Issn: 1173-5988

Total Page:16

File Type:pdf, Size:1020Kb

Issn: 1173-5988 NUMBER 9 7 1999 (GISP) The Global Invasive Species Programme: Toolkit for Early Warning and Management The Global Invasive SpeciesProgramme (GISP) [SeeAliens 7], in which IUCN is a partner, held a workshop in Kuala Lumpur, Malaysia, from 22 -27 March 1999. This meeting, which was funded primarily by the Global Environment -Facility, was a collaborative effort by two sections of GISP: the Management section (chaired by Jeff Waage of CABI Bioscience) and the Early'Waming Systems section (chaired by Mick Clout). The meeting had 29 participants (including several ISSG members), from 13 countries. Our two sections of GISP decided last year that we wo~ld cooperate closely in preparing tools to help developing countries (especially small island develop- ing states) to deal with the threats to their biodiversity which are posed by invasive species.The Kuala Lumpur workshop therefore had as its major aim the drafting of toolkit for early warning and management of invasive species problems in such developing countries. In order to do this, participants first presented the particular problems faced by their home countries, such as poor telecommunications infrastructures, or lack of awaren~ss of the invasive species problem. They then discussed what the "toolkit" might consist of; or which is the best way to reverse the increasing numbers of invasions experienced. Early warning of incipient invasions can only be achieved if people are aware of both the po~ential extent of damage, and the likelihood that it will occur. Management (not merely to prevent single species invasions, but also to re- store entire systems) will probably only be effective, firstly if early warning systems evolve and people use them, and secondly ifcontingency plans for rapid response to new invasions are designed and set in motion. Much of the Sponsored by: discussion centred a(oundmaking the document P~CTICAL and REALIS- TIC. Consensus was reached on the fonnat and content of the toolkit, which will include a manual on prevention and management of invasive species and a supporting international database on their characteristics. Both could be tai- 1ored to meet regional needs. By the end of the meeting the fIrst draft of a generic manual had been completed and there was endorsement of the design for an international invasive species database.The pilot version of this (being prepared by Sarah Lowe and Philip Thomas of ISSG) will be the databaseof Manaaki Whenua the World's 100 Worsflnvasive Species, supported by the TOTAL Foundation. Landcare Research Mick Clout (ISSG Chair) and Sarah Lowe (ISSG) ISSN: 1173-5988 1 ~ ~ :7 ~ ~~ ~<;\ v ~ ?--i t: ~ ;.;&A / ~ ~~, J t b 'l. \ ( ,.1 Mauritius \ U!teunlOn SoothAJii.. ) LJ L ~ ~ (7 ~ .New ~aland \L -'-'- v > c: c-s:- ~ .s 14 GispChristmas Toolkits Islands threatened , by ants, , usWorking Executive for WaterOrder programme " .2 16 AntsMauritiusNotesPlantNordicWhiteLigustrum on invaders Headed-DuckCountries Asian update robustum mainlandin Reunionhlitiative : , , .5 NewGeneralSouthern Pacific Disclaime1:...,AfricanWebsite Plant Invaders , 16 .6 17 .7 17 10 DOC'sSPREP's NationalInvasive weedSpecies plan Programme., ; ...18 11 ...19 ,...19 12 SubscriptionsConference on Marine Bioinvasions 13 ...20 The dramatic and rapid loss of native the hordes of brighrred land crabs that Island, with disastrous consequences. biodiversity follo",:ing the march to the seaeach year, rain forest Also known as the long-Iegged ant, introduction of the brown tree snake on the island ha's remained Anoplolepis is a well-known "tramp" to Guani, Miconia calvescens in remarkably free of alien invaders even species, and has now achieved an Tahiti, and avian malaria in Hawaii after a century of human occupation almost pan-tropical distribution. It is are unhappy legacies illustrating the and accompanying species a stowaway, traveling the world as devastating impact that single alien introductions. Christmas Island has concealed cargo; one rumour is that invaders can wreak on island life. been a rare jewel among oceanic Anoplolepis reached the island of These and other catastrophes have islands -maybe:, that is, until now. Mahe in the Seychelles hidden in a reinforced the notion that isolated bag of rice. This invasive alien ant has islands are especially vulnerable to Trouble has come to yet another wreaked