Qcd Matter Under Extreme Conditions Heavy Ion

Qcd Matter Under Extreme Conditions Heavy Ion

Technische Universitat¨ Munchen¨ Physik Department Institut fur¨ Theoretische Physik T39 Univ.-Prof. Dr. W. Weise QCD MATTER UNDER EXTREME CONDITIONS — HEAVY ION COLLISIONS Dipl.-Phys. (Univ.) Thorsten Renk Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨ Physik der Technischen Universitat¨ Munchen¨ zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Reiner Kruc¨ ken Pruf¨ er der Dissertation: 1. Univ.-Prof. Dr. Wolfram Weise 2. Univ.-Prof. Dr. Manfred Lindner Die Dissertation wurde am 22.10.2002 bei der Technischen Universitat¨ Munchen¨ eingereicht und durch die Fakultat¨ fur¨ Physik am 3.12.2002 angenommen. ii CONTENTS 1 Introduction 1 2 Basics of thermal field theory 5 2.1 Basic relations . 5 2.2 Perturbative techniques . 6 2.2.1 The imaginary time formalism . 7 2.2.2 The real-time formalism . 8 2.3 Thermal self-energies . 10 2.4 Hard Thermal Loop Resummation . 11 2.5 Lattice techniques . 12 2.5.1 Gauge fields . 13 2.5.2 Fermion fields . 13 3 Properties of the Quark Gluon Plasma 15 3.1 Thermodynamics of the QGP . 16 3.1.1 The ideal quark-gluon gas . 16 3.1.2 Perturbative QCD thermodynamics . 17 3.1.3 Lattice simulations . 19 3.2 Deconfinement . 21 3.3 Chiral symmetry restoration . 22 3.4 A quasiparticle picture of the QGP . 24 3.4.1 Introduction . 24 3.4.2 The quasiparticle picture . 24 3.5 The Equation of State . 26 4 Heavy Ion Collision Dynamics 29 4.1 Introduction . 29 4.2 Kinematics and Geometry . 30 4.2.1 Kinematic variables . 30 4.2.2 Spacetime picture . 31 4.3 Initial conditions . 33 4.3.1 Overlap geometry . 33 4.3.2 Longitudinal dynamics . 34 iii iv CONTENTS 4.4 Thermalization . 34 4.4.1 The ’Bottom Up’ scenario . 34 4.4.2 Elliptic flow — an experimental signal of thermalization . 36 4.5 The partonic phase . 36 4.5.1 Theoretical considerations . 37 4.5.2 Experimental signals . 41 4.6 The phase transition . 41 4.7 The hadronic phase . 42 4.7.1 Theoretical considerations . 43 4.7.2 Experimental signals . 44 4.8 Freeze-out . 44 5 Hadronic Observables — a Basis for Models 47 5.1 Introduction . 47 5.1.1 Event generators . 47 5.1.2 Hydrodynamics . 48 5.1.3 Thermodynamics . 49 5.2 Hadronic Observables . 49 5.2.1 dN=dy Spectra . 50 5.2.2 mt Spectra . 51 5.2.3 HBT correlation measurements . 53 5.2.4 Elliptic Flow and early thermalization . 56 5.2.5 An intermediate summary . 58 5.2.6 A global analysis of the freeze-out state . 59 5.3 A model based on thermodynamics . 59 5.3.1 The spacetime picture of a homogeneous fireball . 60 5.3.2 Rapidity distributions . 61 5.3.3 Evolution dynamics . 62 5.3.4 Thermodynamics . 63 5.3.5 Longitudinal acceleration . 65 5.4 Extending the scenario . 66 5.4.1 Variations in centrality . 66 5.4.2 Results for different centrality . 67 5.4.3 Variations in beam energy . 68 5.4.4 Results for different beam energy . 70 6 Hadrochemistry and chemical equilibrium 73 6.1 Chemical equilibrium and statistical hadronization . 73 6.1.1 Introduction . 73 6.1.2 Successes and caveats . 74 6.2 The model . 76 6.2.1 Basic equations . 76 6.2.2 Resonance decays . 77 6.3 Results . 77 6.3.1 Standard scenario . 77 6.3.2 Late chemical freeze-out . 78 6.3.3 In-medium modifications . 79 6.4 Hadron ratios at RHIC . 83 7 Dileptons - a view into the fireball core 85 7.1 Dileptons from a fireball . 85 7.2 Calculation of the photon spectral function . 87 CONTENTS v 7.2.1 The quark-gluon phase . 87 7.2.2 The hadronic phase . 90 7.2.3 After freeze-out contributions . 92 7.2.4 Drell-Yan and charm contributions . 93 7.3 Dilepton invariant mass spectra . 94 7.3.1 SPS data at 40 and 158 AGeV . 94 7.3.2 RHIC at ps = 200 AGeV . 98 7.3.3 Sensitivity to model parameters . 100 7.4 Conclusions . 102 8 Thermal Photon Emission 103 8.1 Introduction . 103 8.2 The Photon Emission Rate . 104 8.2.1 The QGP phase . 104 8.2.2 The hadronic phase . 106 8.2.3 The integrated rate . 106 8.2.4 Prompt photons . 106 8.3 Results . 107 8.4 Conclusions . 109 9 Charmonium Dissociation 111 9.1 Introduction . 111 9.2 Charmonium suppression in different pictures . 112 9.3 The fate of charmonia . 114 9.3.1 Charm production . 114 9.3.2 Charmonium production . 115 9.3.3 Nuclear absorption . 116 9.3.4 The charmonium dissociation cross section . 116 9.3.5 Kinetic description of charmonium evolution . 117 9.4 Results . 119 9.5 Conclusions . 120 10 Summary and Conclusions 123 10.1 Summary . 123 10.2 Conclusions . 126 10.3 Outlook . 128 A Properties of QCD 131 A.1 The Lagrangian . 131 A.2 Symmetries and Condensates . 133 B Bottom-up thermalization 135 B.1 Parton saturation . 135 B.2 Shattering the Color-Glass Condensate . 136 B.3 Creation of soft gluons . 137 B.4 Soft gluons take over . 137 B.5 Thermalized soft sector . 138 C The dilepton rate from a hot source 139 Thanks 155 vi CONTENTS Summary The main goal of this work is a comprehensive description of the fireball created in current ultrarelativistic heavy-ion collisions. This has to be a three-step process: In the first step, properties of hot and dense hadronic matter are investigated, culminating in the introduction of a phenomenological quasiparticle model for the description of the.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    165 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us