Open Full Page

Total Page:16

File Type:pdf, Size:1020Kb

Open Full Page DNA Methylation Represses IFN-;–Induced and Signal Transducer and Activator of Transcription 1–Mediated IFN Regulatory Factor 8 Activation in Colon Carcinoma Cells Jon M. McGough,1 Dafeng Yang,1 Shuang Huang,1 David Georgi,2 Stephen M. Hewitt,3 Christoph Ro¨cken,4 Marc Ta¨nzer,5 Matthias P.A. Ebert,5 and Kebin Liu1 Departments of 1Biochemistry and Molecular Biology and 2Pathology, Medical College of Georgia, Augusta, Georgia; 3Tissue Array Research Program, National Cancer Institute, NIH, Bethesda, Maryland; 4Institute of Pathology, Charite, Universita¨tsmedizin, Berlin, Germany; and 5Department of Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany Abstract IFN-;–activated IRF8 expression through IFN regulatory factor 8 (IRF8) is both constitutively MBD1-dependent and PIAS1-mediated inhibition of expressed and IFN-; inducible in hematopoietic and pSTAT1 function at the methylated IRF8 promoter. nonhematopoietic cells. We have shown that IRF8 (Mol Cancer Res 2008;6(12):1841–51) expression is silenced by DNA methylation in human colon carcinoma cells, but the molecular mechanism Introduction underlying methylation-dependent IRF8 silencing IFN regulatory factor 8 (IRF8) is a central mediator in remains elusive. In this study, we observed that IRF8 the IFN-g/signal transducer and activator of transcription 1 protein level is inversely correlated with the methylation (STAT1) signaling pathway and functions as a suppressor of status of the IRF8 promoter and the metastatic both hematopoietic and nonhematopoietic tumors (1-4). One of phenotype in human colorectal carcinoma specimens the prominent phenotypes of IRF8 null mice is marked clonal in vivo . Demethylation treatment or knocking down expansion of undifferentiated granulocytes and macrophages. DNMT1 and DNMT3b expression rendered the tumor These IRF8-deficient myeloid cells frequently progress to a ; cells responsive to IFN- to activate IRF8 transcription syndrome similar to human chronic myelogenous leukemia (2, in vitro . Bisulfite genomic DNA sequencing revealed that 5, 6). In human patients with chronic myelogenous leukemia the entire CpG island of the IRF8 promoter is methylated. and acute myeloid leukemia, IRF8 expression is dramatically Electrophoresis mobility shift assay revealed that DNA decreased (7). These studies thus revealed that IRF8 functions ; methylation does not directly inhibit IFN- –activated as a tumor suppressor of certain hematopoietic malignancies. phosphorylated signal transducer and activator of In an earlier study to identify differentially expressed genes ; transcription 1 (pSTAT1) binding to the IFN- activation between primary and metastatic colon carcinoma tumor cell in vitro site element in the IRF8 promoter . Chromatin lines using DNAmicroarray analysis, we identified that IFN- g immunoprecipitation assay revealed that pSTAT1 is induces IRF8 expression in human colon carcinoma cells (i.e., ; associated with the IFN- activation site element of the nonhematopoietic tumor cells) and that IRF8 expression level in vivo IRF8 promoter regardless of the methylation is inversely correlated with the metastatic phenotype (8). status of the IRF8 promoter. However, DNA methylation Recently, we showed that IRF8 can be repressed by DNA results in preferential association of PIAS1, a potent methylation in human colon carcinoma cells. We further inhibitor of pSTAT1, with pSTAT1 in the methylated showed that disruption of IRF8 function or silencing IRF8 IRF8 promoter region. Silencing methyl-CpG binding expression significantly decreased the tumor cell sensitivity to domain protein 1 (MBD1) expression resulted in IRF8 apoptosis and conferred the low metastatic tumor cells with ; activation by IFN- in human colon carcinoma cells metastatic potential in an experimental metastasis mouse model with methylated IRF8 promoter. Our data thus (3, 4, 9). The direct effect of IRF8 on nonhematopoietic tumor suggest that human colon carcinoma cells silence development has also been shown in various carcinoma cells (10, 11). It was shown that both constitutively expressed and IFN-g–induced IRF8 mediates apoptosis in lens carcinoma Received 6/13/08; revised 8/21/08; accepted 8/31/08. cells, and ectopic