Sparganosis Contaminated Water Containing Copepods (Fig

Total Page:16

File Type:pdf, Size:1020Kb

Sparganosis Contaminated Water Containing Copepods (Fig S Sparganosis contaminated water containing copepods (Fig. 2) infected with ▶ procercoid larvae of Bin Ye Spirometra. Department of Parasitology, Chongqing Medical The incubation period of sparganosis resulting University, Chongqing, China from the application of raw flesh poultices is 2 days to 10 days; however, it is described that sparganum larva can remain in the body for Sparganosis is an infection of ▶ sparganum,a months or years before symptoms present (Liu ▶ plerocercoid larva of the genus ▶ Spirometra 1990). The spargana can cause migratory inflam- tapeworm. mation nodules or abscesses in the human body. The first sparganosis case was described by The larva in the abscess is surrounded by an ▶ Patick Manson in China in 1882. The disease intense mixed ▶ inflammatory reaction, often is most prevalent in Asia, especially in China, containing large numbers of eosinophils. The Vietnam, Thailand, Korea, and Japan, although nodule is delimited by granulation tissue. By cases have been described sporadically around lesion locations, sparganosis is divided into sub- the world. Most cases in Asian countries are cutaneous, ocular, buccal cavity, cerebral, and caused by Spirometra mansoni, while most visceral types. Clinical symptoms also vary cases in North America by ▶ Spirometra according to the locations of spargana. Most mansonoides. commonly, the spargana invade and migrate Usually, dogs and cats are the definitive hosts through subcutaneous tissue or muscle, espe- of Pseudophyllidea tapeworm ▶ Spirometra spp. cially in the abdominal wall, chest, limbs, breast, ▶ Sparganum is a parasite of carnivores, found groin, labia, or scrotum. The early stages of dis- usually in amphibians (second intermediate ease are often asymptomatic. The larvae may hosts) or reptiles (paratenic hosts). As an acci- cause small and migratory subcutaneous nodules dental host, human becomes infected by consum- (1 to 2 cm in diameter) with erythema, pruritus, ing raw tadpoles or raw flesh of amphibians and swelling and are often accompanied by pain- (Fig. 1), reptiles, birds, or mammals such as ful edema. Discrete subcutaneous nodules may pigs and dogs for medicinal purposes or for indig- appear and disappear over a period of time. The enous food cultures or by placing raw flesh poul- ocular and maxillofacial sparganosis is found tices of amphibians or snakes infected with occasionally. The symptoms of the ocular spargana on open wounds, lesions, and eyes for sparganosis include eye pain, edematous swell- medicinal reasons, even by drinking ing, lacrimation, orbital cellulitis, exophthalmos, and corneal ulcer. If untreated, a mass ocular # Springer-Verlag Berlin Heidelberg 2015 H. Mehlhorn (ed.), Encyclopedia of Parasitology, DOI 10.1007/978-3-642-27769-6_2923-2 2 Sparganosis Sparganosis, Fig. 1 A sparganum dissociated from the frog’s thigh flesh headaches are common symptoms of cerebral sparganosis. Preoperative diagnosis is rare, although the infection may also be diagnosed by identification of eosinophilia or identification of sparganum in a tissue specimen. Diagnosis depends on patholog- ical examination of sparganum sections after tis- sue biopsy and excision of nodule lesion. The lesions in the brain can be observed by tomogra- phy and magnetic resonance imaging. Antisparganum ELISA test of cerebrospinal fluid or serum may be used when biopsy and excision procedures are not feasible. Seropreva- lence of IgG antibodies for spargana in sera of patients can be measured by ELISA; it should be included in differential diagnosis for patients with eosinophilia-associated lesions of the cen- tral nervous system, liver, and lungs (Lee et al. 2010). ELISA using excretory-secretory antigens of S. mansoni spargana may be applied to early serodiagnosis of sparganosis since its specificity in detecting serum samples of patients with cysticercosis, echinococcosis, paragonimiasis, clonorchiasis, and schistosomia- Sparganosis, Fig. 2 The copepod infected with sis and healthy persons was significantly greater Spirometra procercoids may serve as the first intermediate host of Spirometra than that of crude antigen ELISA (Cui et al. 2011). Two-dimensional electrophoresis followed by immunoblot analysis might be lesion may lead to blindness. Although