Quantum Field Theory Approaches to Meson Structure

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory Approaches to Meson Structure Quantum Field Theory Approaches to Meson Structure Dissertation der Mathematisch–Naturwissenschaftlichen Fakult¨at der Eberhard Karls Universit¨at T¨ubingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Tanja Branz aus T¨ubingen T¨ubingen 2011 Tag der m¨undlichen Pr¨ufung: 24.02.2011 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. Thomas Gutsche 2. Berichterstatter: Prof. Dr. Werner Vogelsang 3. Berichterstatter: Prof. Dr. Eulogio Oset Zusammenfassung Meson–Spektroskopie ist eines der interessantesten Themen in der Teilchenphysik. Vor allem durch die Entdeckung von zahlreichen neuen Zust¨anden im Charmo- nium Spektrum mit Eigenschaften, die nicht durch das Konstituenten Quark Modell erkl¨art werden k¨onnen, hat das Interesse zahlreicher theoretischer Untersuchungen auf dieses Thema gelenkt. In der vorliegenden Dissertation werden verschiedene Mesonstrukturen diskutiert, die von leichten und schweren Quark–Antiquark Mesonen bis hin zu gebundenen Zust¨anden von Hadronen, sogenannten Hadronischen Molek¨ulen, im leichten und schweren Sektor reichen. F¨ur die Untersuchung der Mesoneneigenschaften wie Massen- spektrum, totale und partielle Breiten sowie Produktionsraten verwenden wir drei verschiedene theoretische Modelle. Gebundene Zust¨ande von Mesonen werden zun¨achst in einem Modell untersucht, das auf gekoppelten Meson Kan¨alen basiert, bei der Meson–Meson Resonanzen dy- namisch generiert werden. Die Zerfallseigenschaften von Mesonmolek¨ulen werden anschließend in einem zweiten Modell analysiert. Die Basis dieses zweiten Zugangs bilden effektive Lagrangedichten, die die Wechselwirkung zwischen den hadronisch gebundenem Zustand und dessen Konstituenten beschreibt. Neben den Meson- molek¨ulen betrachten wir auch die radiativen und starken Zerfallseigenschaften her- k¨ommlicher Quark–Antiquark Mesonen in diesem ph¨anomenologischen Modell. Den Abschluss der drei theoretischen Methoden, die hier vorgestellt werden, wird von einem AdS/CFT Modell gebildet. Dieses holographische Modell unterscheidet sich fundamental von den beiden vorher diskutierten Ans¨atzen, da zus¨atzliche Di- mensionen und Elemente aus der String Theorie enthalten sind. Wir berechnen das Massenspektrum leichter und schwerer Mesonen und deren Zerfallskonstanten im Rahmen dieses Modells. Abstract Meson spectroscopy became one of the most interesting topics in particle physics in the last ten years. In particular, the discovery of new unexpected states in the charmonium spectrum which cannot be simply explained by the constituent quark model attracted the interest of many theoretical efforts. In the present thesis we discuss different meson structures ranging from light and heavy quark–antiquark states to bound states of hadrons—hadronic molecules. Here we consider the light scalar mesons f0(980) and a0(980) and the charmonium–like Y (3940), Y (4140) and Z±(4430) states. In the discussion of the meson properties like mass spectrum, total and partial decay widths and production rates we introduce three different theoretical methods for the treatment and description of hadronic structure. For the study of bound states of mesons we apply a coupled channel approach which allows for the dynamical generation of meson–meson resonances. The decay properties of meson molecules are further on studied within a second model based on effective Lagrangians describing the interaction of the bound state and its con- stituents. Besides hadronic molecules the effective Lagrangian approach is also used to study the radiative and strong decay properties of ordinary quark–antiquark (qq¯) states. The AdS/QCD model forms the completion of the three theoretical methods intro- duced in the present thesis. This holographic model provides a completely different ansatz and is based on extra dimensions and string theory. Within this framework we calculate the mass spectrum of light and heavy mesons and their decay constants. Contents 1. Introduction 9 1.1. Hadronic Structure ............................ 11 1.1.1. Constituent Quark Model .................... 11 1.1.2. Beyond the Quark Model ..................... 12 2. Meson Spectroscopy 15 2.1. Meson Spectroscopy in the Light Sector ................. 15 2.1.1. f0(980) and a0(980) ........................ 16 2.2. Meson Spectroscopy in the Charmonium Sector ............ 20 2.2.1. Y(3940) .............................. 24 2.2.2. Y(4140) .............................. 25 2.2.3. Z(4430) .............................. 26 2.3. Outline of the theory part ........................ 28 3. Dynamically generated resonances 31 3.1. Coupled channels ............................. 31 3.2. Coupled channels including charmed mesons .............. 