Year Journal Volume Author Title Abstract
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Alaknanda Basin (Uttarakhand Himalaya): a Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain”
Enhancing and Diversifying Livelihood Options ICSSR PDF A Final Report On “The Alaknanda Basin (Uttarakhand Himalaya): A Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain” Under the Scheme of General Fellowship Submitted to Indian Council of Social Science Research Aruna Asaf Ali Marg JNU Institutional Area New Delhi By Vishwambhar Prasad Sati, Ph. D. General Fellow, ICSSR, New Delhi Department of Geography HNB Garhwal University Srinagar Garhwal, Uttarakhand E-mail: [email protected] Vishwambhar Prasad Sati 1 Enhancing and Diversifying Livelihood Options ICSSR PDF ABBREVIATIONS • AEZ- Agri Export Zones • APEDA- Agriculture and Processed food products Development Authority • ARB- Alaknanda River Basin • BDF- Bhararisen Dairy Farm • CDPCUL- Chamoli District Dairy Production Cooperative Union Limited • FAO- Food and Agricultural Organization • FDA- Forest Development Agency • GBPIHED- Govind Ballabh Pant Institute of Himalayan Environment and Development • H and MP- Herbs and Medicinal Plants • HAPPRC- High Altitude Plant Physiology Center • HDR- Human Development Report • HDRI- Herbal Research and Development Institute • HMS- Himalayan Mountain System • ICAR- Indian Council of Agricultural Research • ICIMOD- International Center of Integrated Mountain and Development • ICSSR- Indian Council of Social Science Research LSI- Livelihood Sustainability Index • IDD- Iodine Deficiency Disorder • IMDP- Intensive Mini Dairy Project • JMS- Journal of Mountain Science • MPCA- Medicinal Plant -
Recent and Past Floods in the Alaknanda Valley: Causes and Consequences
COMMENTARY Recent and past floods in the Alaknanda valley: causes and consequences Naresh Rana, Sunil Singh, Y. P. Sundriyal and Navin Juyal Uttarakhand Himalaya in general and wide at the summit1,2. It was estimated (district surveyor of Garhwal), helped to Alaknanda and Bhagirathi valleys in par- that the lake would have taken at least a meticulously estimate the magnitude of ticular have experienced one of the worst year to fill. The dam would partially downstream inundation. An excellent forms of disaster in recent times (Figure breach only after the water began to top- telegraph system was installed between 1). Flash floods are common in the ple it, which would cause flash floods Birahi Ganga and Haridwar for real-time Himalaya, but the kind of destruction in the downstream till Haridwar. The monitoring and timely warning of the witnessed this time was unparalleled in untiring efforts of Pulford, the then flood. Around May 1894, pilgrim traffic recent history. Houses collapsed like a superintending engineer and his team, on the way to Kedarnath and Badrinath pack of cards and the roads and bridges particularly Pandit Hari Krishen Pant was diverted to the new pedestrian route swept away in the turbulent flood waters. Probably the worst causality of the cen- tury was the destruction of Kedarnath valley. According to the data published in various national dailies, nearly 4000 people were either killed or lost, 2232 houses were damaged, 1520 roads in dif- ferent parts of Garhwal were badly dam- aged and about 170 bridges have been washed away. According to economists, the tourism industry in Uttarakhand will suffer a loss of ~12,000 crore rupees, which is around 30% of the state’s GDP. -
Identification of Glacial Flood Hazards in Karakoram Range Using Remote Sensing Technique and Risk Analysis
IDENTIFICATION OF GLACIAL FLOOD HAZARDS IN Arshad Ashraf*† , Rakhshan Roohi*, Rozina Naz* KARAKORAM RANGE USING REMOTE SENSING and Naveed Mustafa* TECHNIQUEAND RISK ANALYSIS ABSTRACT importance of this situation has magnified over the past decades due to increase in numbers of glacial Glacial Lake Outburst Floods (GLOFs) are great lakes that are formed at the glacier terminus. Thirty- hazard for the downstream communities in context of five destructive out-burst floods have been recorded changing climatic conditions in the glaciated region of for the Karakoram Range during the past two hundred Pakistan. The remote sensing data of Landsat ETM+ years (Hewitt, 1982). Some of the ice dams may have was utilized for the identification of glacial lakes been the result of glacier surges. There is susceptible to posing GLOF hazard in Karakoram unambiguous evidence of large reservoirs ponded by Range. Overall, 887 glacial lakes are identified in 18 glaciers. Kelly (1988) outlines the historical different river-basins of Karakoram Range, out of development and disappearance of Virjerab lake in which 16 lakes are characterized as potentially Hunza due to glacial motion. There occurred a series dangerous in terms of GLOF. The analysis of of GLOF events in upper Hunza valley, central community’s response to GLOF events of 2008 in the Karakoram Range, within short time periods during central Karakoram Range indicated gaps in 2008 that had a devastating effect on the nearby coordination and capacity of the local communities to communities (Roohi, Ashraf, Mustafa and Mustafa, cope with such natural hazards. A regular monitoring 2008). The people residing at considerable distances of hot spots and potential GLOF lakes along with downstream from the unstable lakes are facing a capacity-building of local communities and institutions serious threat to their lives and property. -