the cere- highly available in differential serodiagnosis of bral or visceral case is rare, the brain abscesses human sparganosis because the 31 kDa and might be serious. Seizures, hemiparesis, and 36 kDa proteins of the sparganum could invoke specific and sensitive antibody responses, and the Sparganosis 3 on open wounds, lesions, and eyes. Avoiding ingestion of raw fleshes of frog or snake is the best prevention. Avoid drinking water from field ponds or ditches in all rural endemic areas because the unsanitary water may contain infected copepods. Sparganum The common name for the second larva is plero- cercoid, e.g., of the tapeworm Diphyllobothrium latum or ▶ Spirometra spp., ▶ Eucestoda. The plerocercoid larva is wrinkled, unsegmented, whitish, and ribbon shaped, 3 mm in width and up to 30 cm long. The larva is solid bodied with Sparganosis, Fig. 3 The anterior end of sparganum with two longitudinal grooves two longitudinal grooves (Fig. 3) at the anterior end. The larval section presents bundles of longi- tudinal muscle fibers scattered throughout the sera from sparganosis patients recognized 8–10 mesenchyme and a thick tegument. protein spots of 31 and 36 kDa with different isoelectric point (pI) values with variable combi- nations, in which four spots of 31 kDa with pIs 3.4, 3.9, 4.0, and 4.1 and one 36 kDa spot (pI 3.5) Spirometra appeared to be specifically reactive (Rahman et al. 2011). A genus of tapeworm in Diphyllobothriidae, Surgical removal is the best choice for therapy Pseudophyllidea, and ▶ Eucestoda. of sparganosis. The antihelminthic ▶ praziquantel or ▶ albendazole is often used for viscera sparganosis. However, it was demon- Spirometra spp. strated that albendazole had no obvious efficacy for treating sparganosis in mice (Cui et al. 2012) There are several species of Spirometra, includ- and that albendazole at a dosage of 400 mg ing S. mansoni, S. mansonoides, S. erinacei, bi-daily for 30 days was ineffective to human S. ranarum, S. decipiens, S. houghtoni, and cerebral sparganosis (Gonzenbach et al. 2013). S. proliferum. S. mansoni is predominately The treatment with praziquantel has produced found in Asia, and S. mansonoides is predomi- only limited success when the chemical was nately in the United States. S. houghtoni and administered at a total dose of 120–150 mg/kg S. erinacei are found in China and Japan, respec- body weight, over a 2-day period. A successful tively. S. proliferum have been reported in Japan, therapy for cerebral sparganosis may be achieved the United States, Venezuela, and Paraguay. by a high-dosage regimen of praziquantel (3 Â 25 mg/kg body weight daily) for 7 days combined with cimetidine (3 Â 400 mg daily) and a high carbohydrate diet to increase plasma Spirometra mansoni level of praziquantel (Gonzenbach et al. 2013). Prevention should focus on public health edu- A predominant species of the genus Spirometra cation of abandoning the medical practices of tapeworm of dogs and cats in Asia, ▶ Cestodes. applying raw animal flesh as medicinal poultices 4 Sparganosis Spirometra mansonoides infections of mice and human sparganosis by ELISA using ES antigens of Spirometra mansoni spargana. Parasitol Res 108(6):1551–1556 A predominant species of the genus Spirometra Cui J, Wang MM, Zhao YW, Gan GH, Hu BW, Jiang P, tapeworm of dogs and cats in North and South Qi X, Liu LN, Wang ZQ (2012) Efficacy of America, ▶ Cestodes. albendazole for treatment of mice infected with Sparganum mansoni. Chin J Parasitol Parasit Dis 30(1):71–72 (In Chinese) Gonzenbach RR, Kong Y, Beck B, Buck A, Weller M, Poultice Semmler A (2013) High-dose praziquantel therapy for cerebral sparganosis. J Neurol 260(5):1423–1425 A poultice is a piece of cloth or paper with a soft Lee MK, Hong SJ, Kim HR (2010) Seroprevalence of tissue invading parasitic infections diagnosed by substance such as a mixture of herbs on it. It is put ELISA in Korea. J Korean Med Sci 25(9):1272–1276 over a painful or swollen part of the human body Liu GZ (1990) A brief introduction of sparganosis in order to reduce the pain or swelling. mansoni in China. Chin J Parasitol Dis Control 3(2):152–154 (In Chinese) Rahman M, Lee EG, Bae YA (2011) Two-dimensional immunoblot analysis of antigenic proteins of References Spirometra plerocercoid recognized by human patient sera. Parasitol Int 60(2):139–143 Cui J, Li N, Wang ZQ, Jiang P, Lin XM (2011) Serodiagnosis of experimental sparganum.
