.36 - 425.92 mg. 100 g-1), phosphorus (0.32 - 375.51 mg. 100 g-1), magnesium (9.39 - 19.32 mg. 100 g-1) and calcium (7.98 - 37.82 mg. 100 g-1). Low iron (0.55 - 1.32 mg. 100 g-1) and zinc (2.21 - 4.98 mg. 100 g-1) were obtained.
    [Show full text]
  • Czech Mycol. 57(3-4): 279-297, 2005
    CZECH MYCOL. 57(3-4): 279-297, 2005 Bankeraceae in Central Europe. 2. P e t r H r o u d a Department o f Botany, Faculty of Science, Masaryk University Kotlářská 2, CZ-61137 Brno, Czech Republic svata@sci. muni, cz Hrouda P. (2005): Bankeraceae in Central Europe. 2. - Czech. Mycol. 57(3-4): 279-297. The paper presents the second part o f a study of the genera Bankera, Phellodon, HydneUum, Sarcodon and Boletopsis in selected herbaria of Central Europe (Poland and northern Germany in this part). For each species, its occurrence and distribution is described. Historical changes of the occur­ rence of hydnaceous fungi in the Central European area are discussed at the end of the study Key words: Bankeraceae, distribution, Central Europe. Hrouda P. (2005): Bankeraceae ve střední Evropě. 2. - Czech. Mycol. 57(3-4): 279-297. Práce představuje druhou část výsledků studia rodů Bankera, Phellodon, Hydnellum, Sarcodon a Boletopsis ve vybraných herbářích střední Evropy (tato část je zaměřena na Polsko a severní Němec­ ko). U jednotlivých druhů je popsán výskyt a rozšíření a závěrem jsou pak diskutovány historické změ­ ny ve výskytu lošáků v prostoru střední Evropy. I ntroduction The presented study follows the previous article summarising the knowledge of the genera Bankera, Phellodon, Hydnellum, Sarcodon and Boletopsis in the southern part of Central Europe (Hrouda 2005). This article represents the second part of the study, which describes the ecology, occurrence and distribution of Bankeraceae in Poland and northern and central Germany (all lands except Ba­ varia and Baden-Württemberg), and is completed with a summary of the historical and recent occurrence of this group in Central Europe.
    [Show full text]
  • Style Specifications
    Radiocaesium in The Fungal Compartment of Forest Ecosystems Mykhaylo Vinichuk Department of Soil Sciences Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2003 Acta Universitatis Agriculturae Sueciae Agraria 434 ISSN 1401-6249 ISBN 91-576-6478-1 © 2003 Mykhaylo Vinichuk, Uppsala Tryck: SLU Service/Repro, Uppsala 2003 Abstract Vinichuk, M. 2003. Radiocaesium in the fungal compartment of forest ecosystems. Doctoral dissertation. ISSN 1401-6249, ISBN 91-576-6478-1 Fungi in forest ecosystems are major contributors to accumulation and cycling of radionuclides, especially radiocaesium. However, relatively little is known about uptake and retention of 137Cs by fungal mycelia. This thesis comprises quantitative estimates of manually prepared mycelia of mainly ectomycorrhizal fungi and their possible role in the retention, turnover and accumulation of radiocaesium in contaminated forest ecosystems. The studies were conducted in two forests during 1996-1998 and 2000-2003. One was in Ovruch district, Zhytomyr region of Ukraine (51º30"N, 28º95"E), and the other at two Swedish forest sites: the first situated about 35 km northwest of Uppsala (60º05"N, 17º25"E) and the second at Hille in the vicinity of Gävle (60º85"N, 17º15"E). The 137Cs activity concentration was measured in prepared mycelia and corresponding soil layers. Various extraction procedures were used to study the retention and binding of 137Cs 137 in Of/Oh and Ah/B horizons of forest soil. Cs was also extracted from the fruit bodies and mycelia of fungi. The fungal mycelium biomass was estimated and the percentage of the total inventory of 137Cs bound in mycelia in the Ukrainian and Swedish forests was calculated.