38 3.2.1. Hidden–charm, open–strange sector ............... 45 3.2.2. Charm–strange resonances .................... 45 3.2.3. Flavor exotic resonances ..................... 50 3.2.4. Summary ............................. 55 3.3. Radiative decays of dynamically generated states ........... 57 3.3.1. Radiative decays of light mesons ................. 60 3.3.2. Radiative decays of hidden–charm mesons ........... 67 3.3.3. Summary ............................. 70 4. Effective Model for Hadronic Bound States 73 4.1. Formalism ................................. 74 4.1.1. Inclusion of the electromagnetic interaction ........... 77 4.2. Light meson bound states ........................ 80 4.2.1. a0(980) and f0(980) ........................ 80 4.2.2. Weak non–leptonic decays of hadron molecules ......... 98 4.3. Heavy Charmonium–like Hadronic Molecules ..............106 4.3.1. Y(3940) and Y(4140) .......................106 4.3.2. Z(4430) ..............................115 5 6 Contents 4.4. Two–photon decay of heavy hadron molecules .............125 4.5. Quark–antiquark mesons .........................131 4.5.1. Implementation of confinement .................133 4.5.2. Inclusion of the electromagnetic interaction ...........136 4.6. Basic properties of π and ρ mesons ...................138 4.7. An extension to strange, charm and bottom flavors ..........141 4.8. Dalitz decays ...............................144 4.9. Conclusions ................................150 5. Holographic model AdS/QCD 153 5.1. Basic approach ..............................153 5.1.1. Anti–de–Sitter space .......................155 5.1.2. Conformal field theory ......................157 5.1.3. Light front Fock representation .................158 5.2. AdS/QCD – the method .........................163 5.2.1. Action of a string .........................163 5.2.2. Matching procedure ........................165 5.2.3. One–gluon exchange and hyperfine–splitting ..........169 5.3. Properties of light and heavy mesons ..................171 5.3.1. Mass spectrum of light mesons ..................172 5.3.2. Mass spectrum of heavy–light mesons ..............175 5.3.3. Mass spectrum of heavy quarkonia ...............177 5.3.4. Leptonic and radiative meson decay constants .........180 5.4. Summary .................................183 6. Conclusions 185 A. Appendix: Effective Model for hadronic bound states 189 A.1. Loop Integrals ...............................189 A.1.1. Radiative transitions .......................189 A.1.2. Strong decays ...........................190 A.2. Gauge invariance .............................190 A.3. Coupling constants ............................191 ′ A.4. Coupling ratio gD1Dψ /gD1Dψ ......................193 A.5. Gauge invariance of the ρ0 γ transition amplitude .........195 → A.6. Loop integration techniques .......................197 B. Appendix: AdS/QCD 201 B.1. Evaluation of integrals in the heavy quark limit ............201 B.2. Decay constants ..............................202 Literature 215 Contents 7 List of Figures 218 List of Tables 220 1. Introduction Historically, mesons, i.e. pions, were first introduced by Yukawa [1] in 1935 as exchange bosons generating the strong interaction between nucleons. However, pions and nucleons did not remain the only hadron states but with the improvement of the accelerator facilities, which gave access to higher mass regions, numerous states of baryons and mesons have been observed, which needed to be interpreted in a systematic way. By arranging the nearly degenerate hadron states according to their quantum numbers such as total spin and parity, a specific pattern of multiplets emerged which was the starting point of the constituent quark model introduced in 1964 by Zweig and Gell–Mann. Mesons and baryons were interpreted as composite objects consisting of a valence quark–antiquark pair (qq¯) or three quarks (qqq), respectively. Up to now the constituent quark model is one of the most important models for hadron structure and provides a first reference point for newly observed states. The discovery of baryons with three identical quarks, as for example first the ∆++ (uuu) and then the Ω− (sss) state, required the introduction of an additional quan- tum number, which is the color charge, since otherwise these states would be for- bidden by the Pauli principle. The definition of the three colors and later on the experimental evidence for this color degree of freedom in deep inelastic scattering experiments provided the basis for quantum chromodynamics (QCD) which is the underlying theory of strong interaction. One of the major challenges in the applica- tion of QCD is how quarks and gluons combine to form composite particles called hadrons. In contrast to quantum electrodynamics, QCD becomes non–perturbative at large length scales and cannot be accessed