untold (and usually invasion by exotic species, but we island paradise. Populations of the undocumented) environmental have always regarded Christmas introduced crilzy ant Anoplolepis damage on.maily tropical oceanic Island (Indi~ Ocean) as an exception gracilipes have now exploded in Islands, most notably Hawaii and the to the rule. Perhaps best known for undisturbed rain forest on Christmas Seychelles, through direct impacts on 2 ~ both native vertebrates and exposure to the ants. Normally, these make it. We have seen entire invertebrates. crabs are extremely abundant, migrations, involving tens of reaching a mean density and biomass thousands of red crabs, completely On Christmas Island, four key of 1.3 crabs per squaremeter and 1400 wiped out by crazy ants -in one characteristics make it a particularly kg per hectare.B y excluding red crabs supercolony we counted an average significant thre~t. First, like many from fenced experimental plots, and of six crab carcassesper squareineter. other tramp ants, Anoplolepis forms comparing them to unfenced controls, Presumably, the density of red crabs supercolonies, with multiple queens we have established that this crab is in source areas will eventually and little, if any, temtoriality between the dominant consumer on the forest decrease,with the result that seedling, colonies. Supercolonies can extend floor, controlling critical aspects of litter, and nutrient dynamics could over hectares and maintain densities ecosystem function on the island. By change dramatically even in areas far of foraging workers on the forest floor consuming le:af litter, seeds and removed from crazy ant in the order of 1000 ants per square seedlings in a broad diet, this one supercolonies. metre. Second, they- construct nests species almost single-handedly virtually anywhere, including the soil, controls the dynamics of seedling Second, without exception, ant tree hollows, beneath rocks and under recruitlnent, litter accumulation and supercotony formation has been thick leaf litter. Third, crazy ants are decay, and nutrient cycling on the assOciatedwith massive outbreaks of generalist consumers and forage islan-d. Red crabs are largely several different scale insects, the widely, being predators of a wide responsible for the very open most common and wide~pread of range of invertebrates and small understorey and mostly bare ground which is the lac scale Tachardina vertebrates both on the forest floor in the rain forest, unique structural aurantiaca. Within supercolonies, and in the canopies of large trees. features for which the island is noted. hordes of worker ants ascend the Fourth, this ant tends, protects and trunks of most large canopy trees to encourages the establishment of a In areas of supercolony formation, gather honeydew from dense variety of sap-sucking scale-insects, large tracts of forest have taken on infestations of sap-sucking scale which can be debilitating to their host characteristics which we had insects, which they then retuni to their plants. previously only seen on our small nests and distribute to other members experimental plots -the accumulation of the colony. In several areas, scale Although the crazy ant was first and persistence of a deep litter layer, outbreaks have been severeenough to reported from the island some 55 and the establishment of an incredibly causeexrensive canopy die-back, with years ago, it wasn't until 1989 that abundant and diverse seedling . a far greater p.roportion of dead and supercolony formation was first community. Similar impacts may dying trees than in nearby areas free detected, In December 1998 we even become apparentin areasremote of crazy ants. We also think that trees located supercolonies in at least eight from crazy ant supercolonies. Red infested with scale insects and their locations acrossthe island, ranging in crabs make annual breeding attendant crazy ants may be so area from several hectares to over 1 migrations, moving en massefrom the stressed, that rates of growth and krn2and totalling 2-3% of the forested forest interior to the coast to breed. f~cutldity may be significantly lower area on the island. The impact of the Most crazy ant supercolonies are at than in trees free of infestation. crazy ant within areasof supercolony lower elevations near the coast, so in formation is extraordinary. These several places, migrating red crabs Third, crazy ants directly