    [Show full text]
  • Ectomycorrhizal Fungi at Tree Line in the Canadian Rockies II
    Mycorrhiza (2001) 10:217–229 © Springer-Verlag 2001 ORIGINAL PAPER Gavin Kernaghan Ectomycorrhizal fungi at tree line in the Canadian Rockies II. Identification of ectomycorrhizae by anatomy and PCR Accepted: 15 October 2000 Abstract Ectomycorrhizae of Picea, Abies, Dryas and northern/montane ectomycorrhizal fungi (Kernaghan and Salix were collected at two tree-line sites at an altitude of Currah 1998). The species composition and relative 2,000–2,500 m in the Front Range of the Canadian abundance of ectomycorrhizae in montane habitats are Rockies. Six mycobionts were identified to species by still poorly understood (Gardes and Dahlberg 1996). On- direct comparison of PCR-amplified ribosomal DNA ly recently have efforts been made to identify and de- with that from locally collected sporocarps. Four of these scribe ectomycorrhizae from subalpine forests and adja- (Cortinarius calochrous, Hydnellum caeruleum, Laccaria cent alpine zones (Debaud et al. 1981; Debaud 1987; montana and Russula integra) are newly described sym- Treu 1990; Graf and Brunner 1996; Kernaghan et al. bioses. Twelve other ectomycorrhizae had no conspecific 1997). RFLP match with the sporocarps analyzed, but were Studies such as these have used a variety of methods identified to species, genus or family by anatomical for mycobiont identification: tracing hyphal connections comparison with sporocarps and literature descriptions between sporocarps and mycorrhizae (Agerer 1991a), or by phenetic clustering based on the presence or ab- comparing field-collected mycorrhizae to mycorrhizae sence of restriction fragments. The majority of species synthesized in-vitro (Fortin et al. 1980; Molina and identified have northern and/or montane distributions. Palmer 1982), comparing cultures obtained from spor- Mycorrhizae are described on the basis of both anatomi- ocarps to those from mycorrhizae (Chu-Chou 1979; cal and molecular characters.
    [Show full text]
  • Truffle Farming in North America
    Examples of Truffle Cultivation Working with Riparian Habitat Restoration and Preservation Charles K. Lefevre, Ph.D. New World Truffieres, Inc. Oregon Truffle Festival, LLC What Are Truffles? • Mushrooms that “fruit” underground and depend on animals to disperse their spores • Celebrated delicacies for millennia • They are among the world’s most expensive foods • Most originate in the wild, but three valuable European species are domesticated and are grown on farms throughout the world What Is Their Appeal? • The likelihood of their reproductive success is a function of their ability to entice animals to locate and consume them • Produce strong, attractive aromas to capture attention of passing animals • Androstenol and other musky compounds French Truffle Production Trend 1900-2000 Driving Forces: • Phylloxera • Urbanization Current Annual U.S. Import volume: 15-20 tons Price Trend:1960-2000 The Human-Truffle Connection • Truffles are among those organisms that thrive in human- created environments • Urban migration and industrialization have caused the decline of truffles not by destroying truffle habitat directly, but by eliminating forms of traditional agriculture that created new truffle habitat • Truffles are the kind of disturbance-loving organisms that we can grow Ectomycorrhizae: Beneficial Symbiosis Between the Truffle Fungus and Host Tree Roots Inoculated Seedlings • Produced by five companies in the U.S. and Canada planting ~200 acres annually • ~3000 acres planted per year globally • Cultivated black truffle production now
    [Show full text]
  • Chemistry Research Journal, 2020, 5(1):106-118 Review Article What Medicinal Mushroom Can
    Chemistry Research Journal, 2020, 5(1):106-118 Available online www.chemrj.org ISSN: 2455-8990 Review Article CODEN(USA): CRJHA5 What Medicinal Mushroom Can Do? Waill A. Elkhateeb Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Researches Division, National Research Centre, El Buhouth St., Dokki, 12311, Giza, Egypt Email: waill [email protected] Abstract Among many traditional medicines, mushrooms have been used in Asian countries for over two millennia as a traditional medicine for maintaining life and long life. Research on various metabolic activities of medicinal mushrooms have been performed both in vitro and in vivo studies. Over the past two decades, medicinal mushrooms industry have developed greatly and today offers thousands of products to the markets. This paper describes the current status of some important world medicinal mushrooms, products, and provides suggestions for further research. Keywords World medicinal mushrooms, biological activities, bioactive compounds, traditional medicine, secondary metabolites 1. Introduction It is understood that human beings have constantly been in search of new substances that can improve biological functions and make people fitter and healthier. Recently, the society has turned towards plants, herbs, and food as sources of these enhancers. These products have been called variously vitamins, dietary supplements, functional foods, nutraceuticals, and so forward. Mushrooms, in this regard, are now beginning to receive much deserved attention for their very real health giving qualities. Mushrooms grow wild in many parts of the world and are also commercially cultivated. Nutritionally, mushrooms are a valuable health food and have been used medicinally for centuries in many parts of the world [1-3].
