Quasiparticle Anisotropic Hydrodynamics in Ultra-Relativistic

Total Page:16

File Type:pdf, Size:1020Kb

Quasiparticle Anisotropic Hydrodynamics in Ultra-Relativistic QUASIPARTICLE ANISOTROPIC HYDRODYNAMICS IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mubarak Alqahtani December, 2017 c Copyright All rights reserved Except for previously published materials Dissertation written by Mubarak Alqahtani BE, University of Dammam, SA, 2006 MA, Kent State University, 2014 PhD, Kent State University, 2014-2017 Approved by , Chair, Doctoral Dissertation Committee Dr. Michael Strickland , Members, Doctoral Dissertation Committee Dr. Declan Keane Dr. Spyridon Margetis Dr. Robert Twieg Dr. John West Accepted by , Chair, Department of Physics Dr. James T. Gleeson , Dean, College of Arts and Sciences Dr. James L. Blank Table of Contents List of Figures . vii List of Tables . xv List of Publications . xvi Acknowledgments . xvii 1 Introduction ......................................1 1.1 Units and notation . .1 1.2 The standard model . .3 1.3 Quantum Electrodynamics (QED) . .5 1.4 Quantum chromodynamics (QCD) . .6 1.5 The coupling constant in QED and QCD . .7 1.6 Phase diagram of QCD . .9 1.6.1 Quark gluon plasma (QGP) . 12 1.6.2 The heavy-ion collision program . 12 1.6.3 Heavy-ion collisions stages . 13 1.7 Some definitions . 16 1.7.1 Rapidity . 16 1.7.2 Pseudorapidity . 16 1.7.3 Collisions centrality . 17 1.7.4 The Glauber model . 19 1.8 Collective flow . 21 iii 1.8.1 Radial flow . 22 1.8.2 Anisotropic flow . 22 1.9 Fluid dynamics . 26 1.10 Non-relativistic fluid dynamics . 26 1.10.1 Relativistic fluid dynamics . 27 1.10.2 The kinetic theory . 27 1.10.3 Relaxation time approximation . 28 2 Anisotropic hydrodynamics ............................ 30 2.1 Anisotropic hydrodynamics . 31 2.2 Why anisotropic hydrodynamics? . 34 2.2.1 Conformal 0+1d systems . 36 2.2.2 Non-conformal 0+1d systems . 38 2.2.3 Gubser flow in 1+1d . 39 2.3 Quasiparticle anisotropic hydrodynamics . 41 2.3.1 Equation of state . 42 2.3.2 Moments of Boltzmann Equation . 46 2.3.3 Bulk variables . 47 2.3.4 Dynamical equations . 48 2.3.5 The relaxation time τeq .......................... 51 2.4 Anisotropic Freeze-out . 52 2.4.1 Anisotropic Freeze-out between aHydro and vHydro . 56 3 0+1d quasiparticle anisotropic hydrodynamics ................ 58 3.1 Dynamical equations in 0+1d systems . 58 3.1.1 Dynamical equations in aHydroQP . 58 3.1.2 Dynamical equations of Standard aHydro . 61 iv 3.2 Numerical results . 63 4 1+1d quasiparticle anisotropic hydrodynamics ................ 69 4.1 Dynamical equations in 1+1d systems . 69 4.2 Freeze-out in 1+1d . 70 4.3 Results . 71 5 3+1d quasiparticle anisotropic hydrodynamics ................ 81 5.1 Dynamical equations . 81 5.2 Transport coefficients . 82 5.3 3+1d aHydroQP results . 84 5.3.1 Numerical setup . 85 5.3.2 Initial conditions . 85 5.3.3 Numerical results of the 3+1daHydro code . 87 5.3.4 The hadronic freeze-out . 89 5.3.5 Fixing free parameters . 90 5.3.6 The phenomenological results . 92 6 NLO anisotropic hydrodynamics ......................... 100 6.1 next-to-leading-order distribution function . 100 6.2 Bulk variables in NLO aHydro . 102 6.3 First moment . 103 6.4 Second moment . 104 7 Summary and outlook ............................... 108 7.1 Summary . 108 7.2 Outlook . 109 v 8 Appendices ...................................... 111 8.1 Basis Vectors . 111 8.2 Second-order viscous hydrodynamics . 114 8.3 Explicit formulas for derivatives . 119 8.3.1 Simplification for 1+1d . 120 8.3.2 Simplification for 0+1d . 121 8.4 Special functions . 122 8.4.1 In the massive case . 123 8.4.2 0+1d case . 124 8.4.3 In the massless case . 125 8.4.4 A way around doing integrals in ^-functions . 125 H 8.5 NLO special functions . 131 8.5.1 Calculating the conformal NLO -functions . 133 H Bibliography . 