Fire Ants on Sea Turtle Nesting Beaches in South Florida, Usa, and St

Total Page:16

File Type:pdf, Size:1020Kb

Fire Ants on Sea Turtle Nesting Beaches in South Florida, Usa, and St FIRE ANTS ON SEA TURTLE NESTING BEACHES IN SOUTH FLORIDA, USA, AND ST. CROIX, USVI by Danielle Kioshima Romais A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida December 2013 ACKNOWLEDGMENTS I would like to thank all who helped me, encouraged me, guided me and cheered for me throughout the development of this research. Thanks to my family, friends, co-workers, professors and mentors. Dr. James K. Wetterer, I would like to thank you for the trust you invested in me from the very beginning. Thank you for the opportunity to conduct research in this topic. Thank you for the great ideas and the freedom to develop the work as my own. Dr. Jon Moore and Dr. Erik Noonburg, I would like to thank you for being members of this thesis committee. Thank you for the timely and valuable advice on methodology. Thanks to Claudia Lombard from the U.S Fish and Wildlife Service in St. Croix, USVI, for being so helpful during the Sandy Point survey. Thanks to Dr. Mark Deyrup at Archibold Biological Station for conducting the final identification of all the ant species surveyed. Your expertise is unmatched. Thanks to Dr. Kirk Rusenko and the Sea Turtle Research Team at Gumbo Limbo Nature Center for the logistic and GIS support during the surveys conducted in Boca Raton, FL. iii Thanks to the Environmental Science Program staff and faculty for setting the stage for learning and meaningful research to take place. Thanks to the Geosciences Department for all the help in getting through this process as well. Thanks to the Biology Department for the TA opportunity. Thanks to Dr. Gawlik and Dr. Markwith for allowing me to use their lab space during this research. Thanks to Kavita Balkaran for conducting the survey in Jack Bay. Thanks to André C. Kioshima for helping with survey in Pompano Beach. Thanks to Ariel Shtauber for helping with survey in Boca Raton. Thanks to Dr. Sanford Porter for his expertise on fire ants and also for the images provided. Thanks to Dr. Julio C. de Souza for images of our beautiful Brazilian Pantanal. Thanks to Donna Selch, Mark Rochello for creating the sea turtle/fire ant interaction map. Thanks also to Hilton Cordoba for helping me design the maps for the study areas. You all rock! Last, but certainly not least, I would like to thank my wonderful husband, Jeff Romais, for the unconditional support and love during all this time. Thanks also to my beloved son, Kiyo, for being such an awesome trooper when I needed to be absent while working on this research. This is an accomplishment of our entire family, and I could not have done without the two of you! iv ABSTRACT Author: Danielle Kioshima Romais Title: Fire Ants on Sea Turtle Nesting Beaches in South Florida, USA, and St. Croix, USVI. Institution: Florida Atlantic University Thesis Advisor: Dr. James K. Wetterer Degree: Master of Science Year: 2013 The red imported fire ant, Solenopsis invicta, is a South American native introduced in Alabama in the early 20th century. This predatory species has rapidly spread throughout the southeastern US and parts of the West Indies, inflicting great ecological and economic damage. For example, Solenopsis invicta is known to attack the eggs and hatchlings of ground nesting birds and reptiles. The ants swarm into the nests attacking hatchlings and diminishing their chance for survival. My thesis research aimed to survey the distribution of ants on sea turtle nesting beaches in South Florida and St. Croix, USVI, and to evaluate the possible threat of Solenopsis invicta and other predatory ants to sea turtle hatchlings. v DEDICATION I dedicate this work to my son, Kiyo Romais. He is my main source of inspiration, determination and strength. He is the reason I want to excel and make the world a little bit better. Kiyo, I know that - when you grow up and become a man – you will make a difference in this world. Thank you for inspiring me ever since you were conceived to be a better mom, a better citizen, a role model to you. Thank you for you unconditional love and never ending curiosity. I love you, Kiyo, to the moon and back 1000 times! FIRE ANTS ON SEA TURTLE NESTING BEACHES IN SOUTH FLORIDA, USA, AND ST. CROIX, USVI TABLES .............................................................................................................................. i FIGURES ............................................................................................................................ x 1. INTRODUCTION ....................................................................................................... 1 2. LITERATURE REVIEW ............................................................................................ 5 2.1 Solenopsis sp. ....................................................................................................... 5 2.2 Fire Ants ............................................................................................................... 6 2.2.1 Native and introduced ranges ........................................................................... 7 2.2.2 Economic and health related impacts ............................................................... 8 2.3 Fire ants as a threat for sea turtle hatchlings ........................................................ 9 3 OBJECTIVES ............................................................................................................ 