    [Show full text]
  • Independent, Specialized Invasions of Ectomycorrhizal Mutualism by Two Nonphotosynthetic Orchids (Mycorrhiza͞ecology͞symbiosis͞specificity͞ribosomal DNA Sequences)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4510–4515, April 1997 Evolution Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids (mycorrhizayecologyysymbiosisyspecificityyribosomal DNA sequences) D. LEE TAYLOR* AND THOMAS D. BRUNS Division of Plant and Microbial Biology, University of California, Berkeley, CA 94720 Communicated by Pamela A. Matson, University of California, Berkeley, CA, February 24, 1997 (received for review September 10, 1996) ABSTRACT We have investigated the mycorrhizal asso- Mycorrhizae are intimate symbioses between fungi and the ciations of two nonphotosynthetic orchids from distant tribes underground organs of plants; the mutualism is based on the within the Orchidaceae. The two orchids were found to provisioning of minerals, and perhaps water, to the plant by the associate exclusively with two distinct clades of ectomycorrhi- fungus in return for fixed carbon from the plant (11). Ecto- zal basidiomycetous fungi over wide geographic ranges. Yet mycorrhizae (ECM) are the dominant mycorrhizal type both orchids retained the internal mycorrhizal structure formed by forest trees in temperate regions (12), and they are typical of photosynthetic orchids that do not associate with critical to nutrient cycling and to structuring of plant commu- ectomycorrhizal fungi. Restriction fragment length polymor- nities in these regions (13). phism and sequence analysis of two ribosomal regions along There are several indications that the ECM mutualism is not with fungal isolation provided congruent, independent evi- immune to cheating. For example, the fungus Entoloma sae- dence for the identities of the fungal symbionts. All 14 fungal piens forms an apparent ECM structure (mantle) on Rosa and entities that were associated with the orchid Cephalanthera Prunus roots but destroys the root epidermal cells (14).
    [Show full text]
  • Mushroom Presentation
    Who are all these fungi ... Who are all these fungi ... ... and what are they doing in our forests? What are fungi? . eukaryotic (have nuclei) . heterotrophic and absorbent . amoeboid, to unicellular (yeast) to (usually) filamentous . generally don’t move around much . cell walls contain chitin . most reproduce by various types of spores Fungi are Diverse! fungal phyla fungal phyla . Zygomycota . Chytridiomycota . Glomeromycota . Ascomycota . Basidiomycota fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes Pilobolus Rhizopus Entomophthorales fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes chytridiomycosis caused by Batrachochytrium dendrobatidis fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes vesicular – arbuscular mycorrhizae fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes Ascomycetes (‘sac fungi’) Penicillium yeasts (basidiomycetes and ascomycetes) fungal phyla . Zygomycetes . Chytridiomycetes . Glomeromycetes . Ascomycetes . Basidiomycetes Basidiomycetes (‘club fungi’) smuts rusts + Hymenomycetes (the rest) jelly fungi + Homobasidiomycetes (the rest) Homobasidiomycetes Gasteromycetes how do you increase surface area to hold more basidia? how do you increase surface area to hold more basidia? culinary classification of mushrooms As many, or more than 1.5 million species
    [Show full text]
  • Ascoma Genotyping and Mating Type Analyses of Mycorrhizas and Soil
    Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants Pamela Leonardi, Claude Murat-Furminieux, Federico Puliga, Mirco Iotti, Alessandra Zambonelli To cite this version: Pamela Leonardi, Claude Murat-Furminieux, Federico Puliga, Mirco Iotti, Alessandra Zambonelli. Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2019, 10.1111/1462-2920.14777. hal-02352497 HAL Id: hal-02352497 https://hal.archives-ouvertes.fr/hal-02352497 Submitted on 6 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Environmental Microbiology (2019) 00(00), 00–00 doi:10.1111/1462-2920.14777 Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants Pamela Leonardi,1 Claude Murat,2 Federico Puliga,1 Introduction Mirco Iotti3 and Alessandra Zambonelli 1* Ectomycorrhizal fungi assist plants in their growth, therefore, 1Department of Agricultural and Food Sciences, playing key roles in forest ecosystem functioning.