threaten effects can be divided into three have had to traverse the supercolonies n~merous other species with high cat~gories: those associated with to reach the coast. It seemsthey never conservation value on Christmas impacts on the dominant red land crab, those associated with the probable mutualism between crazy ants and scale insects, and those related to effects on island species of special conservation value. First, crazy ants annihilate resident populations of the endemic red land crab, Gecarcoidea natalis, which is found in rain forestall over the island. At this stage it is unclear how crazy ants (5 mm long and 2 mg live weight) can kill such large crabs with heavily calcified exoskeletons (to 120 mm carapace width and >500 9 live weight), but our observations suggest that de:ath
Recommended publications
  • Pseudomyrmex Gracilis and Monomorium Floricola (Hymenoptera: Formicidae) Collected in Mississippi
    Midsouth Entomologist 3: 106–109 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Report Two New Exotic Pest Ants, Pseudomyrmex gracilis and Monomorium floricola (Hymenoptera: Formicidae) Collected in Mississippi MacGown, J. A.* and J. G. Hill Department of Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, 39762 *Corresponding Author: [email protected] Received: 26-VII-2010 Accepted: 28-VII-2010 Here we report collections of two new exotic pest ants, Pseudomyrmex gracilis (F) (Hymenoptera: Formicidae: Pseudomyrmicinae) and Monomorium floricola (Jerdon) (Myrmicinae), from Mississippi. We collected specimens of these two species on Sabal palm (Sabal sp., Arecaceae) on 20 May 2010 at an outdoor nursery specializing in palm trees in Gulfport, Harrison County, Mississippi (30°23'47"N 89°05'33W). Both species of ants were collected on the same individual tree, which was planted directly in the soil. Several workers of Monomorium were observed and collected, but only one worker of the Pseudomyrmex was collected. No colonies of either species were discovered, but our reluctance to damage the palm by searching for colonies prevented a more thorough search. Palms at this nursery were imported from Florida, and it is therefore possible that the ants were inadvertently introduced with the plants, as both of these species are known to occur in Florida (Deyrup et al. 2000). The Mexican twig or elongate twig ant, P. gracilis (Figure 1) has a widespread distribution from Argentina and Brazil to southern Texas and the Caribbean (Ward 1993, Wetterer and Wetterer 2003). This species is exotic elsewhere in the United States, only being reported from Florida, Hawaii, and Louisiana.
    [Show full text]
  • The Coexistence
    Myrmecological News 13 19-27 2009, Online Earlier Worldwide spread of the flower ant, Monomorium floricola (Hymenoptera: Formicidae) James K. WETTERER Abstract The flower ant, Monomorium floricola (JERDON, 1851), is one of the most widely distributed ants of the tropics and subtropics. Occasionally, it is also found in temperate areas in greenhouses and other heated buildings. To evaluate the worldwide spread of M. floricola, I compiled published and unpublished specimen records from > 1100 sites. I docu- mented the earliest known M. floricola records for 119 geographic areas (countries, island groups, major Caribbean is- lands, US states, and Canadian provinces), including many locales for which I found no previously published records: Alaska, Anguilla, Antigua, Barbados, Barbuda, Bermuda, Cape Verde, Cayman Islands, Congo, Curaçao, Dominica, Nevis, New Zealand, Phoenix Islands, Quebec, St Kitts, St Martin, and Washington DC. Most records of M. floricola from latitudes above 30°, and all records above 35°, appear to come from inside greenhouses or other heated buildings. Although widespread, M. floricola is rarely considered a serious pest. However, because this species is very small, slow moving, cryptically colored, and primarily arboreal, I believe that it is probably often overlooked and its abundance and ecological importance is underappreciated. Monomorium floricola may be particularly significant in flooded man- grove habitats, where competition with non-arboreal ants is much reduced. Key words: Arboreal, biological invasion, exotic species, invasive species, mangrove. Myrmecol. News 13: 19-27 (online xxx 2008) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 16 April 2009; revision received 14 September 2009; accepted 16 September 2009 Prof.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Biodiversity, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Invasive Ant Pest Risk Assessment Project: Preliminary Risk Assessment