13 4 METHODS ................................................................................................................ 15 4.1 Study Areas ........................................................................................................ 15 4.1.1 Sandy Point Wildlife Refuge ...................................................................... 16 4.1.2 Jack Bay ...................................................................................................... 16 4.1.3 Boca Raton .................................................................................................. 17 4.1.4 Pompano Beach .......................................................................................... 19 4.2 Survey, Specimen Preservation and Identification ............................................ 21 4.2.1 Survey and Specimen Preservation ............................................................. 22 4.2.2 Specimen Identification .............................................................................. 23 4.3 Sandy Point Wildlife Refuge Follow-Up Study: Phase I ................................... 24 4.4 Baseline Distribution Survey: Phase II .............................................................. 26 4.4.1 Pompano Beach, FL .................................................................................... 26 4.4.2 Jack Bay, St. Croix, USVI. ......................................................................... 27 vii 4.5 The Boca Raton Survey: Phase III ..................................................................... 28 4.6 Statistical Analysis ............................................................................................. 29 5 RESULTS AND DISCUSSION ................................................................................ 32 5.1 Sandy Point Wildlife Refuge Follow-Up Study: Phase I ................................... 32 5.2 Baseline Distribution Survey: Phase II .............................................................. 35 5.2.1 Pompano Beach Survey .............................................................................. 35 5.2.2 Jack Bay, St Croix Survey .......................................................................... 39 5.3 The Boca Raton Survey: Phase III ..................................................................... 41 5.3.1 Baseline Survey Results .............................................................................. 41 5.3.2 Methodology Consistency Analysis ........................................................... 44 5.3.3 Possible Threats to Sea Turtle Hatchlings .................................................. 53 5.4 Statistical Analysis ............................................................................................. 56 6 FINAL REMARKS ................................................................................................... 71 viii TABLES Table 1: Ant species surveyed in 2006 (Wetterer and Lombardo, 2010) ......................... 25 Table 2: List of ant species present at Sandy Point, St. Croix, USVI ............................... 33 Table 3: List of ant species in Pompano Beach, FL. ........................................................ 36 Table 4: List of ant species found in Jack Bay, St. Croix, USVI...................................... 39 Table 5: List of ant species present in the Boca Raton study site – Initial Survey ........... 43 Table 6: List of species found in Boca Raton - Survey II ................................................. 46 Table 7: List of species found in Boca Raton - Survey III ............................................... 48 Table 8: List of species found in Boca Raton - Survey IV ............................................... 50 Table 9: Comparison per site between the four sampling efforts in Boca Raton, FL - Species observed based on abundance of individuals ...................................... 52 Table 10: Observed (O) versus Expected (E) sites with native and exotic species in 2006 and 2010 - Sandy Point, St. Croix, USVI
Recommended publications
  • In Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis Geminata
    The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. By Rebecca L. Sandidge A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Neil D. Tsutsui, Chair Professor Brian Fisher Professor Rosemary Gillespie Professor Ellen Simms Fall 2018 The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. © 2018 By Rebecca L. Sandidge 1 Abstract The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. by Rebecca L. Sandidge Doctor of Philosophy in Environmental Science Policy and Management, Berkeley Professor Neil Tsutsui, Chair Invasive species and habitat destruction are considered to be the leading causes of biodiversity decline, signaling declining ecosystem health on a global scale. Ants (Formicidae) include some on the most widespread and impactful invasive species capable of establishing in high numbers in new habitats. The tropical grasslands of Indonesia are home to several invasive species of ants. Invasive ants are transported in shipped goods, causing many species to be of global concern. My dissertation explores ant communities in the grasslands of southeastern Indonesia. Communities are described for the first time with a special focus on the Tropical Fire Ant, Solenopsis geminata, which consumes grass seeds and can have negative ecological impacts in invaded areas. The first chapter describes grassland ant communities in both disturbed and undisturbed grasslands.