Recommended publications
  • Broad Tapeworms (Diphyllobothriidae)
    IJP: Parasites and Wildlife 9 (2019) 359–369 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: T Recent progress and future challenges ∗ Tomáš Scholza, ,1, Roman Kuchtaa,1, Jan Brabeca,b a Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic b Natural History Museum of Geneva, PO Box 6434, CH-1211, Geneva 6, Switzerland ABSTRACT Tapeworms of the family Diphyllobothriidae, commonly known as broad tapeworms, are predominantly large-bodied parasites of wildlife capable of infecting humans as their natural or accidental host. Diphyllobothriosis caused by adults of the genera Dibothriocephalus, Adenocephalus and Diphyllobothrium is usually not a life-threatening disease. Sparganosis, in contrast, is caused by larvae (plerocercoids) of species of Spirometra and can have serious health consequences, exceptionally leading to host's death in the case of generalised sparganosis caused by ‘Sparganum proliferum’. While most of the definitive wildlife hosts of broad tapeworms are recruited from marine and terrestrial mammal taxa (mainly carnivores and cetaceans), only a few diphyllobothriideans mature in fish-eating birds. In this review, we provide an overview the recent progress in our understanding of the diversity, phylogenetic relationships and distribution of broad tapeworms achieved over the last decade and outline the prospects of future research. The multigene family-wide phylogeny of the order published in 2017 allowed to propose an updated classi- fication of the group, including new generic assignment of the most important causative agents of human diphyllobothriosis, i.e., Dibothriocephalus latus and D.
    [Show full text]
  • Spirometra Decipiens (Cestoda: Diphyllobothriidae) Collected in a Heavily Infected Stray Cat from the Republic of Korea
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 1: 87-91, February 2018 ▣ BRIEF COMMUNICATION https://doi.org/10.3347/kjp.2018.56.1.87 Spirometra decipiens (Cestoda: Diphyllobothriidae) Collected in A Heavily Infected Stray Cat from the Republic of Korea Hyeong-Kyu Jeon†, Hansol Park†, Dongmin Lee, Seongjun Choe, Keeseon S. Eom* Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea Abstract: Morphological and molecular characteristics of spirometrid tapeworms, Spirometra decipiens, were studied, which were recovered from a heavily infected stray cat road-killed in Eumseong-gun, Chungcheongbuk-do (Province), the Republic of Korea (= Korea). A total of 134 scolices and many broken immature and mature proglottids of Spirometra tapeworms were collected from the small intestine of the cat. Morphological observations were based on 116 specimens. The scolex was 22.8-32.6 mm (27.4 mm in average) in length and small spoon-shape with 2 distinct bothria. The uterus was coiled 3-4 times, the end of the uterus was ball-shaped, and the vaginal aperture shaped as a crescent moon was closer to the cirrus aperture than to the uterine aperture. PCR amplification and direct sequencing of the cox1 target frag- ment (377 bp in length and corresponding to positions 769-1,146 bp of the cox1 gene) were performed using total ge- nomic DNA extracted from 134 specimens. The cox1 sequences (377 bp) of the specimens showed 99.0% similarity to the reference sequence of S. decipiens and 89.3% similarity to the reference sequence of S.