expression of IRF8 inhibited the clono- Grant support: CA133085 (K. Liu) from the National Cancer Institute, NIH. genicity of colon, lens, esophageal, and nasopharyngeal carci- M.P.A. Ebert is supported by the Else Kro¨ner-Fresenius-Stiftung (Homburg, noma cells (10, 11). Furthermore, a recent study has extended Germany). The costs of publication of this article were defrayed in part by the payment of the IRF8 promoter methylation to multiple human carcinomas, page charges. This article must therefore be hereby marked advertisement in including nasopharyngeal, cervical, breast, and esophageal accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Requests for reprints: Kebin Liu, Department of Biochemistry and Molecular carcinoma (11). Therefore, IRF8 also functions as an apoptosis Biology, Medical College of Georgia, 1459 Laney Walker Boulevard, regulator and tumor suppressor in nonhematopoietic tumors and Augusta, GA 30912. Phone: 706-721-9483; Fax: 706-721-6608. E-mail: its expression is regulated by DNAmethylation. In addition, [email protected] Copyright D 2008 American Association for Cancer Research. analysis of expressed sequence tag data in the UniGene doi:10.1158/1541-7786.MCR-08-0280 database of the National Center for Biotechnology Information Mol Cancer Res 2008;6(12). December 2008 1841 Downloaded from mcr.aacrjournals.org on September 28, 2021. © 2008 American Association for Cancer Research. 1842 McGough et al. indicates that IRF8 is expressed in a broad spectrum of IRF8 protein is only present in the nucleus (data not shown). human tumors, including bone, colorectal, gastrointestinal, Moreover, although IRF8 protein was detected in both nucleus glial, kidney, respiratory tract, muscle tissue, and uterine and cytoplasm of the colon carcinoma cells, IRF8-specific tumors. Examination of DNAmicroarray data deposited in staining was only observed in the nuclei of lymphocytes the National Center for Biotechnology Information Gene in the tumor-bearing lymph node (Fig. 1A, b1-b3). IRF8 is a Expression Omnibus database revealed that IRF8 expression transcription factor and is located in the nuclei of lymphocytes, is detected in human breast, bone, soft tissue, cervix, colorectal, and the nature of the cytoplasmic IRF8 staining in human glial, kidney, lung, skin, ovarian, and prostate cancers. Thus, colon carcinoma cells remains to be determined. IRF8 protein IRF8 is ubiquitously expressed in human tumors of diverse was not uniformly expressed in all tumor cells in the primary types and histologies. tumors; rather, IRF8-positive tumor cells are scattered in the Although IRF8 is constitutively expressed in macrophages, tumor tissue. other myeloid cells, B cells, and T cells, expression of IRF8 can To extend the above findings to a larger pool of human be dramatically up-regulated by IFN-g (12). The relative roles colorectal cancer specimens, we analyzed IRF8 protein levels in of constitutively expressed IRF8 and IFN-g–activated IRF8 are human colorectal carcinomas printed on tissue microarray. still not well defined and remain an active research area (12). Among the 37 primary colorectal carcinoma tissues interpret- IRF8 is also constitutively expressed in certain nonhemato- able, 31 (84%) exhibited IRF8 protein staining in the nucleus poietic tumor cells, albeit at lower level, but its expression can (Fig. 1B, a). We also separately analyzed liver metastases also be dramatically up-regulated by IFN-g (3, 8, 10) through derived from seven colorectal cancer patients. IRF8 protein was the IFN-gR–mediated signaling pathway (13). Binding of IFN-g not detected in the nucleus of the tumor cells in five of the to IFN-gR, which is ubiquitously but not uniformly expressed seven specimens (Fig. 1B, b). However, IRF8 protein was on all human nucleated cells (14), leads to transphosphorylation detected in the nucleus of the tumor cells in two of the seven of IFN-gR–associated Janus-activated kinase kinases followed (29%) liver metastases specimens (data not shown). Taken by phosphorylation and dimerization of cytosolic STAT1. The together, nuclear IRF8 protein is present in 81% (35 of 43) of phosphorylated STAT1 (pSTAT1) is translocated to the nucleus primary colorectal carcinoma specimens and in 23% (3 of 13) as an active transcription