Floral and Faunal Diversity in Alaknanda River Mana to Devprayag
Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Floral and Faunal Diversity in Alaknanda River Mana to Devprayag GRBMP : Ganga River Basin Management Plan by Indian Institutes of Technology IIT IIT IIT IIT IIT IIT IIT Bombay Delhi Guwahati Kanpur Kharagpur Madras Roorkee Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 2 | P a g e Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Preface In exercise of the powers conferred by sub-sections (1) and (3) of Section 3 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government has constituted National Ganga River Basin Authority (NGRBA) as a planning, financing, monitoring and coordinating authority for strengthening the collective efforts of the Central and State Government for effective abatement of pollution and conservation of the river Ganga. One of the important functions of the NGRBA is to prepare and implement a Ganga River Basin Management Plan (GRBMP). A Consortium of 7 Indian Institute of Technology (IIT) has been given the responsibility of preparing Ganga River Basin Management Plan (GRBMP) by the Ministry of Environment and Forests (MoEF), GOI, New Delhi. Memorandum of Agreement (MoA) has been signed between 7 IITs (Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee) and MoEF for this purpose on July 6, 2010. This report is one of the many reports prepared by IITs to describe the strategy, information, methodology, analysis and suggestions and recommendations in developing Ganga River Basin Management Plan (GRBMP). The overall Frame Work for documentation of GRBMP and Indexing of Reports is presented on the inside cover page. There are two aspects to the development of GRBMP. Dedicated people spent hours discussing concerns, issues and potential solutions to problems. -
The Geographic, Geological and Oceanographic Setting of the Indus River
16 The Geographic, Geological and Oceanographic Setting of the Indus River Asif Inam1, Peter D. Clift2, Liviu Giosan3, Ali Rashid Tabrez1, Muhammad Tahir4, Muhammad Moazam Rabbani1 and Muhammad Danish1 1National Institute of Oceanography, ST. 47 Clifton Block 1, Karachi, Pakistan 2School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK 3Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA 4Fugro Geodetic Limited, 28-B, KDA Scheme #1, Karachi 75350, Pakistan 16.1 INTRODUCTION glaciers (Tarar, 1982). The Indus, Jhelum and Chenab Rivers are the major sources of water for the Indus Basin The 3000 km long Indus is one of the world’s larger rivers Irrigation System (IBIS). that has exerted a long lasting fascination on scholars Seasonal and annual river fl ows both are highly variable since Alexander the Great’s expedition in the region in (Ahmad, 1993; Asianics, 2000). Annual peak fl ow occurs 325 BC. The discovery of an early advanced civilization between June and late September, during the southwest in the Indus Valley (Meadows and Meadows, 1999 and monsoon. The high fl ows of the summer monsoon are references therein) further increased this interest in the augmented by snowmelt in the north that also conveys a history of the river. Its source lies in Tibet, close to sacred large volume of sediment from the mountains. Mount Kailas and part of its upper course runs through The 970 000 km2 drainage basin of the Indus ranks the India, but its channel and drainage basin are mostly in twelfth largest in the world. Its 30 000 km2 delta ranks Pakiistan. -
Runoff Scenario and Water Based Adaptation Strategies in South Asia
Final Report ARCP2014-10CMY-Shrestha Runoff Scenario and Water Based Adaptation Strategies in South Asia The following collaborators worked on this project: 1. Dr. Madan Lall Shrestha, Principal Investigator, The Small Earth Nepal (SEN), Nepal and Nepal Academy of Science and Technology (NAST), Nepal, [email protected], [email protected] 2. Jeeban Panthi, SEN, Nepal, [email protected] 3. Motaleb Hossain Sarker, Center for Environmental and Geographic Information Services (CEGIS), Bangladesh, [email protected] 4. Dr. Zia Ur Rahman Hashmi, Global Change Impact Studies Center (GCISC), Pakistan, [email protected] 5. Dr. P. Suneetha, Andhra University, India, [email protected] 6. Dr. Jefferson Metz Fox, East West Center, USA, [email protected] 7. M. Ahsanul Aziz, Department of Environment (DoE), Bangladesh, [email protected] Copyright © 2014 Asia-Pacific Network for Global Change Research APN seeks to maximise discoverability and use of its knowledge and information. All publications are made available through its online repository “APN E-Lib” (www.apn-gcr.org/resources/). Unless otherwise indicated, APN publications may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services. Appropriate acknowledgement of APN as the source and copyright holder must be given, while APN’s endorsement of users’ views, products or services must not be implied in any way. For reuse requests: http://www.apn-gcr.org/?p=10807 2 Table of Contents -