    Invasive ant pest risk assessment project: Preliminary risk assessment Harris, R. 1) Aim To assess the threat to New Zealand of a wide range of ant species not already established in New Zealand and identify those worthy of more detailed assessment. 2) Scope 2.1. Specific exclusions Solenopsis invicta was specifically excluded from consideration as this species has already been subject to detailed consideration by Biosecurity New Zealand. 2.2 Specific inclusions Biosecurity New Zealand requested originally that the following taxa be included in the assessment: Solenopsis richteri Solenopsis geminata Wasmannia auropunctata Anoplolepis gracilipes Paratrechina longicornis Carpenter ants (Camponotus spp.) Leaf cutting ants (Atta spp.) Myrmecia pilosula Tapinoma melanocephalum Monomorium sydneyense (incursion found in New Zealand) Hypoponera punctatissima (incursion found in New Zealand) Big headed ants (Pheidole spp.) M. sydneyense and H. punctatissima have since been deemed not under official control and are now considered established in New Zealand. Profiles of these species have been prepared as part of the Ants of New Zealand section (see http://www.landcareresearch.co.nz/research/biosecurity/stowaways/Ants/antsinnewzealand.asp). INVASIVE ANT PEST RISK ASSESSMENT PROJECT: Preliminary risk assessment 3) Methodology A risk assessment scorecard was developed (Appendix 1) in consultation with a weed risk assessment expert (Dr Peter Williams) and with Simon O’Connor and Amelia Pascoe of Biosecurity New Zealand, to initially separate
    [Show full text]
  • Bulletin of the British Museum (Natural History) Entomology
    Bulletin of the British Museum (Natural History) A review of the Solenopsis genus-group and revision of Afrotropical Monomorium Mayr (Hymenoptera: Formicidae) Barry Bolton Entomology series Vol 54 No 3 25 June 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (Ent.) ©British Museum (Natural History), 1987 The Entomology series is produced under the general editorship of the Keeper of Entomology: Laurence A. Mound Assistant Editor: W. Gerald Tremewan ISBN 565 06026 ISSN 0524-6431 Entomology
    [Show full text]
  • Ants in the City, a Preliminary Checklist of Formicidae (Hymenoptera) in Macau, One of the Most Heavily Urbanized Regions of the World
    ASIAN MYRMECOLOGY Volume 9, e009014, 2017 ISSN 1985-1944 | eISSN: 2462-2362 © Chi-Man Leong, Shiuh-Feng Shiao DOI: 10.20362/am.009014 and Benoit Guénard Ants in the city, a preliminary checklist of Formicidae (Hymenoptera) in Macau, one of the most heavily urbanized regions of the world Chi-Man Leong1, Shiuh-Feng Shiao1 and Benoit Guénard2* 1National Taiwan University, Department of Entomology, No.1, Sec.4, Roosevelt Road, Taipei, Taiwan 2University of Hong Kong, School of Biological Sciences, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China *Corresponding author: [email protected] ABSTRACT. Macau is a small territory in South East China and one of the most densely populated regions in the world. Previous studies on insect groups have shown that a relatively diverse, yet specific, fauna could still survive in this region. However, to this point, studies on the myrmecofauna of Macau are scarce and to date no species checklist exists. Here, we present the first checklist of Macanese ant species by combining results from recent ant surveys using hand- collections and Winkler extractors with published records. During the surveys, 82 species and morphospecies belonging to 37 genera and 8 subfamilies have been collected, with 37 species representing new records for Macau, including an interesting new record of an undescribed Leptanilla species, the second record of the Leptanillinae subfamily for South East China. To date, Macanese ants comprise 105 species/morphospecies and 8 subspecies, after the removal of dubious records present in the literature (though some misidentifications may remain). While still likely incomplete, these results represent the most comprehensive list of ants for Macau, and a baseline for future research on ant diversity in heavily urbanized environments and for understanding the potential consequences of urbanization on native and non-native diversity in Asia.