136 vi List of Figures 1.1 This figure shows the forces, particles, forces carriers that the standard model is based on. Figure is taken from Ref. [1] . .4 1.2 The fundamental vertices of the QCD theory: quark-gluon vertex, three-gluon vertex, and four-gluon vertex are shown. Figure is adapted from Ref. [2]. .7 1.3 Panel (a) shows the QED one-loop running coupling constant (α) scaled by (α0) as a function of the scale Q. In panel (b), we show the QCD one-loop running coupling constant (αs) as a function of the scale Q. The plots are adapted from Ref. [2]. .9 1.4 Experimental measurements of the QCD coupling constant (αs) as a function of the energy scale Q. Figure is taken from Ref. [3] where more details and a recent review can be found about all listed measurements in the plot. 10 1.5 This figure shows the QCD phase diagram in the temperature (T) and baryon chemical potential (µB) plane. Figure is taken from Ref. [4]. 11 1.6 Stages of relativistic heavy-ion collisions from QGP formation until hadroniza- tion where particles reach the detector. Figure is made by Chun Shen Ref. [5]. 14 1.7 A sketch showing the psseudorapidity as a function of the angle θ as defined in Eq. (1.22). 17 1.8 The left side of the illustration shows the geometrical definition of the impact parameter while the right side shows the spectators and participants nucleons after the collision. Figure is taken from Ref. [6]. 18 vii 1.9 In panel (a) charged particle distribution is shown as a function of the mul- tiplicity where the centralities classes are shown as well. In panel (b) the number of participating nucleons and binary nucleons, Npart and Nbin respec- tively as a function of the impact parameter for both Pb-Pb and Au-Au at psNN = 2:76 TeV, and 200 GeV respectively. Figure is taken from Ref. [7] where panel (a) is adapted from Ref. [8] . 19 1.10 Schematic sketch of radial flow for most central collisions. Figure is taken from Ref. [9]. 23 1.11 A schematic diagram showing the reaction plane viewed in the transverse plane to the beam (z-direction). It also shows the reaction plane angle (ΨR) and its relation to the impact parameter orientation (b). Figure is taken from Ref. [10]. 24 1.12 A schematic diagram for the directed flow, viewed in the x z plane, showing − the deflection of the spectators along x for spectators moving with y. ± ± Figure is taken from Ref. [11]. 25 1.13 The left sketch shows the shape of the overlap region that generates elliptic flow v2 while the right sketch shows the shape of the overlap region that generates triangular flow v3. Figure is taken from Ref. [12] where left, and right sketches are adapted originally from Ref. [13] and Ref. [14] respectively. 25 2.1 The local rest frame pressure anisotropy, L= T predicted by different studies P P showing QGP is highly anisotropic plasma. Figure is taken from [15]. 32 2.2 Particle production as a function of 4πη=s predicted by Boltzmann equation exact solution compared with 2nd-order viscous hydro, 3rd-order viscous hydro, LO aHydro, and NLO aHydro (vaHydro). Figure taken from Ref. [16] . 34 viii 2.3 Pressure anisotropy as a function of proper time predicted by the exact solu- tion of Boltzmann equation in conformal 0+1d systems versus IS, DNMR, and aHydro methods. In the left panel, ξ0 = 0 where in the right panel ξ0 = 10. In both panels, the top, middle, bottom rows corresponds to 4πη=s = 1, 4πη=s = 3, and 4πη=s = 10 respectively. Figure is taken from Ref. [15] which is adapted from the original Ref. [17]. 37 2.4 Comparisons of temperature evolution (top row) and pressure anisotropy (bot- tom row) as a function of proper time predicted by the exact solution of Boltz- mann equation in conformal 0+1d systems versus aHydro at different τeq or equivalently at different η=s. In the left panel, ξ0 = 0, and in the right panel ξ0 = 100. Figure taken from Ref. [18] . 39 2.5 Comparisons of pressure anisotropy (left column) and bulk pressure (right column) as a function of proper time. In the top, bottom rows ξ0 is taken to be 0 and 100 respectively. The predicted results by exact solution is compared versus vHydro, LO aHydro, and vaHydro for non-conformal 0+1d systems. Figure taken from Ref. [19] . 40 2.6 Comparisons of de Sitter effect temperature (top row) and the scaled shear (bottom row) as.