Uttarakhand Emergency Assistance Project (UEAP)
Initial Environment Examination Project Number: 47229-001 July 2016 IND: Uttarakhand Emergency Assistance Project (UEAP) Package: Construction of FRP huts in disaster affected district of Kumaon (District Bageshwar) Uttarakhand Submitted by Project implementation Unit –UEAP, Tourism (Kumaon), Nainital This initial environment examination report has been submitted to ADB by Project implementation Unit – UEAP, Tourism (Kumaon), Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. This initial environment examination report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. ADB Project Number: 3055-IND April 2016 IND: Uttarakhand Emergency Assistance Project Submitted by Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam limited, Nainital 1 This report has been submitted to ADB by the Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam, Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. Asian Development Bank 2 Initial Environmental Examination April 2016 INDIA: CONSTRUCTION OF FRP HUTS IN DISASTER AFFECTED DISTRICT OF KUMAON (DISTRICT BAGESHWAR) UTTARAKHAND Prepared by State Disaster Management Authority, Government of India, for the Asian Development Bank. -
Longitudinal Distribution of the Fish Fauna in the River Ganga from Gangotri to Kanpur
AL SCI UR EN 63 T C A E N F D O N U A N D D A E I Journal of Applied and Natural Science 5 (1): 63-68 (2013) T L I O P N P A JANS ANSF 2008 Longitudinal distribution of the fish fauna in the river Ganga from Gangotri to Kanpur Prakash Nautiyal*, Asheesh Shivam Mishra, K.R. Singh1 and Upendra Singh Aquatic Biodiversity Unit, Department of Zoology and Biotechnology, HNB Garhwal University Srinagar- 246174 (Uttarakhand), INDIA 1K.L. Degree College, Allahabad- 211002( UP), INDIA *Corresponding author. E-mail: [email protected] Received:October 1, 2012; Revised received: January 31, 2013; Accepted:February 25, 2013 Abstract: Fish fauna of the river Ganga from Gangotri to Kanpur consisted of 140 fish species from 9 orders and 25 families; 63 fish species from 6 orders and 12 families in the mountain section (MS), while 122 species from 9 orders and 25 families in the Plains section (PS) of Upper Ganga. Cypriniformes and Cyprinidae were most species rich order and family in both sections. Forty six fish species primarily Cypriniformes and Siluriformes are common to both sections, only 17 in MS and 76 in PS. Orders Tetradontiformes, Osteoglossiformes and Clupeiformes were present in PS only. The taxonomic richness in the MS was low compared to PS. Probably motility and physiological requirements in respect of tolerance for temperature restrict faunal elements. Keywords: Cyprinidae, Fish distribution, Gangetic plains, Himalaya, River continuum INTRODUCTION available on the longitudinal distribution of fish fauna in Distributional patterns of organisms are controlled by the Ganga river especially from mountain (Gangotri to dispersal mechanism, historical factors (connecting Haridwar) to upper plain section (Haridwar to Kanpur). -
Environmental Impact and Management Plan for Alaknanda
EXECUTIVE SUMMARY CISMHE CCIIISSMMHHEE EEnnvviirroonnmmeennttaall IImmppaacctt aanndd MMaannaaggeemmeenntt PPllaann ffoorr AAllaakknnaannddaa HH...EE... PPrroojjeecctt,,, UUttttaarraakkhhaanndd Prepared for : GMR Energy Limited, New Delhi CENTRE FOR INTER-DISCIPLINARY STUDIES OF MOUNTAIN & HILL ENVIRONMENT University of Delhi, Delhi EXECUTIVE SUMMARY CISMHE EXECUTIVE SUMMARY 1. IIINNTTRROODDUUCCTTIIIOONN Geographically Uttarakhand is situated between 28 43’45” to 31 8’10” N latitude and 77 35’5” to 81 2’25” E longitude. For administrative purpose Uttarakhand state is divided into 13 districts (Fig 1). According to the Census of India, 2001 the population of the state is 84,89,349, which is 0.8 per cent of the total population of India. People of all faiths – Hindu, Muslims, Christians, Sikhs and Bodhs – live in the state, though majority of population is of Hindu faith. The present project, Alaknanda Hydro-electric project (300 MW) is located in Joshimath tehsil of Chamoli district in Uttarakhand. The total population of Joshimath tehsil is 39,919 (Census, 2001). There are around 16 villages in the vicinity of the Alaknanda H.E. project (within 10 km radius from the project sites). These villages fall under six revenue villages, namely Khirao, Mana, Badrinath, Lambagar, Binayak Chatti and Pandukeshwar. Only Khirao is directly affected due to the different project activities . 1.1 Salient Features of Alaknanda H.E. Project The 300 MW Alaknanda H. E. project is proposed on Alaknanda River. Alaknanda H.E. Project is proposed to be a Run of the River scheme. The project propose to generate 300 MW of power and involves construction of a 18 m high diversion barrage across the Alaknanda river 3 km downstream of Badrinath town. -