    [Show full text]
  • Literature: Speothos Venaticus Compiled by the Amazonian Canids Working Group – 01/2021
    Literature: Speothos venaticus Compiled by the Amazonian Canids Working Group – 01/2021 Aguirre LF, Tarifa T, Wallace RB, Bernal N, Siles L, Aliaga-Rossel E & Salazar-Bravo J. 2019. Lista actualizada y comentada de los mamíferos de Bolivia. Ecología en Bolivia 54(2):107-147. Álvarez-Solas S, Ramis L & Peñuela MC. 2020. Highest bush dog (Speothos venaticus) record for Ecuador with a potential association to a palm tree (Socratea rostrata). Studies on Neotropical Fauna and Environment. DOI: 10.1080/01650521.2020.1809973 Alverson WS, Rodriguez LO, & Moskovits DK (Editors). 2001. Peru: Biabo Cardillera Azul. Rapid Biological Inventories. The Field Museum, Chicago, USA. Anderson A. 1997. Mammals of Bolivia, taxonomy and distribution. Bulletin American Museum of Natural History 231:1-652. Aquino R & Puertas P. 1996. Observaciones preliminares sobre la ecological de Speothos venaticus (Canidae: Carnivore) en su habitat natural. Folia Amazonica 8:133-145. Aquino R & Puertas P. 1997. Observations of Speothos venaticus (Canidae: Carnivora) in its natural habitat in Peruvian Amazonia. Zeitschrift für Säugetierkunde 62:117-118. Arispe R & Rumiz DI. 2002. Una estimación del uso de los recursos silvestres en la zona del Bosque Chiquitano, Cerrado y Pantanal de Santa Cruz. Revista Boliviana de Ecología y Conservación Ambiental 11:17-29 Arispe R, Rumiz D. & Venegas C. 2007. Censo de jaguares (Panthera onca) y otros mamíferos con trampas cámara en la Concesión Forestal El Encanto. Informe Técnico 173. Wildlife Conservation Society. Santa Cruz, Bolivia. 39pp. Aya-Cuero CA, Mosquera-Guerra F, Esquivel DA, Trujillo F, & Brooks D. 2019. Medium and large mammals of the mid Planas River basin, Colombia.
    [Show full text]
  • The Helminthological Society of Washinqton I
    . Volume 46 1979 Number 2 PROCEEDINGS The Helminthological Society %Hi.-s'^ k •''"v-'.'."'/..^Vi-":W-• — • '.'V ' ;>~>: vf-; • ' ' / '••-!' . • '.' -V- o<•' fA • WashinQto" , ' •- V ' ,• -. " ' <- < 'y' : n I •;.T'''-;«-''•••.'/ v''.•'••/••'; •;•-.-•• : ' . -•" 3 •/"-:•-:•-• ..,!>.>>, • >; A semiannual: journal Jof research devoted to Helminthology and a// branches of Paras/fo/ogy ,I ^Supported in part by<the / ^ ^ ;>"' JBrayton H. Ransom^Memorial TrustJiund /^ v ''•',''•'•- '-- ^ I/ •'/"! '' " '''-'• ' • '' * ' •/ -"."'• Subscription $i;iB.OO a Volume; foreign, $1 ?1QO /' rv 'I, > ->\ ., W./JR. Polypocephalus sp. (CeModa; Lecanieephalidae): ADescrip- / ^xtion, of .Tentaculo-PJerocercoids .'from Bay Scallops of the Northeastern Gulf ( ,:. ••-,' X)f Mexico^-— u-':..-., ____ :-i>-.— /— ,-v-— -— ;---- ^i--l-L4^,- _____ —.—.;—— -.u <165 r CAREER, GEORGE^ J.^ANDKENNETI^: C, CORKUM. 