Polish-Made Payload for the BRITE-PL 2 Satellite Heweliusz [8454-88]

Total Page:16

File Type:pdf, Size:1020Kb

Polish-Made Payload for the BRITE-PL 2 Satellite Heweliusz [8454-88] Invited Paper Polish-made payload for the Brite-PL2 satellite "Heweliusz" Tomasz Zawistowski Space Research Center of the Polish Academy of Sciences, ul. Bartycka 18a, 00-716 Warszawa ABSTRACT Two institutes of the Polish Academy of Sciences, Space Research Centre and Nicolaus Copernicus Astronomical Center cooperate on the project to build and place in orbit the first Polish scientific satellite. The BRITE (BRight Target Explorer) mission formed by Austria, Canada and Poland will send to space a constellation of six nanosatelites, two from each country. They will be observing star pulsations with fotometric methods gathering data that will verify thermodynamic models of bright, massive stars of our Galaxy, delivering information on their structure, formation and evolution. The first of two Polish satellites, "LEM", will closely resemble its international kin, while the second, "Heweliusz" will carry Polish flavor to space – delivering additional technological experiments. They will use commercial-off-the-shelf components. Keywords: satellites, BRITE, star oscillations, COTS 1. INTRODUCTION The BRITE mission represents a new approach in space research – the use of small, cheap, specialized nano-satellites that will monitor minute changes in the brightness of stars, in order to study their behavior [1]. While observation from orbit has an advantage – no disturbances caused by the Earth’s atmosphere influence the optical image acquired by the telescope, additionally the constellation of satellites offers the continuity of observations . The basic systems of a nanosatellite used by the BRITE mission comprise: the telescope computers (House Keeping Computer (HKC), Attitude Control System Computer (ACSC), Instrument On Board Computer (IOBC) communications system (radio receiver and transmitter) power system (control boards, photovoltaic cells, regulators) Attitude Control System (ACS) (magnetometer, star tracker, sun sensors, magnetorquers, reaction wheels) The total mass of a BRITE nanosatellite is about 7 kg and it is encased in a cube-shaped box, having a side 20 cm long [2]. It is covered with thermal tape protecting it from overheating by the SUN at the Low Earth Orbit. The first of the two Polish satellites will be launched in November 2012, the second will be placed in orbit in the second half of 2013. The satellite is to be controlled from the ground-based command station with radio communications: the uplink will be realized with the frequency of 437.625 MHz, while downlink will be transmitted at 2.2 GHz. The Polish ground station will be one of 3 principal stations and will be located at the Nicolaus Copernicus Astronomical Center in Warsaw. The Generic Satellite Bus (GSB) is common to all 6 spacecraft in the BRITE constellation. Most of the components were designed at UTIAS SFL (University of Toronto Institute of Aerospace studies Space Flight Laboratory) or its Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2012, edited by Ryszard S. Romaniuk, Proc. of SPIE Vol. 8454, 84540D · © 2012 SPIE CCC code: 0277-786/12/$18 · doi: 10.1117/12.2000424 Proc. of SPIE Vol. 8454 84540D-1 subcontractors. Most of the parts used were COTS. One of few non-Canadian made parts were structural parts (panels and brackets). BRITE PL 2 "Heweliusz" will differ from BRITE-PL 1 "LEM" in the payload contents. It was decided that additional features will be built into it: it will consist of several technological experiments, all of Polish origin. Figure 1 The First Polish Scientific Satellite-BRITE-PL 1 "LEM" 2. TECHNICAL APPROACH All add-on experiments will be controlled by the control and measuring system. It will monitor the state of all experiments, conduct testing procedures, analyze and process test data and prepare them for downlink. Depending on the available power the component tests will be done in parallel or separately with an option of turning the power off. 2.1. Technologies to be verified on the electronic components As far as some of technologies to be tested on the electronic components of the control and measuring system they are: BGA assembly corrective coding, partial reconfiguration or using quartz resonators as generators in FPGA. 2.2. Electronic components to be tested The criteria cited below were followed during the selection of components to be flown on Heweliusz: usefulness for low budget space missions low power consumption long term availability no record on susceptibility to damage by radiation availability of units with wide range of operational temperatures Proc. of SPIE Vol. 8454 84540D-2 The following parts were picked for the test: SDRAM DDR2 Memories (IS43DR16664A-3DBL), NOR FLASH Memories (S29GL01GP11TFIR10), programmable FPGA Spartan-6 family (XC6SLX45- 2CSG324I), Analogue to Digital Converter (ADC128S102). Commercially available off the shelf components, preferably with space heritage provide reliable service with substantially lower costs compared to those used on missions requiring certified parts. From the experience of SFL – COTS provide quite reliable alternative to thoroughly screened parts. 