factor (15-17) and binds to the IFN-g of metastatic tumor specimens derived from colorectal cancer activation site (GAS) element to activate transcription of the patients, respectively. primary IFN-g response genes (13, 18). Our previous studies showed that human colon carcinoma cells silence IRF8 The IRF8 Promoter Region Is Frequently Methylated in expression through the IRF8 promoter DNAmethylation (3). Human Colorectal Carcinoma In vivo However, the molecular mechanisms underlying methylation- To determine whether the IRF8 promoter is hypermethylated dependent inhibition of IRF8 activation by IFN-g are unclear. in human colorectal carcinoma under physiologic conditions, In the present studies, we carried out detailed analysis of the we isolated genomic DNAfrom 21 primary tumor specimens molecular interactions between the IRF8 promoter DNAand derived from 21 human colorectal cancer patients and liver IFN-g–activated pSTAT1 in human colon carcinoma cells. metastases specimens derived from another 12
Recommended publications
  • Modulation of STAT Signaling by STAT-Interacting Proteins
    Oncogene (2000) 19, 2638 ± 2644 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Modulation of STAT signaling by STAT-interacting proteins K Shuai*,1 1Departments of Medicine and Biological Chemistry, University of California, Los Angeles, California, CA 90095, USA STATs (signal transducer and activator of transcription) play important roles in numerous cellular processes Interaction with non-STAT transcription factors including immune responses, cell growth and dierentia- tion, cell survival and apoptosis, and oncogenesis. In Studies on the promoters of a number of IFN-a- contrast to many other cellular signaling cascades, the induced genes identi®ed a conserved DNA sequence STAT pathway is direct: STATs bind to receptors at the named ISRE (interferon-a stimulated response element) cell surface and translocate into the nucleus where they that mediates IFN-a response (Darnell, 1997; Darnell function as transcription factors to trigger gene activa- et al., 1994). Stat1 and Stat2, the ®rst known members tion. However, STATs do not act alone. A number of of the STAT family, were identi®ed in the transcription proteins are found to be associated with STATs. These complex ISGF-3 (interferon-stimulated gene factor 3) STAT-interacting proteins function to modulate STAT that binds to ISRE (Fu et al., 1990, 1992; Schindler et signaling at various steps and mediate the crosstalk of al., 1992). ISGF-3 consists of a Stat1:Stat2 heterodimer STATs with other cellular signaling pathways. This and a non-STAT protein named p48, a member of the article reviews the roles of STAT-interacting proteins in IRF (interferon regulated factor) family (Levy, 1997).
    [Show full text]
  • Downloaded from As a Tab-Delimited file, in Which Genes Are Represented in Rows and Phenotypes in Columns
    cells Article Network of Interactions between ZIKA Virus Non-Structural Proteins and Human Host Proteins 1, 1,2, 2 Volha A. Golubeva y , Thales C. Nepomuceno y , Giuliana de Gregoriis , Rafael D. Mesquita 3, Xueli Li 1, Sweta Dash 1,4, Patrícia P. Garcez 5 , Guilherme Suarez-Kurtz 2 , Victoria Izumi 6, John Koomen 7, Marcelo A. Carvalho 2,8,* and Alvaro N. A. Monteiro 1,* 1 Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; [email protected] (V.A.G.); [email protected] (T.C.N.); xueli.li@moffitt.org (X.L.); sweta.dash@moffitt.org (S.D.) 2 Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; [email protected] (G.d.G.); [email protected] (G.S.-K.) 3 Departamento de Bioquímica, Instituto de Química, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; [email protected] 4 Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA 5 Institute of Biomedical Science, Federal University of Rio de Janeiro, Rio de Janeiro 20230-130, Brazil; [email protected] 6 Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; victoria.izumi@moffitt.org 7 Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; john.koomen@moffitt.org 8 Instituto Federal do Rio de Janeiro-IFRJ, Rio de Janeiro 20270-021, Brazil * Correspondence: [email protected] (M.A.C.); alvaro.monteiro@moffitt.org (A.N.A.M.); Tel.: +55-21-2566-7774 (M.A.C.); +813-7456321 (A.N.A.M.) These authors contributed equally to this work.