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Quasiparticle Anisotropic Hydrodynamics in Ultra-Relativistic
    QUASIPARTICLE ANISOTROPIC HYDRODYNAMICS IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mubarak Alqahtani December, 2017 c Copyright All rights reserved Except for previously published materials Dissertation written by Mubarak Alqahtani BE, University of Dammam, SA, 2006 MA, Kent State University, 2014 PhD, Kent State University, 2014-2017 Approved by , Chair, Doctoral Dissertation Committee Dr. Michael Strickland , Members, Doctoral Dissertation Committee Dr. Declan Keane Dr. Spyridon Margetis Dr. Robert Twieg Dr. John West Accepted by , Chair, Department of Physics Dr. James T. Gleeson , Dean, College of Arts and Sciences Dr. James L. Blank Table of Contents List of Figures . vii List of Tables . xv List of Publications . xvi Acknowledgments . xvii 1 Introduction ......................................1 1.1 Units and notation . .1 1.2 The standard model . .3 1.3 Quantum Electrodynamics (QED) . .5 1.4 Quantum chromodynamics (QCD) . .6 1.5 The coupling constant in QED and QCD . .7 1.6 Phase diagram of QCD . .9 1.6.1 Quark gluon plasma (QGP) . 12 1.6.2 The heavy-ion collision program . 12 1.6.3 Heavy-ion collisions stages . 13 1.7 Some definitions . 16 1.7.1 Rapidity . 16 1.7.2 Pseudorapidity . 16 1.7.3 Collisions centrality . 17 1.7.4 The Glauber model . 19 1.8 Collective flow . 21 iii 1.8.1 Radial flow . 22 1.8.2 Anisotropic flow . 22 1.9 Fluid dynamics . 26 1.10 Non-relativistic fluid dynamics . 26 1.10.1 Relativistic fluid dynamics .
    [Show full text]
  • Book of Abstracts Ii Contents
    2014 CAP Congress / Congrès de l’ACP 2014 Sunday, 15 June 2014 - Friday, 20 June 2014 Laurentian University / Université Laurentienne Book of Abstracts ii Contents An Analytic Mathematical Model to Explain the Spiral Structure and Rotation Curve of NGC 3198. .......................................... 1 Belle-II: searching for new physics in the heavy flavor sector ................ 1 The high cost of science disengagement of Canadian Youth: Reimagining Physics Teacher Education for 21st Century ................................. 1 What your advisor never told you: Education for the ’Real World’ ............. 2 Back to the Ionosphere 50 Years Later: the CASSIOPE Enhanced Polar Outflow Probe (e- POP) ............................................. 2 Changing students’ approach to learning physics in undergraduate gateway courses . 3 Possible Astrophysical Observables of Quantum Gravity Effects near Black Holes . 3 Supersymmetry after the LHC data .............................. 4 The unintentional irradiation of a live human fetus: assessing the likelihood of a radiation- induced abortion ...................................... 4 Using Conceptual Multiple Choice Questions ........................ 5 Search for Supersymmetry at ATLAS ............................. 5 **WITHDRAWN** Monte Carlo Field-Theoretic Simulations for Melts of Diblock Copoly- mer .............................................. 6 Surface tension effects in soft composites ........................... 6 Correlated electron physics in quantum materials ...................... 6 The
    [Show full text]
  • Effects of Scalar Mesons in a Skyrme Model with Hidden Local Symmetry
    Effects of scalar mesons in a Skyrme model with hidden local symmetry 1, 2, 1, Bing-Ran He, ∗ Yong-Liang Ma, † and Masayasu Harada ‡ 1Department of Physics, Nagoya University, Nagoya, 464-8602, Japan 2Center of Theoretical Physics and College of Physics, Jilin University, Changchun, 130012, China (Dated: March 5, 2018) We study the effects of light scalar mesons on the skyrmion properties by constructing and ex- amining a mesonic model including pion, rho meson, and omega meson fields as well as two-quark and four-quark scalar meson fields. In our model, the physical scalar mesons are defined as mixing states of the two- and four-quark fields. We first omit the four-quark scalar meson field from the model and find that when there is no direct coupling between the two-quark scalar meson and the vector mesons, the soliton mass is smaller and the soliton size is larger for lighter scalar mesons; when direct coupling is switched on, as the coupling strength increases, the soliton becomes heavy, and the radius of the baryon number density becomes large, as the repulsive force arising from the ω meson becomes strong. We then include the four-quark scalar meson field in the model and find that mixing between the two-quark and four-quark components of the scalar meson fields also affects the properties of the soliton. When the two-quark component of the lighter scalar meson is increased, the soliton mass decreases and the soliton size increases. PACS numbers: 11.30.Rd, 12.39.Dc, 12.39.Fe, 14.40.Be I.