'Life jpycle (Studies of Three Di- .:•';' genetic; Trpmatodes, Including /Descriptions of Two New' Species (Digenea: ' r vCryptpgonirnidae) ,^.: _____ --—cr? ..... ______ v-^---^---<lw--t->-7----^--'r-- ___ ~Lf. \8 . ; HAXHA WAY, RONALD P, The Morphology of Crystalline Inclusions in, Primary Qo: ^ - r ',{••' cylesfafiAspidogaJter conchicola von Baer,;1827((Trematoda: A^pidobpthria)— : ' 201 HAYUNGA, EUGENE ,G. (The Structure and Function of the GlaJids1! of .. Three .Carypphyllid T;ape\y,orms_Jr-_-_.--_--.r-_t_:_.l..r ____ ^._ ______ ^..—.^— —....: rJ7l ' KAYT0N , ROBERT J . , PELANE C. I^RITSKY, AND RICHARD C. TbaiAS. Rhabdochona /• ;A ; ycfitostomi sp. n. (Nematoifja: Rhaibdochonidae)"from the-Intestine of Catdstomusi ' 'i -<•'• ' spp.XGatostpmjdae)— ^ilL.^—:-;..-L_y— 1..:^^-_— -L.iv'-- ___ -—- ?~~ -~—:- — -^— '— -,--- X '--224- -: /McLoUGHON, D. K. AND M:JB. CHUTE: \ tenellq.in Chickens:, Resistance to y a Mixture .of Suifadimethoxine and'Ormetpprim (Rofenaid) ,___ _ ... .. ......... ^...j.. , 265 , M, C.-AND RV A;. KHAN. Taxonomy, Biology, and Occurrence of Some " Manhe>Lee^ches in 'Newfoundland Waters-i-^-\---il.^ , R.
    [Show full text]
  • Rapid Identification of Nine Species of Diphyllobothriidean Tapeworms By
    www.nature.com/scientificreports OPEN Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing Received: 20 July 2016 Tongjit Thanchomnang1,2, Chairat Tantrawatpan2,3, Pewpan M. Intapan2,4, Accepted: 26 October 2016 Oranuch Sanpool1,2,4, Viraphong Lulitanond2,5, Somjintana Tourtip1, Hiroshi Yamasaki6 & Published: 17 November 2016 Wanchai Maleewong2,4 The identification of diphyllobothriidean tapeworms (Cestoda: Diphyllobothriidea) that infect humans and intermediate/paratenic hosts is extremely difficult due to their morphological similarities, particularly in the case of Diphyllobothrium and Spirometra species. A pyrosequencing method for the molecular identification of pathogenic agents has recently been developed, but as of yet there have been no reports of pyrosequencing approaches that are able to discriminate among diphyllobothriidean species. This study, therefore, set out to establish a pyrosequencing method for differentiating among nine diphyllobothriidean species, Diphyllobothrium dendriticum, Diphyllobothrium ditremum, Diphyllobothrium latum, Diphyllobothrium nihonkaiense, Diphyllobothrium stemmacephalum, Diplogonoporus balaenopterae, Adenocephalus pacificus, Spirometra decipiens and Sparganum proliferum, based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene as a molecular marker. A region of 41 nucleotides in the cox1 gene served as a target, and variations in this region were used for identification using PCR plus pyrosequencing. This region contains nucleotide variations at 12 positions, which is enough for the identification of the selected nine species of diphyllobothriidean tapeworms. This method was found to be a reliable tool not only for species identification of diphyllobothriids, but also for epidemiological studies of cestodiasis caused by diphyllobothriidean tapeworms at public health units in endemic areas. The order Diphyllobothriidea (Platyhelminthes: Cestoda) is a large group of tapeworms that parasitize mammals, birds, amphibians and reptiles1,2.