    [Show full text]
  • Distinct E€Ects of PIAS Proteins on Androgen-Mediated Gene Activation
    Oncogene (2001) 20, 3880 ± 3887 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Distinct eects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells Mitchell Gross1, Bin Liu1, Jiann-an Tan3, Frank S French3, Michael Carey2 and Ke Shuai*,1,2 1Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, California, CA 90095, USA; 2Department of Biological Chemistry, University of California, Los Angeles, California, CA 90095, USA; 3The Laboratories for Reproductive Biology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, NC 27599-7500, USA Androgen signaling in¯uences the development and The androgen receptor (AR) is a member of the growth of prostate carcinoma. The transcriptional nuclear receptor (NR) superfamily (Bentel and Tilley, activity of androgen receptor (AR) is regulated by 1996). NRs have conserved domain structures (Freed- positive or negative transcriptional cofactors. We report man, 1999). At the N-terminus is the ligand- here that PIAS1, PIAS3, and PIASy of the protein independent transcriptional activation domain (AF- inhibitor of activated STAT (PIAS) family, which are 1). The central domain contains two zinc ®nger expressed in human prostate, display distinct eects on structures that are involved in DNA binding (DBD). AR-mediated gene activation in prostate cancer cells. The C-terminal region is the ligand binding domain While PIAS1 and PIAS3 enhance the transcriptional (LBD). In addition, an essential ligand-dependent activity of AR, PIASy acts as a potent inhibitor of AR transactivation domain (AF-2) is localized in the C- in prostate cancer cells.
    [Show full text]
  • PIAS1 Potentiates the Anti-EBV Activity of SAMHD1 Through Sumoylation
    Saiada et al. Cell Biosci (2021) 11:127 https://doi.org/10.1186/s13578-021-00636-y Cell & Bioscience RESEARCH Open Access PIAS1 potentiates the anti-EBV activity of SAMHD1 through SUMOylation Farjana Saiada1, Kun Zhang1 and Renfeng Li1,2,3* Abstract Background: Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifcations, includ- ing phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. Results: In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identifed three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-defcient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. Conclusion: Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein– protein interaction and SUMOylation. Keywords: SAMHD1, PIAS1, Restriction factor, Epstein-Barr virus, Cytomegalovirus, SUMOylation, Herpesvirus, Deoxynucleotide triphosphohydrolase, Phosphorylation Background and human simplex virus 1 (HSV-1) [2–7], vaccinia virus Host restriction factors serve as the frst line of defense [2], human T cell leukemia virus type 1 [8], hepatitis B against viral infection through blocking virus entry, virus [9] and human papillomavirus 16 [10].
    [Show full text]
  • 4754.Full-Text.Pdf
    Tripartite Motif-Containing Protein 28 Is a Small Ubiquitin-Related Modifier E3 Ligase and Negative Regulator of IFN Regulatory Factor 7 This information is current as of September 29, 2021. Qiming Liang, Hongying Deng, Xiaojuan Li, Xianfang Wu, Qiyi Tang, Tsung-Hsien Chang, Hongzhuang Peng, Frank J. Rauscher III, Keiko Ozato and Fanxiu Zhu J Immunol 2011; 187:4754-4763; Prepublished online 21 September 2011; Downloaded from doi: 10.4049/jimmunol.1101704 http://www.jimmunol.org/content/187/9/4754 http://www.jimmunol.org/ References This article cites 62 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/187/9/4754.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Tripartite Motif-Containing Protein 28 Is a Small Ubiquitin-Related Modifier E3 Ligase and Negative Regulator of IFN Regulatory Factor 7 Qiming Liang,* Hongying Deng,* Xiaojuan Li,* Xianfang Wu,* Qiyi Tang,† Tsung-Hsien Chang,‡ Hongzhuang Peng,x Frank J.
    [Show full text]
  • 2653.Full.Pdf
    Characterization of a PIAS4 Homologue from Zebrafish: Insights into Its Conserved Negative Regulatory Mechanism in the TRIF, MAVS, and IFN Signaling Pathways during This information is current as Vertebrate Evolution of September 25, 2021. Ran Xiong, Li Nie, Li-xin Xiang and Jian-zhong Shao J Immunol 2012; 188:2653-2668; Prepublished online 17 February 2012; doi: 10.4049/jimmunol.1100959 Downloaded from http://www.jimmunol.org/content/188/6/2653 Supplementary http://www.jimmunol.org/content/suppl/2012/02/17/jimmunol.110095 http://www.jimmunol.org/ Material 9.DC1 References This article cites 72 articles, 33 of which you can access for free at: http://www.jimmunol.org/content/188/6/2653.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Characterization of a PIAS4 Homologue from Zebrafish: Insights into Its Conserved Negative Regulatory Mechanism in the TRIF, MAVS, and IFN Signaling Pathways during Vertebrate Evolution Ran Xiong, Li Nie, Li-xin Xiang, and Jian-zhong Shao Members of the protein inhibitor of activated STAT (PIAS) family are key regulators of various human and mammalian signaling pathways, but data on their occurrence and functions in ancient vertebrates are limited.