    [Show full text]
  • Algunas Micorrizas Competidoras De Plantaciones Truferas
    Publicaciones de Biología, Universidad de Navarra, Serie Botánica, 16: 1-18. 2005. ALGUNAS MICORRIZAS COMPETIDORAS DE PLANTACIONES TRUFERAS. DE MIGUEL, A.M. 1 y SÁEZ, R.2 1Departamento de Botánica, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, España. email: [email protected] 2ITGA- Instituto Técnico y de Gestión Agrícola-ITGA. Avda. Serapio Huici, 22. Ed. Peritos. 31610 Villava. Navarra. RESUMEN DE MIGUEL, A.M. y SÁEZ, R. Algunas micorrizas competidoras de plantaciones truferas. Publ. Bio. Univ. Navarra, Ser. Bot., 16: 1-18. La Truficultura constituye en España, al igual que en Francia y en Italia, una actividad alternativa agraria y forestal que desde los años 1970 ha ido extendiéndose por todo el territorio en aquellas áreas que las condiciones lo permiten (Reyna et al. 2004). En la década 1980-1990 se profundiza en el tema y es entre los años 1990 y 2000 cuando la truficultura cobra un realce importante a nivel nacional, con la implantación año a año de numerosas hectáreas, que constituyen en la actualidad una superficie dedicada a la producción de trufa negra en plantación que supera las 3500ha (Reyna et al 2004). Dado que entre el momento de la plantación y la producción se pueden suceder numerosos años y la única información sobre la presencia de la trufa negra en esos árboles se encuentra en las raíces, el estudio de las micorrizas que colonizan el sistema radical es un aspecto relevante para conocer el desarrollo y avance de las plantaciones antes de la entrada en producción. En este trabajo se aportan datos sobre morfotipos ectomicorrícicos más frecuentes en plantaciones truferas, conocimiento derivado de los trabajos llevados a cabo durante más de 12 años en Navarra (España) Palabras clave: trufa, Tuber melanosporum, truficultura, micorrizas competidoras.
    [Show full text]
  • Red List of Fungi for Great Britain: Bankeraceae, Cantharellaceae
    Red List of Fungi for Great Britain: Bankeraceae, Cantharellaceae, Geastraceae, Hericiaceae and selected genera of Agaricaceae (Battarrea, Bovista, Lycoperdon & Tulostoma) and Fomitopsidaceae (Piptoporus) Conservation assessments based on national database records, fruit body morphology and DNA barcoding with comments on the 2015 assessments of Bailey et al. Justin H. Smith†, Laura M. Suz* & A. Martyn Ainsworth* 18 April 2016 † Deceased 3rd March 2014. (13 Baden Road, Redfield, Bristol BS5 9QE) * Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB Contents 1. Foreword............................................................................................................................ 3 2. Background and Introduction to this Review .................................................................... 4 2.1. Taxonomic scope and nomenclature ......................................................................... 4 2.2. Data sources and preparation ..................................................................................... 5 3. Methods ............................................................................................................................. 7 3.1. Rationale .................................................................................................................... 7 3.2. Application of IUCN Criterion D (very small or restricted populations) .................. 9 4. Results: summary of conservation assessments .............................................................. 16 5. Results:
    [Show full text]