    [Show full text]
  • Medical Problems and Treatment Considerations for the Red Imported Fire Ant
    MEDICAL PROBLEMS AND TREATMENT CONSIDERATIONS FOR THE RED IMPORTED FIRE ANT Bastiaan M. Drees, Professor and Extension Entomologist DISCLAIMER: This fact sheet provides a review of information gathered regarding medical aspects of the red imported fire ant. As such, this fact sheet is not intended to provide treatment recommendations for fire ant stings or reactions that may develop as a result of a stinging incident. Readers are encouraged to seek health-related advice and recommendations from their medical doctors, allergists or other appropriate specialists. Imported fire ants, which include the red imported fire ant - Solenopsis invicta Buren (Hymenoptera: Formicidae), the black imported fire ant - Solenopsis richteri Forel and the hybrid between S. invicta and S. richteri, cause medical problems when sterile female worker ants from a colony sting and inject a venom that cause localized sterile blisters, whole body allergic reactions such as anaphylactic shock and occasionally death. In Texas, S. invicta is the only imported fire ant, although several species of native fire ants occur in the state such as the tropical fire ant, S. geminata (Fabricius), and the desert fire ant, S. xyloni McCook, which are also capable of stinging (see FAPFS010 and 013 for identification keys). Over 40 million people live in areas infested by the red imported fire ant in the southeastern United States. An estimated 14 million people are stung annually. According to The Scripps Howard Texas Poll (March 2000), 79 percent of Texans have been stung by fire ants in the year of the survey, while 20% of Texans report not ever having been stung.
    [Show full text]
  • Imported Fire Ants [Solenopsis Invicta (Buren) and Solenopsis Richteri (Forel)] Ann M.M
    Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-214-20-PR March 2020 Imported Fire Ants [Solenopsis invicta (Buren) and Solenopsis richteri (Forel)] Ann M.M. Mull, Extension Assistant; Lori R. Spears, CAPS Coordinator; and Ryan Davis, Arthropod Diagnostician Quick Facts • Imported fire ants (IFA) represent two South American species: red imported fire ant and black imported fire ant. • IFA occur in the southeastern U.S. and in parts of California and other western states. They are NOT known to occur in Utah, but parts of southwestern Utah are suitable for IFA establishment. • IFA can cause agricultural, ecological, economical, nuisance, and public health problems. • When a nest is disturbed, IFA will exit the mound in large numbers to bite and sting repeatedly, injecting painful Figure 1. Red imported fire ant (IFA) workers swarming a boot. venom with each sting. • Stings can cause persistent “fire-like” pain and blistering pustules--which when broken can result in secondary infections and scarring--and allergic reactions, including rare instances of seizures and anaphylactic shock. • Although IFA can spread naturally by flying short distances, long-distance spread is caused primarily by the movement of infested materials, such as baled hay and straw, nursery stock, grass sod, soil, honeybee hives, and vehicles and equipment. Figure 2. A red IFA worker. Figure 3. Pustules on arm resulting from IFA stings. • Five native Solenopsis ant species occur in Utah, but they are not known to be aggressive and their colonies are late 1930s (red IFA). Although IFA can spread naturally by flying small and inconspicuous.