    [Show full text]
  • Decreased Expression of PIAS1 and PIAS3 in Essential Thrombocythemia Patients
    Decreased expression of PIAS1 and PIAS3 in essential thrombocythemia patients H.-H. Hsiao1,2, Y.-C. Liu1,2, M.-Y. Yang3, Y.-F. Tsai2, T.-C. Liu1,2, C.-S. Chang1,2 and S.-F. Lin1,2 1Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 2Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 3Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan Corresponding author: S-F Lin E-mail: [email protected] Genet. Mol. Res. 12 (4): 5617-5622 (2013) Received November 12, 2012 Accepted September 3, 2013 Published November 18, 2013 DOI http://dx.doi.org/10.4238/2013.November.18.10 ABSTRACT. Gain of function mutation of Janus kinase 2 (JAK2V617F) has been identified in Philadelphia-negative myeloproliferative diseases; about half of essential thrombocythemia (ET) patients harbor this mutation. The activated JAK-STAT pathway promotes cell proliferation, differentiation and anti-apoptosis. We studied the role of negative regulators of the JAK-STAT pathway, PIAS, and SOCS in ET patients. Twenty ET patients and 20 healthy individuals were enrolled in the study. Thirteen of the ET patients harbored the JAK2V617F mutation based on mutation analysis. Quantitative-PCR was applied to assay the expression of SOCS1, SOCS3, PIAS1, PIAS3. The expression levels of PIAS1 and PIAS3 were significantly lower in ET groups than that in normal individuals. There was no significant difference between JAK2V617F (+) and JAK2V617F (-) patients. SOCS1 and SOCS3 expression did not differ between ET patients and normal individuals, or between JAK2V617F (+) and JAK2V617F (-) patients.
    [Show full text]
  • Quantitative SUMO Proteomics Identifies PIAS1 Substrates Involved
    ARTICLE https://doi.org/10.1038/s41467-020-14581-w OPEN Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility Chongyang Li1,2, Francis P. McManus1, Cédric Plutoni1, Cristina Mirela Pascariu1, Trent Nelson1,2, ✉ Lara Elis Alberici Delsin1,2, Gregory Emery 1,3 & Pierre Thibault1,4,5 1234567890():,; The protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner. We identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was SUMOylated by PIAS1 at Lys-439 and Lys-445 residues. VIM SUMOylation was necessary for its dynamic disassembly and cells expressing a non-SUMOylatable VIM mutant showed a reduced level of migration. Our approach not only enables the identification of E3 SUMO ligase substrates but also yields valuable biological insights into the unsuspected role of PIAS1 and VIM SUMOylation on cell motility. 1 Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada. 2 Molecular Biology Program, Université de Montréal, Montréal, Canada. 3 Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada. 4 Department of Chemistry, Université de Montréal, Montréal, Québec, Canada. 5 Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
    [Show full text]
  • Specification of DNA Binding Activity of NF-Kb Proteins
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Specification of DNA Binding Activity of NF-kB Proteins Fengyi Wan and Michael J. Lenardo Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892 Correspondence: [email protected] Nuclear factor-kB (NF-kB) is a pleiotropic mediator of inducible and specific gene regulation involving diverse biological activities including immune response, inflammation, cell pro- liferation, and death. The fine-tuning of the NF-kB DNA binding activity is essential for its fundamental function as a transcription factor. An increasing body of literature illustrates that this process can be elegantly and specifically controlled at multiple levels by different protein subsets. In particular, the recent identification of a non-Rel subunit of NF-kB itself provides a new way to understand the selective high-affinity DNA binding specificity of NF-kB conferred by a synergistic interaction within the whole complex. Here, we review the mechanism of the specification of DNA binding activity of NF-kB complexes, one of the most important aspects of NF-kB transcriptional control. uclear factor-kB (NF-kB), a collective term the phosphorylation and subsequent dispatch Nfor a family of transcription factors, was of the inhibitory IkBs to the proteasome for originally detected as a transcription-enhancing, protein degradation (Hacker and Karin 2006). DNA-binding complex governing the immuno- This cytoplasmic “switch” liberates NF-kB globulin (Ig) light chain gene intronic enhancer complexes for subsequent nuclear translocation (Sen and Baltimore 1986; Lenardo et al.