    [Show full text]
  • Spectator Model in D Meson Decays
    Transaction B: Mechanical Engineering Vol. 16, No. 2, pp. 140{148 c Sharif University of Technology, April 2009 Spectator Model in D Meson Decays H. Mehrban1 Abstract. In this research, the e ective Hamiltonian theory is described and applied to the calculation of current-current (Q1;2) and QCD penguin (Q3; ;6) decay rates. The channels of charm quark decay in the quark levels are: c ! dud, c ! dus, c ! sud and c ! sus where the channel c ! sud is dominant. The total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory are calculated. The decay rates of D meson decays according to Spectator Quark Model (SQM) are investigated for the calculation of D meson decays. It is intended to make the transition from decay rates at the quark level to D meson decay rates for two body hadronic decays, D ! h1h2. By means of that, the modes of nonleptonic D ! PV , D ! PP , D ! VV decays where V and P are light vector with J P = 0 and pseudoscalar with J P = 1 mesons are analyzed, respectively. So, the total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory, according to Colour Favoured (C-F) and Colour Suppressed (C-S) are obtained. Then the amplitude of the Colour Favoured and Colour Suppressed (F-S) processes are added and their decay rates are obtained. Using the spectator model, the branching ratio of some D meson decays are derived as well. Keywords: E ective Hamilton; c quark; D meson; Spectator model; Hadronic; Colour favoured; Colour suppressed.
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • HADRONIC DECAYS of the Ds MESON and a MODEL-INDEPENDENT DETERMINATION of the BRANCHING FRACTION
    SLAC-R-95-470 UC-414 HADRONIC DECAYS OF THE Ds MESON AND A MODEL-INDEPENDENT DETERMINATION OF THE BRANCHING FRACTION FOR THE Ds DECAY OF THE PHI PI* John Nicholas Synodinos Stanford Linear Accelerator Center Stanford University Stanford, California 94309 To the memory of my parents, July 1995 Alexander and Cnryssoula Synodinos Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. *Ph.D. thesis 0lSr^BUTlONoFT^ J "OFTH/3DOCUM*.~ ^ Abstract Acknowledgements During the running periods of the years 1992, 1993, 1994 the BES experiment at This work would not have been possible without the continuing guidance and support the Beijing Electron Positron Collider (BEPC) collected 22.9 ± 0.7pt_1 of data at an from BES collaborators, fellow graduate students, family members and friends. It is energy of 4.03 GeV, which corresponds to a local peak for e+e~ —* DfD~ production. difficult to give proper recognition to all of them, and I wish to apologize up front to Four Ds hadronic decay modes were tagged: anyone whose contributions I have overlooked in these acknowledgements. I owe many thanks to my advisor, Jonathan Dorfan, for providing me with guid• • D -> <t>w; <t> -* K+K~ s ance and encouragement. It was a priviledge to have been his graduate student. I wish to thank Bill Dunwoodie for his day to day advice. His understanding of physics • Ds~> 7F(892)°A'; 7F°(892) -> K~JT+ and his willingness to share his knowledge have been essential to the completion of • D -» WK; ~K° -> -K+TT- s this analysis.
    [Show full text]
  • 1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
    1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.
    [Show full text]
  • Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany
    OSP Journal of Nuclear Science Short Communication Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany Corresponding Author: Gudrun Kalmbach H.E, University of Ulm, MINT Verlag, Germany Received: December 19, 2019; Accepted: December 26, 2019; Published: January 02, 2019 In earlier articles the author suggested to extend the wave For dark energy and matter are suggested a pinched and a particle duality of physics to a triple, adding whirls. Whirls Horn torus with a singularity. Below are two models for this: are mathematically computed differently than waves. Parti- dark energy has inverted frequency helix lines inside and cles can be considered as a kind of bubble formation in other aggregate phase state. Wave equations have a double Minkowski cone. They have higher speeds than light 1-dimensional space expansion in direction where a wave is their cylindrical location is closed at projective infinity by a travelling. Harmonic waves for a vibrating string miss this are inverted at the Schwarzschild radius to 1-dimensional coordinate. Sound expands through pressure on the other lemniscates,inside the pinched drawn torus.with twoIn figure red or 1 greenis shown or bluethat quarkswings. hand in a sound cone. Measured is its power as intensity per All quarks are joined in this kind of pinched torus at their free carrying one of the three olor charges r, g, b,in nucle- area (figure 1). center as the Horn torus singularity. (figure 2) They are set - onsons, arebut whirls,confined often in nucleons drawn as by stretchable the two color springs charged between gluon twoquasiparticles quarks as (fieldend points; quantums) different as an geometries energy exchange.