    [Show full text]
  • Meeting Minutes/Final Report (May 8-10, 2018) (PDF)
    IJNITl:.D STA 1 ES ENVIRONMENTAL PROTECTION AGENCY WASIIINGTON. DC 20-160 ,. ; ,, "'' ; '•,t, rrn I t1T1<J" rl\1,,r:nm·, MEMORANDUM SUBJECT: Transmittal of Meeting Minutes and Final Report for the Federal Insecticide, Fungicide. and Rodenticide Act Scientific Advisory Panel (FIFRA SAP) Meeting Held May 8-9, 2018 TO: Richard Keigwin Director Office of Pesticide Programs FROM: Marquea D. King, Ph.~&'~&; Designated Federal Official, FIFRA SAR,gtaff Office of Science Coordination and Policy THRU: Steven Knott, M.S. 0-.-.,L__ . n Executive Secretary, FLFRA SAP Panel ~,::'(/fl /fu~ Office of Science Coordination and Policy Stanley Barone Jr., M.S ., Ph.D. Af h .• I .__.--:;i _o Acting Director 1"'~~ Office of Science Coordination and Policy Attached, please find the meeting minutes fo r the FIFRA Scientific Advisory Panel open meeting held in Arlington, Virginia on May 8-9, 20 18. This report addresses a set of scientific issues being considered by Lhe Environmental Protection Agency regarding methods for efficacy testing of pesticides used for premise treatments for invertebrate pests and treatment for fire ants. Attachment Page2of2 cc: Nancy Beck Louise Wise Charlotte Bertrand Rick Keigwin Anna Lowit, Ph.D. Mike Goodis Linda Strauss Cheryl Dunton OPP Docket FIFRA Scientific Advisory Panel Members Dana Barr, Ph.D. Marion Ehrich, Ph.D. David Jett, Ph.D. James McManaman, Ph.D. Joseph Shaw, Ph.D. Sonya Sobrian, Ph.D. FQPA Science Review Board Members Arthur Appel, Ph.D. Jerry Cook, Ph.D. Christopher Geden, Ph.D. L.C. "Fudd" Graham, Ph.D. Elmer Gray, M. Ag. Jerome Hogsette, Jr., Ph.D.
    [Show full text]
  • Pseudomyrmex Gracilis and Monomorium Floricola (Hymenoptera: Formicidae) Collected in Mississippi
    Midsouth Entomologist 3: 106–109 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Report Two New Exotic Pest Ants, Pseudomyrmex gracilis and Monomorium floricola (Hymenoptera: Formicidae) Collected in Mississippi MacGown, J. A.* and J. G. Hill Department of Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, 39762 *Corresponding Author: [email protected] Received: 26-VII-2010 Accepted: 28-VII-2010 Here we report collections of two new exotic pest ants, Pseudomyrmex gracilis (F) (Hymenoptera: Formicidae: Pseudomyrmicinae) and Monomorium floricola (Jerdon) (Myrmicinae), from Mississippi. We collected specimens of these two species on Sabal palm (Sabal sp., Arecaceae) on 20 May 2010 at an outdoor nursery specializing in palm trees in Gulfport, Harrison County, Mississippi (30°23'47"N 89°05'33W). Both species of ants were collected on the same individual tree, which was planted directly in the soil. Several workers of Monomorium were observed and collected, but only one worker of the Pseudomyrmex was collected. No colonies of either species were discovered, but our reluctance to damage the palm by searching for colonies prevented a more thorough search. Palms at this nursery were imported from Florida, and it is therefore possible that the ants were inadvertently introduced with the plants, as both of these species are known to occur in Florida (Deyrup et al. 2000). The Mexican twig or elongate twig ant, P. gracilis (Figure 1) has a widespread distribution from Argentina and Brazil to southern Texas and the Caribbean (Ward 1993, Wetterer and Wetterer 2003). This species is exotic elsewhere in the United States, only being reported from Florida, Hawaii, and Louisiana.
    [Show full text]
  • The Coexistence
    Myrmecological News 13 19-27 2009, Online Earlier Worldwide spread of the flower ant, Monomorium floricola (Hymenoptera: Formicidae) James K. WETTERER Abstract The flower ant, Monomorium floricola (JERDON, 1851), is one of the most widely distributed ants of the tropics and subtropics. Occasionally, it is also found in temperate areas in greenhouses and other heated buildings. To evaluate the worldwide spread of M. floricola, I compiled published and unpublished specimen records from > 1100 sites. I docu- mented the earliest known M. floricola records for 119 geographic areas (countries, island groups, major Caribbean is- lands, US states, and Canadian provinces), including many locales for which I found no previously published records: Alaska, Anguilla, Antigua, Barbados, Barbuda, Bermuda, Cape Verde, Cayman Islands, Congo, Curaçao, Dominica, Nevis, New Zealand, Phoenix Islands, Quebec, St Kitts, St Martin, and Washington DC. Most records of M. floricola from latitudes above 30°, and all records above 35°, appear to come from inside greenhouses or other heated buildings. Although widespread, M. floricola is rarely considered a serious pest. However, because this species is very small, slow moving, cryptically colored, and primarily arboreal, I believe that it is probably often overlooked and its abundance and ecological importance is underappreciated. Monomorium floricola may be particularly significant in flooded man- grove habitats, where competition with non-arboreal ants is much reduced. Key words: Arboreal, biological invasion, exotic species, invasive species, mangrove. Myrmecol. News 13: 19-27 (online xxx 2008) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 16 April 2009; revision received 14 September 2009; accepted 16 September 2009 Prof.