Recommended publications
  • Energy-Dependent Kinetic Model of Photon Absorption by Superconducting Tunnel Junctions
    Energy-dependent kinetic model of photon absorption by superconducting tunnel junctions G. Brammertz Science Payload and Advanced Concepts Office, ESA/ESTEC, Postbus 299, 2200AG Noordwijk, The Netherlands. A. G. Kozorezov, J. K. Wigmore Department of Physics, Lancaster University, Lancaster, United Kingdom. R. den Hartog, P. Verhoeve, D. Martin, A. Peacock Science Payload and Advanced Concepts Office, ESA/ESTEC, Postbus 299, 2200AG Noordwijk, The Netherlands. A. A. Golubov, H. Rogalla Department of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. Received: 02 June 2003 – Accepted: 31 July 2003 Abstract – We describe a model for photon absorption by superconducting tunnel junctions in which the full energy dependence of all the quasiparticle dynamic processes is included. The model supersedes the well-known Rothwarf-Taylor approach, which becomes inadequate for a description of the small gap structures that are currently being developed for improved detector resolution and responsivity. In these junctions relaxation of excited quasiparticles is intrinsically slow so that the energy distribution remains very broad throughout the whole detection process. By solving the energy- dependent kinetic equations describing the distributions, we are able to model the temporal and spectral evolution of the distribution of quasiparticles initially generated in the photo-absorption process. Good agreement is obtained between the theory and experiment. PACS numbers: 85.25.Oj, 74.50.+r, 74.40.+k, 74.25.Jb To be published in the November issue of Journal of Applied Physics 1 I. Introduction The development of superconducting tunnel junctions (STJs) for application as photon detectors for astronomy and materials analysis continues to show great promise1,2.
    [Show full text]
  • Vortices and Quasiparticles in Superconducting Microwave Resonators
    Syracuse University SURFACE Dissertations - ALL SURFACE May 2016 Vortices and Quasiparticles in Superconducting Microwave Resonators Ibrahim Nsanzineza Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Nsanzineza, Ibrahim, "Vortices and Quasiparticles in Superconducting Microwave Resonators" (2016). Dissertations - ALL. 446. https://surface.syr.edu/etd/446 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Superconducting resonators with high quality factors are of great interest in many areas. However, the quality factor of the resonator can be weakened by many dissipation chan- nels including trapped magnetic flux vortices and nonequilibrium quasiparticles which can significantly impact the performance of superconducting microwave resonant circuits and qubits at millikelvin temperatures. Quasiparticles result in excess loss, reducing resonator quality factors and qubit lifetimes. Vortices trapped near regions of large mi- crowave currents also contribute excess loss. However, vortices located in current-free areas in the resonator or in the ground plane of a device can actually trap quasiparticles and lead to a reduction in the quasiparticle loss. In this thesis, we will describe exper- iments involving the controlled trapping of vortices for reducing quasiparticle density in the superconducting resonators. We provide a model for the simulation of reduc- tion of nonequilibrium quasiparticles by vortices. In our experiments, quasiparticles are generated either by stray pair-breaking radiation or by direct injection using normal- insulator-superconductor (NIS)-tunnel junctions.