    [Show full text]
  • Tumor Suppressor P14arf Enhances IFN-Γ–Activated Immune Response
    Tumor Suppressor p14ARF Enhances IFN- −γ Activated Immune Response by Inhibiting PIAS1 via SUMOylation This information is current as Jennifer Alagu, Yoko Itahana, Faizal Sim, Sheng-Hao Chao, of September 27, 2021. Xuezhi Bi and Koji Itahana J Immunol published online 30 May 2018 http://www.jimmunol.org/content/early/2018/05/29/jimmun ol.1800327 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2018/05/29/jimmunol.180032 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 30, 2018, doi:10.4049/jimmunol.1800327 The Journal of Immunology Tumor Suppressor p14ARF Enhances IFN-g–Activated Immune Response by Inhibiting PIAS1 via SUMOylation Jennifer Alagu,* Yoko Itahana,* Faizal Sim,† Sheng-Hao Chao,‡,x Xuezhi Bi,‡ and Koji Itahana* The ability of cells to induce the appropriate transcriptional response to inflammatory stimuli is crucial for the timely induction of host defense mechanisms.
    [Show full text]
  • PIAS1 Potentiates the Anti-Viral Activity of SAMHD1 Through Sumoylation
    PIAS1 Potentiates the Anti-viral Activity of SAMHD1 through SUMOylation Farjana Saiada Virginia Commonwealth University Kun Zhang Virginia Commonwealth University Renfeng Li ( [email protected] ) Virginia Commonwealth University https://orcid.org/0000-0002-9226-4470 Research Keywords: SAMHD1, PIAS1, restriction factor, Epstein-Barr virus, cytomegalovirus, SUMOylation, herpesvirus, deoxynucleotide triphosphohydrolase, phosphorylation Posted Date: March 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-296406/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Cell & Bioscience on July 8th, 2021. See the published version at https://doi.org/10.1186/s13578-021-00636-y. 1 PIAS1 potentiates the anti-viral activity of SAMHD1 through 2 SUMOylation 3 4 5 6 Farjana Saiada1, Kun Zhang1, and Renfeng Li1,2,3,4 7 8 1Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth 9 University, Richmond, Virginia 23298, USA 10 2Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth 11 University, Richmond, Virginia 23298, USA 12 3Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, USA 13 14 4Corresponding author: [email protected] (RL) 15 1 16 Abstract 17 Background: Sterile alpha motif and HD domain 1 (SAMHD1) is a host restriction factor that 18 suppresses the infection of a variety of RNA and DNA viruses, including herpesviruses. The 19 anti-viral activity of SAMHD1 is finely tuned by post-translational modifications, including 20 phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 21 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor.
    [Show full text]
  • PRMT1-Mediated Arginine Methylation of PIAS1 Regulates STAT1 Signaling
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling Susanne Weber,1 Florian Maaß,1 Michael Schuemann,2 Eberhard Krause,2 Guntram Suske,1 and Uta-Maria Bauer1,3 1Institute of Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, 35032 Marburg, Germany; 2Leibniz Institute of Molecular Pharmacology, 13125 Berlin, Germany To elucidate the function of the transcriptional coregulator PRMT1 (protein arginine methyltranferase 1) in interferon (IFN) signaling, we investigated the expression of STAT1 (signal transducer and activator of transcription) target genes in PRMT1-depleted cells. We show here that PRMT1 represses a subset of IFNg- inducible STAT1 target genes in a methyltransferase-dependent manner. These genes are also regulated by the STAT1 inhibitor PIAS1 (protein inhibitor of activated STAT1). PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment. Mutational and mass spectrometric analysis of PIAS1 identifies Arg 303 as the single methylation site. Using both methylation-deficient and methylation-mimicking mutants, we find that arginine methylation of PIAS1 is essential for the repressive function of PRMT1 in IFN-dependent transcription and for the recruitment of PIAS1 to STAT1 target gene promoters in the late phase of the IFN response. Methylation-dependent promoter recruitment of PIAS1 results in the release of STAT1 and coincides with the decline of STAT1-activated transcription. Accordingly, knockdown of PRMT1 or PIAS1 enhances the anti- proliferative effect of IFNg. Our findings identify PRMT1 as a novel and crucial negative regulator of STAT1 activation that controls PIAS1-mediated repression by arginine methylation.
    [Show full text]