    [Show full text]
  • Early Serodiagnosis of Trichinellosis by ELISA Using Excretory–Secretory
    Sun et al. Parasites & Vectors (2015) 8:484 DOI 10.1186/s13071-015-1094-9 RESEARCH Open Access Early serodiagnosis of trichinellosis by ELISA using excretory–secretory antigens of Trichinella spiralis adult worms Ge-Ge Sun, Zhong-Quan Wang*, Chun-Ying Liu, Peng Jiang, Ruo-Dan Liu, Hui Wen, Xin Qi, Li Wang and Jing Cui* Abstract Background: The excretory–secretory (ES) antigens of Trichinella spiralis muscle larvae (ML) are the most commonly used diagnostic antigens for trichinellosis. Their main disadvantage for the detection of anti-Trichinella IgG is false-negative results during the early stage of infection. Additionally, there is an obvious window between clinical symptoms and positive serology. Methods: ELISA with adult worm (AW) ES antigens was used to detect anti-Trichinella IgG in the sera of experimentally infected mice and patients with trichinellosis. The sensitivity and specificity were compared with ELISAs with AW crude antigens and ML ES antigens. Results: In mice infected with 100 ML, anti-Trichinella IgG were first detected by ELISA with the AW ES antigens, crude antigens and ML ES antigens 8, 12 and 12 days post-infection (dpi), respectively. In mice infected with 500 ML, specific antibodies were first detected by ELISA with the three antigen preparations at 10, 8 and 10 dpi, respectively. The sensitivity of the ELISA with the three antigen preparations for the detection of sera from patients with trichinellosis at 35 dpi was 100 %. However, when the patients’ sera were collected at 19 dpi, the sensitivities of the ELISAs with the three antigen preparations were 100 % (20/20), 100 % (20/20) and 75 % (15/20), respectively (P < 0.05).
    [Show full text]
  • Thirty-Seven Human Cases of Sparganosis from Ethiopia and South Sudan Caused by Spirometra Spp
    Am. J. Trop. Med. Hyg., 93(2), 2015, pp. 350–355 doi:10.4269/ajtmh.15-0236 Copyright © 2015 by The American Society of Tropical Medicine and Hygiene Case Report: Thirty-Seven Human Cases of Sparganosis from Ethiopia and South Sudan Caused by Spirometra Spp. Mark L. Eberhard,* Elizabeth A. Thiele, Gole E. Yembo, Makoy S. Yibi, Vitaliano A. Cama, and Ernesto Ruiz-Tiben Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia; Ethiopia Dracunculiasis Eradication Program, Federal Ministry of Health, Addis Ababa, Ethiopia; South Sudan Guinea Worm Eradication Program, Ministry of Health, Juba, Republic of South Sudan; The Carter Center, Atlanta, Georgia Abstract. Thirty-seven unusual specimens, three from Ethiopia and 34 from South Sudan, were submitted since 2012 for further identification by the Ethiopian Dracunculiasis Eradication Program (EDEP) and the South Sudan Guinea Worm Eradication Program (SSGWEP), respectively. Although the majority of specimens emerged from sores or breaks in the skin, there was concern that they did not represent bona fide cases of Dracunculus medinensis and that they needed detailed examination and identification as provided by the World Health Organization Collaborating Center (WHO CC) at Centers for Disease Control and Prevention (CDC). All 37 specimens were identified on microscopic study as larval tapeworms of the spargana type, and DNA sequence analysis of seven confirmed the identification of Spirometra sp. Age of cases ranged between 7 and 70 years (mean 25 years); 21 (57%) patients were male and 16 were female. The presence of spargana in open skin lesions is somewhat atypical, but does confirm the fact that populations living in these remote areas are either ingesting infected copepods in unsafe drinking water or, more likely, eating poorly cooked paratenic hosts harboring the parasite.