2.3. Measuring and Control system Measuring and control system will be based on ATMEGA microcontroller, which will be the basis of the experimental power system and UHF transmitter with OOK modulation. The processor will monitor voltages and currents through DS2438 battery monitor convertors, while temperatures will be measured with DS18B20 digital thermometers. Additionally a total radiation dose will be measured with an eloctroluminescent dosemeter, that will be precalibrated before flight. 3. POLISH-MADE PAYLOAD DESCRIPTION Polish payload will consist of two parts: scientific and technological. The scientific payload comprises the red-filter telescope which was designed from scratch at SRC and will be part of the major payload of the satellite. Thus it will not be considered an "additional payload". However since it has a smaller number of lenses compared to the telescope inserted in "LEM", it will save mass compared to the previous design. The technological payload is composed of: • Power Supply Unit, solar cells, battery (PSU) • Lock and Release Mechanism (L&R) • Micro Antenna Boom (MAB) • Radiation Dosemeter • Beacon Figure 2 Internal configuration of the Polish payload Proc. of SPIE Vol. 8454 84540D-3 The total mass increase connected with the technological payload is 640 g. The components of the Polish payload are shown in Figures 2, 3 and 4. z Figure 3 Remaining technological payload BATTERY Figure 4 Beacn and PSU All add-on technological experiments are extras that should not interfere with the main BRITE mission objectives. In order to implement that philosophy, the additional payload will be turned on by the command from the main on- board computer, BRITE PL HKC. The system architecture is shown in Figure 6. Proc. of SPIE Vol. 8454 84540D-4 MAIN PAYLOAD SWITCH Figure 5 System architecture of the additional payload Another example of the risk mitigating approach regarding the deployment and operation of the additional payload is the micro antenna boom test handling (Fig. 7) Figure 6 Antenna Boom - the configuration before deployment The antenna boom made of beryllium copper tape and shaped into a 6 mm diameter cylindrical tube is unfolded from a motor-driven spool. Initially it was to be deployed 1 m into space, but questions were raised regarding the influence the boom might have on the optical performance of the telescope (reflections, etc) and its impact on the Proc. of SPIE Vol. 8454 84540D-5 spacecraft stability and pointing accuracy [3]. In order not to interfere with the mission objectives the deployment of MAB was to be delayed till some imprecise moment which is supposed to define the end of the BRITE mission. Finally a different approach was assumed: the MAB would deploy the boom within spacecraft structure, thus it will not affect the BRITE mission. A confinement tube is to protect the boom during and after its deployment. It will also facilitate the layout of the harness within the spacecraft during the integration process. The PSU architecture is presented in Figure 7. -> -> -> I -> :1: -> > Figure 7 PSU block diagram PSU will receive power from experimental 3 junction photovoltaic cells that will be prototypes made in Poland. Their efficiency is expected to be better than 30%. There will be 2 patches of 8 cm x 8 cm of experimental photovoltaic cells installed on the "Heweliusz" spacecraft. Additionally there will be thin photovoltaic cell foil of much smaller efficiency placed on the Yplus panels of the satellite. Its purpose is to test the external protection layer rather than deliver consummable power. Proc. of SPIE Vol. 8454 84540D-6 THIN FOIL SOLAR CELLS SOLAR CELL -1 Figure 8 Experimental Photovoltaic Cell location on the satellite panels SRC has long developed mechanical devices that were stowed at launch and released in orbit. They all used release mechanisms that were purchased from commercial sources. The recent decision to standardize that sort of equipment and develop an in-house lock and release mechanism led to the development of the unit shown in Fig. 9. It uses a rope that melts when subjected to contact heat from a nearby resistor. 2 of such units will be flown on "Heweliusz". Figure 9 Lock and release mechanism Proc. of SPIE Vol. 8454 84540D-7 Radiation dosemeter was designed with the following objectives: • Verification for LEO radiation simulations (RadFET, LED-dosimetry) • Evaluation of fault mitigation techniques • To provide flight heritage opportunity to some potentially interesting COTS components (future SRC missions) – FLASH, SDRAM, ADC, FPGA It uses the operation mode listed below: • FLASH, SDRAM, FPGA retention(SEU) (80mW) • FLASH read/write tests (350mW) • FPGA(LFSR, RAM, SEFI, (300mW) • SDRAM read/write (350mW) • ADC tests (280mW) Its only electrical interface is a connection to the payload PSU’s MCU (UART LVTTL, 5V supply). All the telemetry data from the add-on experiments will be delivered to the ground by a beacon. PSU 3V PSU SV Voltage stabilizer r r AVR 2.4GHz RF match 2.4GHzRF uC Transmiter Frontend CC2550 CC2591 4 TI UART TTL CW keying line (digital) ,,,,,, power lines -3111.