    [Show full text]
  • Seasonal Studies of an Isolated Red Imported Fire Ant (Hymenoptera: Formicidae) Population in Eastern Tennessee
    POPULATION ECOLOGY Seasonal Studies of an Isolated Red Imported Fire Ant (Hymenoptera: Formicidae) Population in Eastern Tennessee ANNE-MARIE A. CALLCOTT, DAVID H. OI,1 HOMER L. COLLINS, DAVID F. WILLIAMS,1 AND TIM C. LOCKLEY USDA, APHIS, PPQ, Gulfport Plant Protection Station, Gulfport, MS Environ. Entomol. 29(4): 788Ð794 (2000) ABSTRACT Seasonal studies on a 1,200-ha isolated infestation of Solenopsis invicta Buren located in McMinn County, TN, were initiated in 1993 and continued through 1997. Winter survivability was evaluated and compared with a southern Mississippi site. The impact of S. invicta on local myrme- cofauna was compared with a Tennessee non-infested site. Data collected over four winters indicate that consecutive days at a low ambient air maximum temperature is more indicative of S. invicta winter survivability than minimum temperature. After signiÞcant S. invicta mortality the Þrst winter (1993Ð1994), we did not Þnd signiÞcant differences in ant species diversity between the S. invicta infested Tennessee site and a similar, but non-infested site, 32 km away. Species commonly collected in the S. invicta infested site included Forelius pruinosus Roger, an unnamed Forelius sp., Paratrechina terricola (Buckley) and Pheidole vinelandica Forel. KEY WORDS Solenopsis invicta, red imported Þre ant, winter survivability, interspeciÞc compe- tition RED IMPORTED FIRE ANTS, Solenopsis invicta Buren, cur- tion may have been introduced onto the plant site on rently infest Ͼ124,000,000 ha in 13 states and Puerto construction equipment or material; however, this Rico. A congener species, S. richteri (Forel), inhabits cannot be proven. This population appeared to be well a relatively small portion of this infested area in north- adapted and thriving.
    [Show full text]
  • Ants (Hymenoptera: Formicidae) of Bermuda
    212 Florida Entomologist 87(2) June 2004 ANTS (HYMENOPTERA: FORMICIDAE) OF BERMUDA JAMES K. WETTERER1 AND ANDREA L. WETTERER2 1Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 2Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027 ABSTRACT For more than 50 years, two exotic ant species, Linepithema humile (Mayr) and Pheidole megacephala (F.), have been battling for ecological supremacy in Bermuda. Here we summa- rize known ant records from Bermuda, provide an update on the conflict between the domi- nant ant species, and evaluate the possible impact of the dominant species on the other ants in Bermuda. We examined ant specimens from Bermuda representing 20 species: Brachy- myrmex heeri Forel, B. obscurior Forel, Camponotus pennsylvanicus (De Geer), Cardio- condyla emeryi Forel, C. obscurior Wheeler, Crematogaster sp., Hypoponera opaciceps (Mayr), H. punctatissima (Roger), L. humile, Monomorium monomorium Bolton, Odontomachus rug- inodis Smith, Paratrechina longicornis (Latreille), P. vividula (Nylander), P. megacephala, Plagiolepis alluaudi Forel, Solenopsis (Diplorhoptrum) sp., Tetramorium caldarium Roger, T. simillimum (Smith), Wasmannia auropunctata (Roger), and an undetermined Dacetini. Records for all but three (H. punctatissima, P. vividula, W. auropunctata) include specimens from 1987 or later. We found no specimens to confirm records of several other ant species, in- cluding Monomorium pharaonis (L.) and Tetramorium caespitum (L.). Currently, L. humile dominates most of Bermuda, while P. megacephala appear to be at its lowest population lev- els recorded. Though inconspicuous, B. obscurior is common and coexists with both dominant species. Paratrechina longicornis has conspicuous populations in two urban areas. Three other ant species are well established, but inconspicuous due to small size (B.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • International Symposium on Biological Control of Arthropods 424 Poster Presentations ______