    [Show full text]
  • Identificación Y Frecuencia De Parásitos Gastrointestinales En Félidos Silvestres En Cautiverio En El Perú
    Rev Inv Vet Perú 2013; 24(3): 360-368 IDENTIFICACIÓN Y FRECUENCIA DE PARÁSITOS GASTROINTESTINALES EN FÉLIDOS SILVESTRES EN CAUTIVERIO EN EL PERÚ IDENTIFICATION AND FREQUENCY OF GASTROINTESTINAL PARASITES IN CAPTIVE WILD CATS IN PERU Carmen Aranda R.1, Enrique Serrano-Martínez1,2, Manuel Tantaleán V.1, Marco Quispe H.1, Gina Casas V.1 RESUMEN El objetivo del presente trabajo fue identificar los parásitos gastrointestinales de felinos silvestres criados en cuatro parques zoológicos en el Perú, mediante la aplicación de cuatro técnicas parasitológicas convencionales (método directo, test de sedimenta- ción en tubo, método de Sheather y tinción Ziehl-Nielsen). Se trabajó con 10 ejemplares de Panthera onca (4 machos y 6 hembras), 8 de Puma concolor (4 machos y 4 hembras), 6 de Leopardus pardalis (machos), 3 de Leopardus wiedii (1 macho y 2 hembras) y 2 de Leopardus tigrinus (machos). El 62.1% (18/29) de las muestras fueron positivas a alguna forma de parásito gastrointestinal. Panthera onca y Puma concolor fueron las especies con mayor frecuencia de parásitos (9/10 y 5/5, respectivamente). Los parásitos más fre- cuentes fueron el céstodo Spirometra mansonoides (38.9%), Toxocara cati (33.3%) y Strongyloides spp (33.3%). No se encontró asociación estadística entre las variables de edad y sexo. Palabras clave: felinos silvestres, parásitos gastrointestinales, zoológico, sanidad animal ABSTRACT The aim of this study was to identify gastrointestinal parasites affecting wild cats reared in captivity in four Peruvian zoos through the application of
    [Show full text]
  • Praziquantel Treatment in Trematode and Cestode Infections: an Update
    Review Article Infection & http://dx.doi.org/10.3947/ic.2013.45.1.32 Infect Chemother 2013;45(1):32-43 Chemotherapy pISSN 2093-2340 · eISSN 2092-6448 Praziquantel Treatment in Trematode and Cestode Infections: An Update Jong-Yil Chai Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, Korea Status and emerging issues in the use of praziquantel for treatment of human trematode and cestode infections are briefly reviewed. Since praziquantel was first introduced as a broadspectrum anthelmintic in 1975, innumerable articles describ- ing its successful use in the treatment of the majority of human-infecting trematodes and cestodes have been published. The target trematode and cestode diseases include schistosomiasis, clonorchiasis and opisthorchiasis, paragonimiasis, het- erophyidiasis, echinostomiasis, fasciolopsiasis, neodiplostomiasis, gymnophalloidiasis, taeniases, diphyllobothriasis, hyme- nolepiasis, and cysticercosis. However, Fasciola hepatica and Fasciola gigantica infections are refractory to praziquantel, for which triclabendazole, an alternative drug, is necessary. In addition, larval cestode infections, particularly hydatid disease and sparganosis, are not successfully treated by praziquantel. The precise mechanism of action of praziquantel is still poorly understood. There are also emerging problems with praziquantel treatment, which include the appearance of drug resis- tance in the treatment of Schistosoma mansoni and possibly Schistosoma japonicum, along with allergic or hypersensitivity
    [Show full text]
  • Diagnostic Efficacy of a Recombinant Cysteine Protease of Spirometra Erinacei Larvae for Serodiagnosis of Sparganosis
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 52, No. 1: 41-46, February 2014 ▣ ORIGINAL ARTICLE http://dx.doi.org/10.3347/kjp.2014.52.1.41 Diagnostic Efficacy of a Recombinant Cysteine Protease of Spirometra erinacei Larvae for Serodiagnosis of Sparganosis S.M. Mazidur Rahman, Jae-Hwan Kim, Sung-Tae Hong, Min-Ho Choi* Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Korea Abstract: The mature domain of a cysteine protease of Spirometra erinacei plerocercoid larva (i.e., sparganum) was ex- pressed in Escherichia coli, and its value as an antigen for the serodiagnosis of sparganosis was investigated. The recom- binant protein (rSepCp-1) has the molecular weight of 23.4 kDa, and strongly reacted with the sparganum positive human or mice sera but not with negative sera by immunoblotting. ELISA with rSepCp-1 protein or sparganum crude antigen (SeC) was evaluated for the serodiagnosis of sparganosis using patient’s sera. The sensitivity and specificity of ELISA using rSepCp-1 protein were 95.0% (19/20) and 99.1% (111/112), respectively. In contrast, the sensitivity and specificity of ELI- SA with SeC were 100% (20/20) and 96.4% (108/112), respectively. Moreover, in experimentally infected mice, the sensi- tivity and specificity of both ELISA assays were 100% for the detection of anti-sparganum IgG. It is suggested that the rSepCp-1 protein-based ELISA could provide a highly sensitive and specific assay for the diagnosis of sparganosis.