    [Show full text]
  • Hymenoptera: Formicidae) in Florida and the West Indies James K
    Research Distribution ofXenomyrmex floridanus (Hymenoptera: Formicidae) in Florida and the West Indies James K. Wetterer* Abstract Xenomyrmex floridanus Emery (Hymenoptera: Formicidae) is a small arboreal ant known only from peninsular Florida and the West Indies. Xeno- myrmex floridanus colonies nest in plant cavities, particularly in hollow twigs and dead branches. I compiled and mapped >100 site records for X. floridanus, documenting the earliest known records for the 4 geographic areas where it occurs: peninsular Florida, the Bahamas, Cuba, and Jamaica. Records of X. floridanus range from Gainesville, Florida (29.7°N) in the north to Pedro Cross, Jamaica (18.9°N) in the south. Xenomyrmex floridanus shows striking evolutionary convergences in morphology and behavior with Monomorium floricola (Jerdon) (Hymenoptera: Formicidae), an Old World tramp ant species that has spread worldwide through human commerce. Both species are tiny, thin, and short-legged, a morphology that al- lows them to nest in very narrow plant cavities. In addition, both are slow moving and have an exceptional ability to cling to surfaces, a capacity that probably allows them to avoid being blown out of trees, even in high winds. Monomorium floricola has invaded Florida and the West Indies, where it may negatively impactX. floridanus populations. In red mangrove (Rhizophora mangle L.; Rhizophoraceae) in southeastern Florida, I found that X. floridanus is the most common native ant and M. floricola is the most common exotic ant. Key Words: distribution; geographic range; native range; red mangrove; Rhizophora Resumen Xenomyrmex floridanus Emery (Hymenoptera: Formicidae) es una pequeña hormiga arbórea conocida sólo en la península de la Florida y las Indias Occidentales.
    [Show full text]
  • Two New South American Species of Monomorium Mayr with Taxonomic Notes on the Genus, Pp
    Fernández, F. 2007. Two new South American species of Monomorium Mayr with taxonomic notes on the genus, pp. 128-145. In Snelling, R. R., B. L. Fisher, and P. S. Ward (eds). Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson – 50 years of contributions. Memoirs of the American Entomological Institute, 80. TWO NEW SOUTH AMERICAN SPECIES OF MONOMORIUM MAYR WITH TAXONOMIC NOTES ON THE GENUS Fernando Fernández Instituto de Ciencias Naturales Universidad Nacional de Colombia Apartado 7495 Bogotá D.C., Colombia [email protected] ABSTRACT This article describes two new species of Monomorium from Brazil. One, M. delabiei n. sp. is reminiscent of the genus Megalomyrmex, although it lacks the transverse propodeal carina characteristic of that genus. The other, M. inusuale n.sp., is even more interesting: given the current concepts in Solenopsidini, it could be treated as a new genus within the tribe due to its distinctive morphological characteristics (mandibular configuration, vestibulate propodeal spiracle, propodeal carinae, micropegs on the last tergum). Broadening the limits of Monomorium requires including Nothidris, Phacota and Epelysidris as junior synonyms (syn. nov.). A working key to Neotropical species of Monomorium is provided along with taxonomic notes. Key words: Hymenoptera, Formicidae, Myrmicinae, Solenopsidini, Monomorium, Nothidris, Phacota, Eplysidris, Neotropical, key, new species. Fernández: South American Monomorium 129 INTRODUCTION Monomorium is one of the most diverse ant genera, with more than 300 described species (Bolton, 1995; Heterick, 2001), the majority of which are Old World, especially Afrotropical. For a long time there were various generic or subgeneric names associated with this genus and related groups (Ettershank, 1966), without critical study of their limits or validity.
    [Show full text]
  • Department of the Interior
    Vol. 80 Thursday, No. 190 October 1, 2015 Part IV Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Endangered Status for 16 Species and Threatened Status for 7 Species in Micronesia; Final Rule VerDate Sep<11>2014 21:53 Sep 30, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\01OCR3.SGM 01OCR3 mstockstill on DSK4VPTVN1PROD with RULES3 59424 Federal Register / Vol. 80, No. 190 / Thursday, October 1, 2015 / Rules and Regulations DEPARTMENT OF THE INTERIOR (TDD) may call the Federal Information of the physical or biological features Relay Service (FIRS) at 800–877–8339. essential to the species’ conservation. Fish and Wildlife Service SUPPLEMENTARY INFORMATION: Information regarding the life functions and habitats associated with these life 50 CFR Part 17 Executive Summary functions is complex, and informative Why we need to publish a rule. Under data are largely lacking for the 23 [Docket No. FWS–R1–ES–2014–0038; the Endangered Species Act of 1973, as Mariana Islands species. A careful 4500030113] amended (Act or ESA), a species may assessment of the areas that may have RIN 1018–BA13 warrant protection through listing if it is the physical or biological features endangered or threatened throughout all essential for the conservation of the Endangered and Threatened Wildlife or a significant portion of its range. species and that may require special and Plants; Endangered Status for 16 Listing a species as an endangered or management considerations or Species and Threatened Status for 7 threatened species can only be protections, and thus qualify for Species in Micronesia completed by issuing a rule.