    POSTER PRESENTATIONS ______________________________________________________________ Poster Presentations 423 IMPROVEMENT OF RELEASE METHOD FOR APHIDOLETES APHIDIMYZA (DIPTERA: CECIDOMYIIDAE) BASED ON ECOLOGICAL AND BEHAVIORAL STUDIES Junichiro Abe and Junichi Yukawa Entomological Laboratory, Kyushu University, Japan ABSTRACT. In many countries, Aphidoletes aphidimyza (Rondani) has been used effectively as a biological control agent against aphids, particularly in greenhouses. In Japan, A. aphidimyza was reg- istered as a biological control agent in April 1999, and mass-produced cocoons have been imported from The Netherlands and United Kingdom since mass-rearing methods have not yet been estab- lished. In recent years, the effect of imported A. aphidimyza on aphid populations was evaluated in greenhouses at some Agricultural Experiment Stations in Japan. However, no striking effect has been reported yet from Japan. The failure of its use in Japan seems to be caused chiefly by the lack of detailed ecological or behavioral information of A. aphidimyza. Therefore, we investigated its ecological and behavioral attributes as follows: (1) the survival of pupae in relation to the depth of pupation sites; (2) the time of adult emergence in response to photoperiod during the pupal stage; (3) the importance of a hanging substrate for successful mating; and (4) the influence of adult size and nutrient status on adult longev- ity and fecundity. (1) A commercial natural enemy importer in Japan suggests that users divide cocoons into groups and put each group into a plastic container filled with vermiculite to a depth of 100 mm. However, we believe this is too deep for A. aphidimyza pupae, since under natural conditions mature larvae spin their cocoons in the top few millimeters to a maxmum depth of 30 mm.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • 1 KEY to the DESERT ANTS of CALIFORNIA. James Des Lauriers
    KEY TO THE DESERT ANTS OF CALIFORNIA. James des Lauriers Dept Biology, Chaffey College, Alta Loma, CA [email protected] 15 Apr 2011 Snelling and George (1979) surveyed the Mojave and Colorado Deserts including the southern ends of the Owen’s Valley and Death Valley. They excluded the Pinyon/Juniper woodlands and higher elevation plant communities. I have included the same geographical region but also the ants that occur at higher elevations in the desert mountains including the Chuckwalla, Granites, Providence, New York and Clark ranges. Snelling, R and C. George, 1979. The Taxonomy, Distribution and Ecology of California Desert Ants. Report to Calif. Desert Plan Program. Bureau of Land Mgmt. Their keys are substantially modified in the light of more recent literature. Some of the keys include species whose ranges are not known to extend into the deserts. Names of species known to occur in the Mojave or Colorado deserts are colored red. I would appreciate being informed if you find errors or can suggest changes or additions. Key to the Subfamilies. WORKERS AND FEMALES. 1a. Petiole two-segmented. ……………………………………………………………………………………………………………………………………………..2 b. Petiole one-segmented. ……………………………………………………………………………………………………………………………………..………..4 2a. Frontal carinae narrow, not expanded laterally, antennal sockets fully exposed in frontal view. ……………………………….3 b. Frontal carinae expanded laterally, antennal sockets partially or fully covered in frontal view. …………… Myrmicinae, p 4 3a. Eye very large and covering much of side of head, consisting of hundreds of ommatidia; thorax of female with flight sclerites. ………………………………………………………………………………………………………………………………….…. Pseudomyrmecinae, p 2 b. Eye absent or vestigial and consist of a single ommatidium; thorax of female without flight sclerites.
    [Show full text]