THE CASE of the UPPER INDUS RIVER a Thesis Submitted to The
CONSTRUCTION OF SEDIMENT BUDGETS IN LARGE SCALE DRAINAGE BASINS: THE CASE OF THE UPPER INDUS RIVER A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Geography and Planning University of Saskatchewan Saskatoon By Khawaja Faran Ali © Copyright Khawaja Faran Ali, November 2009. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be addressed to: Head of the Department of Geography and Planning University of Saskatchewan Saskatoon, Saskatchewan S7N 5C8 Canada i ABSTRACT High rates of soil loss and high sediment loads in rivers necessitate efficient monitoring and quantification methodologies so that effective land management strategies can be designed. -
Illala Streams, Tigray, Northern Ethiopia Abstract
Research Article http://dx.doi.org/10.4314/mejs.v13i1. 4 Quantitative Geomorphological Parameters Analysis for the Aynalem- Illala Streams, Tigray, Northern Ethiopia Fethangest Woldemariyam Tesema1*, Gebrerufael Hailu Kahsay2 and Berihu Abadi Berhe1 1School of Earth Sciences, College of Natural and Computational Sciences, P.O. Box 231, Mekelle University, Mekelle, Ethiopia (*[email protected]). 2Institute of Geo-information and Earth observation Sciences, Mekelle University P.O. Box231, Mekelle, Ethiopia. Abstract Morphometric analysis is the measurement and mathematical analysis of the configuration of the surface, shape, and dimension of landforms. The objective of this study is to characterize the Aynalem and Illala streams using the morphometric parameter. The topographic map at a scale of 1:50,000 taken from the Ethiopian National Mapping Agency was used to characterize the linear and areal aspects. ASTER Digital Elevation Model with 10m resolution was used to characterize the relief aspect. The Arc GIS 10.4.1 was used during the morphometric analysis. The analysis result of the streams is summarized based on the linear, areal, and relief aspects. The area is characterized by a dendritic drainage pattern which is characteristics of massive hard rock terrain. The Aynalem and Illala streams are 4th and 5th order streams. Considering the number of streams in the Aynalem (75.81%) and Illala (74.66%) is composed of first-order streams that indicate a flashy flood and the mean bifurcation value of Aynalem (6.8) and Illala (4.7) shows that the Aynalem area is more structurally affected than Illala but both show less stream integration. The analysis of areal aspects such as elongation ratio, circularity ratio, and form factor has indicated that both streams are characterized as elongated streams, this implies that both streams are flowing in heterogeneous rock material, presences of structural effect, and slow runoff discharge. -
Impact of Dam on Channel Morphology of Alaknanda River in Srinagar Valley (Garhwal Himalaya)
Himalayan J. Soc. Sci. & Humanities ISSN: 0975-9891 Vol. 14, (2019) 19-27 DOI: https://doi.org/10.51220/hjssh.v14i1.3 Impact of Dam on Channel Morphology of Alaknanda River in Srinagar Valley (Garhwal Himalaya) Sapna Semwal1 and D.D. Chauniyal2 1Department of Geography, DBS (PG) College, Dehara Dun 2Department of Geography, HNB Garhwal University Srinagar (Garhwal),Uttarakhand *Corresponding Author Email: [email protected] Received: 26.11.2019; Revised: 8.12.2019; Accepted: 28.12.2019 ©Society for Himalayan Action Research and Development Abstract: Rivers play a significant role in the human activities all over the world. Increasing demand of water for drinking & irrigation and hydroelectricity, numbers of impacts can be seen in the rivers environment. The present paper focuses on the impact of Supana Dam on the channel morphology of Alaknanda River in Srinagar valley Garhwal Himalaya. The field investigation approach has been adopted for the present study. The impact assessment has been carried out into three categories i.e. (i) Impact of dam on channel morphology, (ii) Impact of dam on human environment and (iii) Anthropogenic impact on channel Morphology. The results of the study show that after the construction of dam positive and negative impact have been assessed. Due to the blockage of water and sediment flow the entire riverine environment has been changed. Channel morphological features are well exposed for geomorphological study. Changing pattern of land and water relationship destroyed the previous ecosystem balance. Besides this, dam is supplying cheapest clean, efficient and reliable energy generated by hydro- electric power plant. Other impacts of dam are loss of fauna and flora, quality of drinking water supply and concentration of pollution in downstream.