    [Show full text]
  • Coupling Experiment and Simulation to Model Non-Equilibrium Quasiparticle Dynamics in Superconductors
    Coupling Experiment and Simulation to Model Non-Equilibrium Quasiparticle Dynamics in Superconductors A. Agrawal9, D. Bowring∗1, R. Bunker2, L. Cardani3, G. Carosi4, C.L. Chang15, M. Cecchin1, A. Chou1, G. D’Imperio3, A. Dixit9, J.L DuBois4, L. Faoro16,7, S. Golwala6, J. Hall13,14, S. Hertel12, Y. Hochberg11, L. Ioffe5, R. Khatiwada1, E. Kramer11, N. Kurinsky1, B. Lehmann10, B. Loer2, V. Lordi4, R. McDermott7, J.L. Orrell2, M. Pyle17, K. G. Ray4, Y. J. Rosen4, A. Sonnenschein1, A. Suzuki8, C. Tomei3, C. Wilen7, and N. Woollett4 1Fermi National Accelerator Laboratory 2Pacific Northwest National Laboratory 3Sapienza University of Rome 4Lawrence Livermore National Laboratory 5Google, Inc. 6California Institute of Technology 7University of Wisconsin, Madison 8Lawrence Berkeley National Laboratory 9University of Chicago 10University of California, Santa Cruz 11Hebrew University of Jerusalem 12University of Massachusetts, Amherst 13SNOLAB 14Laurentian University 15Argonne National Laboratory 16Laboratoire de Physique Therique et Hautes Energies, Sorbornne Universite 17University of California, Berkeley August 31, 2020 Thematic Areas: (check all that apply /) (CF1) Dark Matter: Particle Like (CF2) Dark Matter: Wavelike (IF1) Quantum Sensors (IF2) Photon Detectors (IF9) Cross Cutting and Systems Integration (UF02) Underground Facilities for Cosmic Frontier (UF05) Synergistic Research ∗Corresponding author: [email protected] 1 Abstract In superconducting devices, broken Cooper pairs (quasiparticles) may be considered signal (e.g., transition edge sensors, kinetic inductance detectors) or noise (e.g., quantum sensors, qubits). In order to improve design for these devices, a better understanding of quasiparticle production and transport is required. We propose a multi-disciplinary collaboration to perform measurements in low-background facilities that will be used to improve modeling and simulation tools, suggest new measurements, and drive the design of future improved devices.
    [Show full text]
  • Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany
    OSP Journal of Nuclear Science Short Communication Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany Corresponding Author: Gudrun Kalmbach H.E, University of Ulm, MINT Verlag, Germany Received: December 19, 2019; Accepted: December 26, 2019; Published: January 02, 2019 In earlier articles the author suggested to extend the wave For dark energy and matter are suggested a pinched and a particle duality of physics to a triple, adding whirls. Whirls Horn torus with a singularity. Below are two models for this: are mathematically computed differently than waves. Parti- dark energy has inverted frequency helix lines inside and cles can be considered as a kind of bubble formation in other aggregate phase state. Wave equations have a double Minkowski cone. They have higher speeds than light 1-dimensional space expansion in direction where a wave is their cylindrical location is closed at projective infinity by a travelling. Harmonic waves for a vibrating string miss this are inverted at the Schwarzschild radius to 1-dimensional coordinate. Sound expands through pressure on the other lemniscates,inside the pinched drawn torus.with twoIn figure red or 1 greenis shown or bluethat quarkswings. hand in a sound cone. Measured is its power as intensity per All quarks are joined in this kind of pinched torus at their free carrying one of the three olor charges r, g, b,in nucle- area (figure 1). center as the Horn torus singularity. (figure 2) They are set - onsons, arebut whirls,confined often in nucleons drawn as by stretchable the two color springs charged between gluon twoquasiparticles quarks as (fieldend points; quantums) different as an geometries energy exchange.
    [Show full text]
  • "Normal-Metal Quasiparticle Traps for Superconducting Qubits"
    Normal-Metal Quasiparticle Traps For Superconducting Qubits: Modeling, Optimization, and Proximity Effect Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Amin Hosseinkhani, M.Sc. Berichter: Universitätsprofessor Dr. David DiVincenzo, Universitätsprofessorin Dr. Kristel Michielsen Tag der mündlichen Prüfung: March 01, 2018 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Metallische Quasiteilchenfallen für supraleitende Qubits: Modellierung, Optimisierung, und Proximity-Effekt Kurzfassung: Bogoliubov Quasiteilchen stören viele Abläufe in supraleitenden Elementen. In supraleitenden Qubits wechselwirken diese Quasiteilchen beim Tunneln durch den Josephson- Kontakt mit dem Phasenfreiheitsgrad, was zu einer Relaxation des Qubits führt. Für Tempera- turen im Millikelvinbereich gibt es substantielle Hinweise für die Präsenz von Nichtgleichgewicht- squasiteilchen. Während deren Entstehung noch nicht einstimmig geklärt ist, besteht dennoch die Möglichkeit die von Quasiteilchen induzierte Relaxation einzudämmen indem man die Qu- asiteilchen von den aktiven Bereichen des Qubits fernhält. In dieser Doktorarbeit studieren wir Quasiteilchenfallen, welche durch einen Kontakt eines normalen Metalls (N) mit der supraleit- enden Elektrode (S) eines Qubits definiert sind. Wir entwickeln ein Modell, das den Einfluss der Falle auf die Quasiteilchendynamik beschreibt,
    [Show full text]
  • Coupled Wire Model of Z4 Orbifold Quantum Hall States
    Coupled Wire Model of Z4 Orbifold Quantum Hall States Charles L. Kane Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 Ady Stern Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel We introduce a coupled wire model for a sequence of non-Abelian quantum Hall states that generalize the Z4 parafermion Read Rezayi state. The Z4 orbifold quantum Hall states occur at filling factors ν = 2=(2m − p) for odd integers m and p, and have a topological order with a neutral sector characterized by the orbifold conformal field theory with central charge c = 1 at radius p R = p=2. When p = 1 the state is Abelian. The state with p = 3 is the Z4 Read Rezayi state, and the series of p ≥ 3 defines a sequence of non-Abelian states that resembles the Laughlin sequence. Our model is based on clustering of electrons in groups of four, and is formulated as a two fluid model in which each wire exhibits two phases: a weak clustered phase, where charge e electrons coexist with charge 4e bosons and a strong clustered phase where the electrons are strongly bound in groups of 4. The transition between these two phases on a wire is mapped to the critical point of the 4 state clock model, which in turn is described by the orbifold conformal field theory. For an array of wires coupled in the presence of a perpendicular magnetic field, strongly clustered wires form a charge 4e bosonic Laughlin state with a chiral charge mode at the edge, but no neutral mode and a gap for single electrons.
    [Show full text]
  • Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
    Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Michael Glenn Albright IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Joseph Kapusta, Advisor November, 2015 c Michael Glenn Albright 2015 ALL RIGHTS RESERVED Acknowledgements First, I would like to express my sincerest appreciation to my advisor, Joseph Kapusta, for all of his guidance and assistance throughout my time as a graduate student at the University of Minnesota. I would also like to thank Clint Young, my research collaborator, for his helpful suggestions. I would also like to thank my parents, Chris and Glenn, and my sister Jaime. Your love and support throughout the years made this possible. Finally, I thank the members of my thesis committee: Marco Peloso, Roberta Humphreys, and Roger Rusack. This work was supported by the School of Physics and Astronomy at the University of Minnesota, by a University of Minnesota Graduate School Fellowship, and by the US Department of Energy (DOE) under Grant Number DE-FG02-87ER40328. I also acknowledge computational support from the University of Minnesota Supercomputing Institute. Programming their supercomputers was a fun and memorable experience. i Dedication To my parents, Chris and Glenn, and my sister Jaime|thanks. ii Abstract In this thesis we investigate equilibrium and nonequilibrium thermodynamic prop- erties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities.
    [Show full text]
  • Quasi-Dirac Monopoles
    research highlights Defective yet strong fundamental particle, the magnetic polymeric film, the researchers embedded Nature Commun. 5, 3186 (2014) monopole, with non-zero magnetic silver nanoparticles that have a localized monopole charge, has grasped the attention surface plasmon resonance in the blue With a tensile strength of over 100 GPa, of many. The existence of magnetic spectral range; the fabricated film therefore a pristine graphene layer is the strongest monopoles is now not only supported by the scatters this colour while being almost material known. However, most graphene work of Dirac, but by both the grand unified completely transparent in the remaining fabrication processes inevitably produce theory and string theory. However, both visible spectral range. The researchers a defective layer. Also, structural defects theories realize that magnetic monopoles suggest that dispersion in a single matrix of are desirable in some of the material’s might be too few and too massive to be metallic nanoparticles with sharp plasmonic technological applications, as defects allow detected or created in a lab, so physicists resonances tuned at different wavelengths for the opening of a bandgap or act as pores started to explore approaches to obtain will lead to the realization of multicoloured for molecular sieving, for example. Now, by such particles using condensed-matter transparent displays. LM tuning the exposure of graphene to oxygen systems. Now, Ray and co-workers report plasma to control the creation of defects, the latest observation of a Dirac monopole Ardavan Zandiatashbar et al. show that a quasiparticle (pictured), this time in a Facet formation Adv. Mater. http://doi.org/rb5 (2014) single layer of graphene bearing sp3-type spinor Bose–Einstein condensate.
    [Show full text]
  • Low Energy Quasiparticle Excitations in Cuprates and Iron-Based Superconductors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Low Energy Quasiparticle Excitations in Cuprates and Iron-based Superconductors Ken Nakatsukasa University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Nakatsukasa, Ken, "Low Energy Quasiparticle Excitations in Cuprates and Iron-based Superconductors. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5300 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Ken Nakatsukasa entitled "Low Energy Quasiparticle Excitations in Cuprates and Iron-based Superconductors." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. Steven Johnston, Major Professor We have read this dissertation and recommend its acceptance: Christian Batista, Elbio Dagotto, David Mandrus Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Low Energy Quasiparticle Excitations in Cuprates and Iron-based Superconductors A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Ken Nakatsukasa December 2018 c by Ken Nakatsukasa, 2018 All Rights Reserved.
    [Show full text]
  • Quasiparticle Scattering, Lifetimes, and Spectra Using the GW Approximation
    Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Steven G. Louie, Chair Professor Feng Wang Professor Mark D. Asta Summer 2015 Quasiparticle scattering, lifetimes, and spectra using the GW approximation c 2015 by Derek Wayne Vigil-Fowler 1 Abstract Quasiparticle scattering, lifetimes, and spectra using the GW approximation by Derek Wayne Vigil-Fowler Doctor of Philosophy in Physics University of California, Berkeley Professor Steven G. Louie, Chair Computer simulations are an increasingly important pillar of science, along with exper- iment and traditional pencil and paper theoretical work. Indeed, the development of the needed approximations and methods needed to accurately calculate the properties of the range of materials from molecules to nanostructures to bulk materials has been a great tri- umph of the last 50 years and has led to an increased role for computation in science. The need for quantitatively accurate predictions of material properties has never been greater, as technology such as computer chips and photovoltaics require rapid advancement in the control and understanding of the materials that underly these devices. As more accuracy is needed to adequately characterize, e.g. the energy conversion processes, in these materials, improvements on old approximations continually need to be made. Additionally, in order to be able to perform calculations on bigger and more complex systems, algorithmic devel- opment needs to be carried out so that newer, bigger computers can be maximally utilized to move science forward.
    [Show full text]
  • Saving Superconducting Quantum Processors from Decay and Correlated Errors Generated by Gamma and Cosmic Rays ✉ John M
    www.nature.com/npjqi ARTICLE OPEN Saving superconducting quantum processors from decay and correlated errors generated by gamma and cosmic rays ✉ John M. Martinis1 Error-corrected quantum computers can only work if errors are small and uncorrelated. Here, I show how cosmic rays or stray background radiation affects superconducting qubits by modeling the phonon to electron/quasiparticle down-conversion physics. For present designs, the model predicts about 57% of the radiation energy breaks Cooper pairs into quasiparticles, which then vigorously suppress the qubit energy relaxation time (T1 ~ 600 ns) over a large area (cm) and for a long time (ms). Such large and correlated decay kills error correction. Using this quantitative model, I show how this energy can be channeled away from the qubit so that this error mechanism can be reduced by many orders of magnitude. I also comment on how this affects other solid-state qubits. npj Quantum Information (2021) 7:90 ; https://doi.org/10.1038/s41534-021-00431-0 INTRODUCTION paper overviews and suggests the critical physics and design Quantum computers are proposed to perform calculations that changes needed to solve this important bottleneck. 1234567890():,; cannot be run by classical supercomputers, such as efficient prime Cosmic rays naturally occur from high-energy particles imping- factorization or solving how molecules bind using quantum ing from space to the atmosphere, where they are converted into chemistry1,2. Such difficult problems can only be solved by muon particles that deeply penetrate all matter on the surface of embedding the algorithm in a large quantum computer that is the earth.
    [Show full text]
  • Magnetic Monopole Mechanism for Localized Electron Pairing in HTS
    Magnetic monopole mechanism for localized electron pairing in HTS Cristina Diamantini University of Perugia Carlo Trugenberger SwissScientic Technologies SA Valerii Vinokur ( [email protected] ) Terra Quantum AG https://orcid.org/0000-0002-0977-3515 Article Keywords: Effective Field Theory, Pseudogap Phase, Charge Condensate, Condensate of Dyons, Superconductor-insulator Transition, Josephson Links Posted Date: July 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-694994/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Magnetic monopole mechanism for localized electron pairing in HTS 1 2 3, M. C. Diamantini, C. A. Trugenberger, & V.M. Vinokur ∗ Recent effective field theory of high-temperature superconductivity (HTS) captures the universal features of HTS and the pseudogap phase and explains the underlying physics as a coexistence of a charge condensate with a condensate of dyons, particles carrying both magnetic and electric charges. Central to this picture are magnetic monopoles emerg- ing in the proximity of the topological quantum superconductor-insulator transition (SIT) that dominates the HTS phase diagram. However, the mechanism responsible for spatially localized electron pairing, characteristic of HTS remains elusive. Here we show that real-space, localized electron pairing is mediated by magnetic monopoles and occurs well above the superconducting transition temperature Tc. Localized electron pairing promotes the formation of supercon- ducting granules connected by Josephson links. Global superconductivity sets in when these granules form an infinite cluster at Tc which is estimated to fall in the range from hundred to thousand Kelvins. Our findings pave the way to tailoring materials with elevated superconducting transition temperatures.
    [Show full text]