Recommended publications
  • Polski Sektor Kosmiczny EN.Indd
    Cassini-Huygens Mars Express POLAND IN ESA BRITE-PL „Lem” Meteor 2 Kopernik 500 Integral Rosetta Mikołaj Kopernik REACHING STARS Jan Heweliusz Mirosław — Hermaszewski POLISH SPACE SECTOR 4 years in ESA PW-SAT BRITE-PL „Heweliusz” Herschel Vertical-1 ExoMars TABLE OF CONTENTS Poland 3 History of space activities 4 Space policy 6 In space and on Earth 8 Companies 12 Selected scientific and research institutions 19 Competence map 22 2 WTO UN 01 OECD POLAnd Population: 38.4 million NATO Area: 312 000 km2 Economy: 23rd place in the world* Capital city: Warsaw Government system: parliamentary republic Currency: złoty (PLN) EU ESA * World Bank, 2015, GDP based on PPP EDA EUMETSAT ESO POLAND POLAND CENTRAL AND EasterN EUROPE EU28 GDP (PPP) per capita of Poland compared Economic growth in Poland and EU28 to other countries of Central and Eastern Europe Source: own compilation based on data from Eurostat Source: The Global Competitiveness Report, World Economic Forum 3 02 HISTORY OF SPACE ACTIVITIES The beginning of Polish engagement in space flights presence of Polish instruments on the majority of the stemmed from participation in the international pro- Agency’s research missions. Meanwhile, the first private gramme Interkosmos, based on collaboration with the Polish companies offering satelite-based applications Soviet Union. The first Polish research device was sent and services were created. into orbit on board the satellite Kopernik-500 (Interkos- In 2007, the signing of the Plan for European Coope- mos-9) in 1973. Three years later the Space Research rating States (PECS) enabled significant extension of Centre of the Polish Academy of Sciences was estab- Poland’s cooperation with ESA.
    [Show full text]
  • Astronautilus-18.Pdf
    Kosmos to dla nas najbardziej zaawansowana nauka, która często redefiniuje poglądy filozofów, najbardziej zaawansowana technika, która stała się częścią nasze- go życia codziennego i czyni je lepszym, najbardziej Dwumiesięcznik popularnonaukowy poświęcony tematyce wizjonerski biznes, który każdego roku przynosi setki astronautycznej. ISSN 1733-3350. Nr 18 (1/2012). miliardów dolarów zysku, największe wyzwanie ludz- Redaktor naczelny: dr Andrzej Kotarba kości, która by przetrwać, musi nauczyć się żyć po- Zastępca redaktora: Waldemar Zwierzchlejski Korekta: Renata Nowak-Kotarba za Ziemią. Misją magazynu AstroNautilus jest re- lacjonowanie osiągnięć współczesnego świata w każdej Kontakt: [email protected] z tych dziedzin, przy jednoczesnym budzeniu astronau- Zachęcamy do współpracy i nadsyłania tekstów, zastrze- tycznych pasji wśród pokoleń, które jutro za stan tego gając sobie prawo do skracania i redagowania nadesłanych świata będą odpowiadać. materiałów. Przedruk materiałów tylko za zgodą Redakcji. Spis treści PW-Sat: Made in Poland! ▸ 2 Polska ma długie tradycje badań kosmicznych – polskie instrumenty w ramach najbardziej prestiżowych misji badają otoczenie Ziemi i odległych planet. Ale nigdy dotąd nie trafił na orbitę satelita w całości zbudowany w polskich labo- ratoriach. Może się nim stać PW-Sat, stworzony przez studentów Politechniki Warszawskiej. Choć przedsięwzięcie ma głównie wymiar dydaktyczny, realizuje również ciekawy eksperyment: przyspieszoną deorbitację. CubeSat, czyli mały może więcej ▸ 15 Objętość decymetra sześciennego oraz masa nie większa niż jeden kilogram. Ta- kie ograniczenia konstrukcyjne narzuca satelitom standard CubeSat. Oryginalnie opracowany z myślą o misjach studenckich (bazuje na nim polski PW-Sat), Cu- beSat zyskuje coraz większe rzesze zwolenników w sektorze komercyjnym, woj- skowym i naukowym. Sprawdźmy, czym są i co potrafią satelity niewiele większe od kostki Rubika.
    [Show full text]
  • BRITE Photometry of the Massive Post-RLOF System HD149
    A&A 621, A15 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833594 & c ESO 2018 Astrophysics BRITE photometry of the massive post-RLOF system HD 149 404? G. Rauw1, A. Pigulski2, