Qcd Matter Under Extreme Conditions Heavy Ion

Total Page:16

File Type:pdf, Size:1020Kb

Qcd Matter Under Extreme Conditions Heavy Ion Technische Universitat¨ Munchen¨ Physik Department Institut fur¨ Theoretische Physik T39 Univ.-Prof. Dr. W. Weise QCD MATTER UNDER EXTREME CONDITIONS — HEAVY ION COLLISIONS Dipl.-Phys. (Univ.) Thorsten Renk Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Physik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Reiner Kruc¨ ken Pruf¨ er der Dissertation: 1. Univ.-Prof. Dr. Wolfram Weise 2. Univ.-Prof. Dr. Manfred Lindner Die Dissertation wurde am 22.10.2002 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Physik am 3.12.2002 angenommen. ii CONTENTS 1 Introduction 1 2 Basics of thermal field theory 5 2.1 Basic relations . 5 2.2 Perturbative techniques . 6 2.2.1 The imaginary time formalism . 7 2.2.2 The real-time formalism . 8 2.3 Thermal self-energies . 10 2.4 Hard Thermal Loop Resummation . 11 2.5 Lattice techniques . 12 2.5.1 Gauge fields . 13 2.5.2 Fermion fields . 13 3 Properties of the Quark Gluon Plasma 15 3.1 Thermodynamics of the QGP . 16 3.1.1 The ideal quark-gluon gas . 16 3.1.2 Perturbative QCD thermodynamics . 17 3.1.3 Lattice simulations . 19 3.2 Deconfinement . 21 3.3 Chiral symmetry restoration . 22 3.4 A quasiparticle picture of the QGP . 24 3.4.1 Introduction . 24 3.4.2 The quasiparticle picture . 24 3.5 The Equation of State . 26 4 Heavy Ion Collision Dynamics 29 4.1 Introduction . 29 4.2 Kinematics and Geometry . 30 4.2.1 Kinematic variables . 30 4.2.2 Spacetime picture . 31 4.3 Initial conditions . 33 4.3.1 Overlap geometry . 33 4.3.2 Longitudinal dynamics . 34 iii iv CONTENTS 4.4 Thermalization . 34 4.4.1 The ’Bottom Up’ scenario . 34 4.4.2 Elliptic flow — an experimental signal of thermalization . 36 4.5 The partonic phase . 36 4.5.1 Theoretical considerations . 37 4.5.2 Experimental signals . 41 4.6 The phase transition . 41 4.7 The hadronic phase . 42 4.7.1 Theoretical considerations . 43 4.7.2 Experimental signals . 44 4.8 Freeze-out . 44 5 Hadronic Observables — a Basis for Models 47 5.1 Introduction . 47 5.1.1 Event generators . 47 5.1.2 Hydrodynamics . 48 5.1.3 Thermodynamics . 49 5.2 Hadronic Observables . 49 5.2.1 dN=dy Spectra . 50 5.2.2 mt Spectra . 51 5.2.3 HBT correlation measurements . 53 5.2.4 Elliptic Flow and early thermalization . 56 5.2.5 An intermediate summary . 58 5.2.6 A global analysis of the freeze-out state . 59 5.3 A model based on thermodynamics . 59 5.3.1 The spacetime picture of a homogeneous fireball . 60 5.3.2 Rapidity distributions . 61 5.3.3 Evolution dynamics . 62 5.3.4 Thermodynamics . 63 5.3.5 Longitudinal acceleration . 65 5.4 Extending the scenario . 66 5.4.1 Variations in centrality . 66 5.4.2 Results for different centrality . 67 5.4.3 Variations in beam energy . 68 5.4.4 Results for different beam energy . 70 6 Hadrochemistry and chemical equilibrium 73 6.1 Chemical equilibrium and statistical hadronization . 73 6.1.1 Introduction . 73 6.1.2 Successes and caveats . 74 6.2 The model . 76 6.2.1 Basic equations . 76 6.2.2 Resonance decays . 77 6.3 Results . 77 6.3.1 Standard scenario . 77 6.3.2 Late chemical freeze-out . 78 6.3.3 In-medium modifications . 79 6.4 Hadron ratios at RHIC . 83 7 Dileptons - a view into the fireball core 85 7.1 Dileptons from a fireball . 85 7.2 Calculation of the photon spectral function . 87 CONTENTS v 7.2.1 The quark-gluon phase . 87 7.2.2 The hadronic phase . 90 7.2.3 After freeze-out contributions . 92 7.2.4 Drell-Yan and charm contributions . 93 7.3 Dilepton invariant mass spectra . 94 7.3.1 SPS data at 40 and 158 AGeV . 94 7.3.2 RHIC at ps = 200 AGeV . 98 7.3.3 Sensitivity to model parameters . 100 7.4 Conclusions . 102 8 Thermal Photon Emission 103 8.1 Introduction . 103 8.2 The Photon Emission Rate . 104 8.2.1 The QGP phase . 104 8.2.2 The hadronic phase . 106 8.2.3 The integrated rate . 106 8.2.4 Prompt photons . 106 8.3 Results . 107 8.4 Conclusions . 109 9 Charmonium Dissociation 111 9.1 Introduction . 111 9.2 Charmonium suppression in different pictures . 112 9.3 The fate of charmonia . 114 9.3.1 Charm production . 114 9.3.2 Charmonium production . 115 9.3.3 Nuclear absorption . 116 9.3.4 The charmonium dissociation cross section . 116 9.3.5 Kinetic description of charmonium evolution . 117 9.4 Results . 119 9.5 Conclusions . 120 10 Summary and Conclusions 123 10.1 Summary . 123 10.2 Conclusions . 126 10.3 Outlook . 128 A Properties of QCD 131 A.1 The Lagrangian . 131 A.2 Symmetries and Condensates . 133 B Bottom-up thermalization 135 B.1 Parton saturation . 135 B.2 Shattering the Color-Glass Condensate . 136 B.3 Creation of soft gluons . 137 B.4 Soft gluons take over . 137 B.5 Thermalized soft sector . 138 C The dilepton rate from a hot source 139 Thanks 155 vi CONTENTS Summary The main goal of this work is a comprehensive description of the fireball created in current ultrarelativistic heavy-ion collisions. This has to be a three-step process: In the first step, properties of hot and dense hadronic matter are investigated, culminating in the introduction of a phenomenological quasiparticle model for the description of the.
Recommended publications
  • The “Hot” Science of RHIC Status and Future
    The “Hot” Science of RHIC Status and Future Berndt Mueller Brookhaven National Laboratory Associate Laboratory Director for Nuclear and Particle Physics BSA Board Meeting BNL, 29 March 2013 Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP AGS Tandems Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP AGS Tandems Pioneering Perfectly liquid quark-gluon plasma; Polarized proton collider Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP Versatile AGS Wide range of: beam energies ion species polarizations Tandems Pioneering Perfectly liquid quark-gluon plasma; Polarized proton collider Friday, April 5, 13 RHIC: A Discovery Machine Polarized Jet Target (PHOBOS) 12:00 o’clock 10:00 o’clock (BRAHMS) 2:00 o’clock RHIC PHENIX 8:00 o’clock RF 4:00 o’clock STAR 6:00 o’clock LINAC EBIS NSRL Booster BLIP Versatile AGS Wide range of: beam energies ion species polarizations Tandems Pioneering Productive >300 refereed papers Perfectly liquid >30k citations quark-gluon plasma; >300 Ph.D.’s in 12 years Polarized proton collider productivity still increasing Friday, April 5, 13 Detector Collaborations 559 collaborators from 12 countries 540 collaborators from 12 countries 3 Friday, April 5, 13 RHIC explores the Phases of Nuclear Matter LHC: High energy collider at CERN with 13.8 - 27.5 ?mes higher Beam energy: PB+PB, p+PB, p+p collisions only.
    [Show full text]
  • From High-Energy Heavy-Ion Collisions to Quark Matter Episode I : Let the Force Be with You
    From High-Energy Heavy-Ion Collisions to Quark Matter Episode I : Let the force be with you Carlos Lourenço, CERN CERN, August, 2007 1/41 The fundamental forces and the building blocks of Nature Gravity • one “charge” (mass) • force decreases with distance m1 m2 Electromagnetism (QED) Atom • two “charges” (+/-) • force decreases with distance + - + + 2/41 Atomic nuclei and the strong “nuclear” force The nuclei are composed of: quark • protons (positive electric charge) • neutrons (no electric charge) They do not blow up thanks to the neutron “strong nuclear force” • overcomes electrical repulsion • determines nuclear reactions • results from the more fundamental colour force (QCD) → acts on the colour charge of quarks (and gluons!) → it is the least well understood force in Nature proton 3/41 Confinement: a crucial feature of QCD We can extract an electron from an atom by providing energy electron nucleus neutral atom But we cannot get free quarks out of hadrons: “colour” confinement ! quark-antiquark pair created from vacuum quark Strong colour field “white” π0 “white” proton 2 EnergyE grows = mc with separation! (confined quarks) (confined quarks) “white” proton 4/41 Quarks, Gluons and the Strong Interaction A proton is a composite object No one has ever seen a free quark; made of quarks... QCD is a “confining gauge theory” and gluons V(r) kr “Confining” r 4 α − s 3 r “Coulomb” 5/41 A very very long time ago... quarks and gluons were “free”. As the universe cooled down, they got confined into hadrons and have remained imprisoned ever
    [Show full text]
  • Hydrodynamic Models for Heavy-Ion Collisions, and Beyond
    Symposium on Fundamental Issues in Fundamental Issues in Elementary Matter (2000) 000–000 Elementary Matter Bad Honnef, Germany September 25–29, 2000 Hydrodynamic Models for Heavy-Ion Collisions, and beyond A. Dumitru1,a, J. Brachmann2, E.S. Fraga3, W. Greiner2, A.D. Jackson4, J.T. Lenaghan4, O. Scavenius4, H. St¨ocker2 1 Physics Dept., Columbia Univ., 538 W. 120th Street, New York, NY 10027, USA 2 Institut f¨ur Theor. Physik, J.W. Goethe Univ., Robert-Mayer Str. 10, 60054 Frankfurt, Germany 3 Brookhaven National Laboratory, Upton, NY 11973, USA 4 The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark Abstract. A generic property of a first-order phase transition in equilibrium,andin the limit of large entropy per unit of conserved charge, is the smallness of the isentropic speed of sound in the “mixed phase”. A specific prediction is that this should lead to a non-isotropic momentum distribution of nucleons in the reaction plane (for energies ∼ 40A GeV in our model calculation). On the other hand, we show that from present effective theories for low-energy QCD one does not expect the thermal transition rate between various states of the effective potential to be much larger than the expansion rate, questioning the applicability of the idealized Maxwell/Gibbs construction. Ex- perimental data could soon provide essential information on the dynamicsof the phase transition. 1. Introduction arXiv:nucl-th/0010107 v1 31 Oct 2000 Heavy-ion collisions at high energy are devoted mainly to the study of strongly interact- ing matter at high temperature and density. In particular, a major focus is the search for observables related to restoration of chiral symmetry and deconfinement, as predicted by lattice QCD to occur at high temperature, and in thermodynamical equilibrium [ 1].
    [Show full text]
  • Quasiparticle Anisotropic Hydrodynamics in Ultra-Relativistic
    QUASIPARTICLE ANISOTROPIC HYDRODYNAMICS IN ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mubarak Alqahtani December, 2017 c Copyright All rights reserved Except for previously published materials Dissertation written by Mubarak Alqahtani BE, University of Dammam, SA, 2006 MA, Kent State University, 2014 PhD, Kent State University, 2014-2017 Approved by , Chair, Doctoral Dissertation Committee Dr. Michael Strickland , Members, Doctoral Dissertation Committee Dr. Declan Keane Dr. Spyridon Margetis Dr. Robert Twieg Dr. John West Accepted by , Chair, Department of Physics Dr. James T. Gleeson , Dean, College of Arts and Sciences Dr. James L. Blank Table of Contents List of Figures . vii List of Tables . xv List of Publications . xvi Acknowledgments . xvii 1 Introduction ......................................1 1.1 Units and notation . .1 1.2 The standard model . .3 1.3 Quantum Electrodynamics (QED) . .5 1.4 Quantum chromodynamics (QCD) . .6 1.5 The coupling constant in QED and QCD . .7 1.6 Phase diagram of QCD . .9 1.6.1 Quark gluon plasma (QGP) . 12 1.6.2 The heavy-ion collision program . 12 1.6.3 Heavy-ion collisions stages . 13 1.7 Some definitions . 16 1.7.1 Rapidity . 16 1.7.2 Pseudorapidity . 16 1.7.3 Collisions centrality . 17 1.7.4 The Glauber model . 19 1.8 Collective flow . 21 iii 1.8.1 Radial flow . 22 1.8.2 Anisotropic flow . 22 1.9 Fluid dynamics . 26 1.10 Non-relativistic fluid dynamics . 26 1.10.1 Relativistic fluid dynamics .
    [Show full text]
  • Surprises from the Search for Quark-Gluon Plasma?* When Was Quark-Gluon Plasma Seen?
    Surprises from the search for quark-gluon plasma?* When was quark-gluon plasma seen? Richard M. Weiner Laboratoire de Physique Théorique, Univ. Paris-Sud, Orsay and Physics Department, University of Marburg The historical context of the recent results from high energy heavy ion reactions devoted to the search of quark-gluon plasma (QGP) is reviewed, with emphasis on the surprises encountered. The evidence for QGP from heavy ion reactions is compared with that available from particle reactions. Keywords: Quark-Gluon plasma in particle and nuclear reactions, hydrodynamics, equation of state, confinement, superfluidity. 1. Evidence for QGP in the Pre-SPS Era Particle Physics 1.1 The mystery of the large number of degrees of freedom 1.2 The equation of state 1.2.1 Energy dependence of the multiplicity 1.2.2 Single inclusive distributions Rapidity and transverse momentum distributions Large transverse momenta 1.2.3 Multiplicity distributions 1.3 Global equilibrium: the universality of the hadronization process 1.3.1 Inclusive distributions 1.3.2 Particle ratios -------------------------------------------------------------------------------------- *) Invited Review 1 Heavy ion reactions A dependence of multiplicity Traces of QGP in low energy heavy ion reactions? 2. Evidence for QGP in the SPS-RHIC Era 2.1 Implications of observations at SPS for RHIC 2.1.1 Role of the Equation of State in the solutions of the equations of hydrodynamics 2.1.2 Longitudinal versus transverse expansion 2.1.3 Role of resonances in Bose-Einstein interferometry; the Rout/Rside ratio 2.2 Surprises from RHIC? 2.2.1 HBT puzzle? 2.2.2 Strongly interacting quark-gluon plasma? Superfluidity and chiral symmetry Confinement and asymptotic freedom Outlook * * * In February 2000 spokespersons from the experiments on CERN’s Heavy Ion programme presented “compelling evidence for the existence of a new state of matter in which quarks, instead of being bound up into more complex particles such as protons and neutrons, are liberated to roam freely…”1.
    [Show full text]
  • Lattice Investigations of the QCD Phase Diagram
    Lattice investigations of the QCD phase diagram Dissertation ERSI IV TÄ N T U · · W E U P H P C E S I R T G A R L E B · 1· 972 by Jana Gunther¨ Major: Physics Matriculation number: 821980 Supervisor: Prof. Dr. Z. Fodor Hand in date: 15. December 2016 Die Dissertation kann wie folgt zitiert werden: urn:nbn:de:hbz:468-20170213-111605-3 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20170213-111605-3] Lattice investigations of the QCD phase diagram Acknowledgement Acknowledgement I want to thank my advisor Prof. Dr. Z. Fodor for the opportunity to work on such fascinating topics. Also I want to thank Szabolcs Borsanyi for his support and the discussions during the last years, as well as for the comments on this thesis. In addition I want to thank the whole Wuppertal group for the friendly working atmosphere. I also thank all my co-authors for the joint work in the various projects. Special thanks I want to say to Lukas Varnhorst and my family for their support throughout my whole studies. I gratefully acknowledge the Gauss Centre for Supercomputing (GCS) for providing computing time for a GCS Large-Scale Project on the GCS share of the supercomputer JUQUEEN [1] at Julich¨ Supercomputing Centre (JSC). GCS is the alliance of the three national supercomputing centres HLRS (Universit¨at Stuttgart), JSC (Forschungszentrum Julich),¨ and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Wurttemberg¨ (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).
    [Show full text]
  • Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany
    OSP Journal of Nuclear Science Short Communication Wave-Whirl-Particle Gudrun Kalmbach H.E University of Ulm, MINT Verlag, Germany Corresponding Author: Gudrun Kalmbach H.E, University of Ulm, MINT Verlag, Germany Received: December 19, 2019; Accepted: December 26, 2019; Published: January 02, 2019 In earlier articles the author suggested to extend the wave For dark energy and matter are suggested a pinched and a particle duality of physics to a triple, adding whirls. Whirls Horn torus with a singularity. Below are two models for this: are mathematically computed differently than waves. Parti- dark energy has inverted frequency helix lines inside and cles can be considered as a kind of bubble formation in other aggregate phase state. Wave equations have a double Minkowski cone. They have higher speeds than light 1-dimensional space expansion in direction where a wave is their cylindrical location is closed at projective infinity by a travelling. Harmonic waves for a vibrating string miss this are inverted at the Schwarzschild radius to 1-dimensional coordinate. Sound expands through pressure on the other lemniscates,inside the pinched drawn torus.with twoIn figure red or 1 greenis shown or bluethat quarkswings. hand in a sound cone. Measured is its power as intensity per All quarks are joined in this kind of pinched torus at their free carrying one of the three olor charges r, g, b,in nucle- area (figure 1). center as the Horn torus singularity. (figure 2) They are set - onsons, arebut whirls,confined often in nucleons drawn as by stretchable the two color springs charged between gluon twoquasiparticles quarks as (fieldend points; quantums) different as an geometries energy exchange.
    [Show full text]
  • STATUS of the THEORY of QCD PLASMA BL1L—3 52 94 Joseph I, Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973
    BNL-35294 STATUS OF THE THEORY OF QCD PLASMA BL1L—3 52 94 Joseph I, Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973 DISCLAIMER This report was prepared as an account of work sponsored hy an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of thair employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. *Pennanent address: School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. DJSTR/BUTION OF 7H/S OOCWMENr IS UNLIMITED STATUS OF THE THEORY OF QCD PLASMA Joseph I. Kapusta Physics Department Brookhaven National Laboratory Upton, New York 11973 ABSTRACT There is mounting evidence, based on many theoretical approaches, that color is deconfined and chiral symmetry is restored at temperatures greater Chan about 200 MeV.
    [Show full text]
  • Coupled Wire Model of Z4 Orbifold Quantum Hall States
    Coupled Wire Model of Z4 Orbifold Quantum Hall States Charles L. Kane Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 Ady Stern Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel We introduce a coupled wire model for a sequence of non-Abelian quantum Hall states that generalize the Z4 parafermion Read Rezayi state. The Z4 orbifold quantum Hall states occur at filling factors ν = 2=(2m − p) for odd integers m and p, and have a topological order with a neutral sector characterized by the orbifold conformal field theory with central charge c = 1 at radius p R = p=2. When p = 1 the state is Abelian. The state with p = 3 is the Z4 Read Rezayi state, and the series of p ≥ 3 defines a sequence of non-Abelian states that resembles the Laughlin sequence. Our model is based on clustering of electrons in groups of four, and is formulated as a two fluid model in which each wire exhibits two phases: a weak clustered phase, where charge e electrons coexist with charge 4e bosons and a strong clustered phase where the electrons are strongly bound in groups of 4. The transition between these two phases on a wire is mapped to the critical point of the 4 state clock model, which in turn is described by the orbifold conformal field theory. For an array of wires coupled in the presence of a perpendicular magnetic field, strongly clustered wires form a charge 4e bosonic Laughlin state with a chiral charge mode at the edge, but no neutral mode and a gap for single electrons.
    [Show full text]
  • Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities
    Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Michael Glenn Albright IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Joseph Kapusta, Advisor November, 2015 c Michael Glenn Albright 2015 ALL RIGHTS RESERVED Acknowledgements First, I would like to express my sincerest appreciation to my advisor, Joseph Kapusta, for all of his guidance and assistance throughout my time as a graduate student at the University of Minnesota. I would also like to thank Clint Young, my research collaborator, for his helpful suggestions. I would also like to thank my parents, Chris and Glenn, and my sister Jaime. Your love and support throughout the years made this possible. Finally, I thank the members of my thesis committee: Marco Peloso, Roberta Humphreys, and Roger Rusack. This work was supported by the School of Physics and Astronomy at the University of Minnesota, by a University of Minnesota Graduate School Fellowship, and by the US Department of Energy (DOE) under Grant Number DE-FG02-87ER40328. I also acknowledge computational support from the University of Minnesota Supercomputing Institute. Programming their supercomputers was a fun and memorable experience. i Dedication To my parents, Chris and Glenn, and my sister Jaime|thanks. ii Abstract In this thesis we investigate equilibrium and nonequilibrium thermodynamic prop- erties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities.
    [Show full text]
  • Strangeness and the Quark-Gluon Plasma: Thirty Years of Discovery∗
    Vol. 43 (2012) ACTA PHYSICA POLONICA B No 4 STRANGENESS AND THE QUARK-GLUON PLASMA: THIRTY YEARS OF DISCOVERY∗ Berndt Müller Department of Physics, Duke University, Durham, NC 27708, USA (Received December 27, 2011) I review the role of strange quarks as probes of hot QCD matter. DOI:10.5506/APhysPolB.43.761 PACS numbers: 12.38.Mh, 25.75.Nq, 25.75.Dw 1. The quark-gluon plasma: a strange state of matter Strange quarks play a crucial role in shaping the phase diagram of QCD matter (see Fig.1): • The mass ms of the strange quark controls the nature of the chiral and deconfinement transition in baryon symmetric QCD matter [1]. As a consequence, ms also influences the position of the critical point in the QCD phase diagram, if one exists. • The mass of the strange quark has an important effect on the stability limit of neutron stars and on the possible existence of a quark core in collapsed stars [2]. • Strange quarks enable the formation of a color–flavor locked, color superconducting quark matter phase at high baryon chemical potential and low temperature by facilitating the symmetry breaking SU(3)F × SU(3)C ! SU(3)F +C [3]. Strange quarks are also excellent probes of the structure of QCD matter because: • they are hard to produce at temperatures below Tc since their effective mass is much larger than Tc when chiral symmetry is broken, but easy to produce at temperatures above Tc since the current mass of the strange quark ms ≈ 100 MeV < Tc; ∗ Presented at the Conference “Strangeness in Quark Matter 2011”, Kraków, Poland, September 18–24, 2011.
    [Show full text]
  • Arxiv:1707.04966V3 [Astro-Ph.HE] 17 Dec 2017
    From hadrons to quarks in neutron stars: a review Gordon Baym,1, 2, 3 Tetsuo Hatsuda,2, 4, 5 Toru Kojo,6, 1 Philip D. Powell,1, 7 Yifan Song,1 and Tatsuyuki Takatsuka5, 8 1Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA 2iTHES Research Group, RIKEN, Wako, Saitama 351-0198, Japan 3The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark 4iTHEMS Program, RIKEN, Wako, Saitama 351-0198, Japan 5Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan 6Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China 7Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 8Iwate University, Morioka 020-8550, Japan (Dated: December 19, 2017) In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.
    [Show full text]