    [Show full text]
  • List of Particle Species-1
    List of particle species that can be detected by Micro-Channel Plates and similar secondary electron multipliers. A Micro-Channel Plate (MCP) can detected certain particle species with decent quantum efficiency (QE). Commonly MCP are used to detect charged particles at low to intermediate energies and to register photons from VUV to X-ray energies. “Detection” means that a significant charge cloud is created in a channel (pore). Generally, a particle (or photon) can liberate an electron from channel surface atoms into the continuum if it carries sufficient momentum or if it can transfer sufficient potential energy. Therefore, fast-enough neutral atoms can also be detected by MCP and even exited atoms like He* (even when “slow”). At least about 10 eV of energy transfer is required to release an electron from the channel wall to start the avalanche. This number also determines the cut-off energy for photon detection which translates to a photon wave-length of about 200 nm (although there can be non- linear effects at extreme photon fluxes enhancing this cut-off wavelength). Not in all cases when ionization of a channel wall atom is possible, the electron will eventually be released to the continuum: the surface energy barrier has to be overcome and the electron must have the right emission direction. Also, the electron should be born close to surface because it may lose too much energy on its way out due to scattering and will be absorbed in the bulk. These effects reduce the QE at for VUV photons to about 10%. At EUV energies QE cannot improve much: although the primary electron energy increases, the ionization takes place deeper in the bulk on average and the electrons thus can hardly make it to the continuum.
    [Show full text]
  • 1– N and ∆ RESONANCES Revised May 2015 by V. Burkert
    – 1– N AND ∆ RESONANCES Revised May 2015 by V. Burkert (Jefferson Lab), E. Klempt (University of Bonn), M.R. Pennington (Jefferson Lab), L. Tiator (University of Mainz), and R.L. Workman (George Washington University). I. Introduction The excited states of the nucleon have been studied in a large number of formation and production experiments. The Breit-Wigner masses and widths, the pole positions, and the elasticities of the N and ∆ resonances in the Baryon Summary Table come largely from partial-wave analyses of πN total, elastic, and charge-exchange scattering data. The most com- prehensive analyses were carried out by the Karlsruhe-Helsinki (KH80) [1], Carnegie Mellon-Berkeley (CMB80) [2], and George Washington U (GWU) [3] groups. Partial-wave anal- yses have also been performed on much smaller πN reaction data sets to get ηN, KΛ, and KΣ branching fractions (see the Listings for references). Other branching fractions come from analyses of πN ππN data. → In recent years, a large amount of data on photoproduction of many final states has been accumulated, and these data are beginning to tell us much about the properties of baryon resonances. A survey of data on photoproduction can be found in the proceedings of recent conferences [4] and workshops [5], and in recent reviews [6,7]. II. Naming scheme for baryon resonances In the past, when nearly all resonance information came from elastic πN scattering, it was common to label reso- nances with the incoming partial wave L2I,2J , as in ∆(1232)P33 and N(1680)F15. However, most recent information has come from γN experiments.
    [Show full text]
  • Coupled Wire Model of Z4 Orbifold Quantum Hall States
    Coupled Wire Model of Z4 Orbifold Quantum Hall States Charles L. Kane Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 Ady Stern Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel We introduce a coupled wire model for a sequence of non-Abelian quantum Hall states that generalize the Z4 parafermion Read Rezayi state. The Z4 orbifold quantum Hall states occur at filling factors ν = 2=(2m − p) for odd integers m and p, and have a topological order with a neutral sector characterized by the orbifold conformal field theory with central charge c = 1 at radius p R = p=2. When p = 1 the state is Abelian. The state with p = 3 is the Z4 Read Rezayi state, and the series of p ≥ 3 defines a sequence of non-Abelian states that resembles the Laughlin sequence. Our model is based on clustering of electrons in groups of four, and is formulated as a two fluid model in which each wire exhibits two phases: a weak clustered phase, where charge e electrons coexist with charge 4e bosons and a strong clustered phase where the electrons are strongly bound in groups of 4. The transition between these two phases on a wire is mapped to the critical point of the 4 state clock model, which in turn is described by the orbifold conformal field theory. For an array of wires coupled in the presence of a perpendicular magnetic field, strongly clustered wires form a charge 4e bosonic Laughlin state with a chiral charge mode at the edge, but no neutral mode and a gap for single electrons.
    [Show full text]