    [Show full text]
  • Ants As Potential Pests in Three Butterfly Farms in the South West of Colombia
    1 Hormigas como plagas potenciales en tres criaderos de mariposas del sur occidente de Colombia Ants as potential pests in three butterfly farms in the south west of Colombia María Catalina Sanabria-Blandón, Patricia Chacón de Ulloa Grupo de Investigación en Biología, Ecología y Manejo de Hormigas, Universidad del Valle. AA 25360. Cali, Colombia. Author for correspondence: [email protected]. REC.: 31-10-08 ACEPT.:10-02-09 RESUMEN La fauna de hormigas asociada con la zoocría de mariposas en los departamentos de Valle del Cauca y Quindío (Colombia), se colectó por captura manual en tres ambientes (mariposario, vivero y laboratorio). De 125 muestras se extrajeron 779 hormigas, pertenecientes a cinco subfamilias, 18 géneros y 24 especies. El mayor número de especies se registró en el área de laboratorio (17), seguido por vivero (16) y mariposario (13). No se encontraron diferencias significativas (Chi2 = 6.019, g.l.= 10, P>0.75), al evaluar la preferencia de las hormigas por un ambiente, sin embargo se observaron tendencias de esta manera: Wasmannia auropunctata (50%), Linepithema sp. (47%), Monomorium floricola (40%) fueron las más importantes en el laboratorio, mientras que en el mariposario fueron Linepithema humile (42%), Camponotus novogranadensis (39%) y Paratrechina longiconis (37.5%) y en el vivero W. auropunctata (37.5%) y P. longicornis (37.5%). Algunas de estas hormigas son reconocidas como vagabundas y plagas urbanas, lo que podría considerarse como un riesgo potencial para las actividades de zoocría de mariposas. En el presente estudio se propuso conocer las especies de hormigas que se asocian con tres criaderos de mariposas localizados en el sur occidente colombiano.
    [Show full text]
  • Gynandromorphs As Indicators of Modularity and Evolvability in Ants 1Ã 2 ANDREW S
    PERSPECTIVE AND HYPOTHESIS Gynandromorphs as Indicators of Modularity and Evolvability in Ants 1Ã 2 ANDREW S. YANG AND EHAB ABOUHEIF 1The School of the Art Institute of Chicago, Chicago, Illinois 2McGill University, Montreal, Quebec, Canada ABSTRACT Gynandromorphs, individuals that display a mosaic of male and female tissues or cell populations, have been extensively documented in solitary and social insects for over 100 years. Yet the evolutionary significance of gynandromorphs has remained obscure. Here we describe our discovery of a gynandromorph in the hyperdiverse ant genus Pheidole whose pattern of bilateral head mosaicism occurs repeatedly across a wide range of ant species. Based on our findings, we propose that gynandromorphs and other mosaic forms may provide new insights into the modularity and evolvability of morphological traits. J. Exp. Zool. (Mol. Dev. Evol.) 316:313–318, 2011. & 2011 Wiley-Liss, Inc. J. Exp. Zool. How to cite this article: Yang AS, Abouheif E. 2011. Gynandromorphs as indicators of (Mol. Dev. Evol.) 316:313–318, 2011 modularity and evolvability in ants. J. Exp. Zool. (Mol. Dev. Evol.) 316:313–318. One of the oldest debates in evolutionary biology concerns the for example, experimental induction of gynandromorphic tissues question of what types of mutation are relevant to the played a key role in confirming that chromosomes are the genetic evolutionary process (Provine, ’71; Akam, ’98; Stern, 2000; material, because they provide clear phenotypes that correspond Ronshaugen et al., 2002; Dietrich, 2003; Hoekstra and Coyne, to the loss or disruption of sex chromosomes (Morgan and 2007; Carroll, 2008). Older debates have largely centered on the Bridges, ’19; Mavor, ’24; Patterson, ’31).
    [Show full text]