    [Show full text]
  • Classification and Nomenclature of Human Parasites Lynne S
    C H A P T E R 2 0 8 Classification and Nomenclature of Human Parasites Lynne S. Garcia Although common names frequently are used to describe morphologic forms according to age, host, or nutrition, parasitic organisms, these names may represent different which often results in several names being given to the parasites in different parts of the world. To eliminate same organism. An additional problem involves alterna- these problems, a binomial system of nomenclature in tion of parasitic and free-living phases in the life cycle. which the scientific name consists of the genus and These organisms may be very different and difficult to species is used.1-3,8,12,14,17 These names generally are of recognize as belonging to the same species. Despite these Greek or Latin origin. In certain publications, the scien- difficulties, newer, more sophisticated molecular methods tific name often is followed by the name of the individual of grouping organisms often have confirmed taxonomic who originally named the parasite. The date of naming conclusions reached hundreds of years earlier by experi- also may be provided. If the name of the individual is in enced taxonomists. parentheses, it means that the person used a generic name As investigations continue in parasitic genetics, immu- no longer considered to be correct. nology, and biochemistry, the species designation will be On the basis of life histories and morphologic charac- defined more clearly. Originally, these species designa- teristics, systems of classification have been developed to tions were determined primarily by morphologic dif- indicate the relationship among the various parasite ferences, resulting in a phenotypic approach.
    [Show full text]
  • Genetic and Morphologic Identification of Spirometra Ranarum in Myanmar
    ISSN (Print) 0023-4001 ISSN (Online) 1738-0006 Korean J Parasitol Vol. 56, No. 3: 275-280, June 2018 ▣ ORIGINAL ARTICLE https://doi.org/10.3347/kjp.2018.56.3.275 Genetic and Morphologic Identification of Spirometra ranarum in Myanmar Hyeong-Kyu Jeon1, Hansol Park1, Dongmin Lee1, Seongjun Choe1, Yeseul Kang1, Mohammed Mebarek Bia1, 1 2 3 4 1, Sang-Hwa Lee , Woon-Mok Sohn , Sung-Jong Hong , Jong-Yil Chai , Keeseon S. Eom * 1Department of Parasitology, Parasite Research Center and Parasite Resource Bank, Chungbuk National University School of Medicine, Cheongju 28644, Korea; 2Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Chinju 52727, Korea; 3Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea; 4Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul 03080, Korea Abstract: In the present study, we identified a Spirometra species of Myanmar origin (plerocercoid) by molecular analysis using mitochondrial cox1 and nad1 genes, as well as by morphological observations of an adult tapeworm. Spargana specimens were collected from a paddy-field in Taik Kyi Township Tarkwa Village, Yangon, Myanmar in December 2017. A total of 5 spargana were obtained from 20 frogs Hoplobatrachus rugulosus; syn: Rana rugulosa (Wiegmann, 1834) or R. tigrina (Steindachner, 1867). The plerocercoids were used for experimental infection of a dog. After 4 weeks of infection, an adult tapeworm was recovered from the intestine of the dog. Morphologically, the distinct features of Spirometra sp. (Myanmar origin) relative to S. erinaceieuropaei and S. decipiens include a uterine morphology comprising posterior uter- ine coils that larger than the terminal uterine ball and coiling of the uteri diagonally (swirling) rather than spirally.
    [Show full text]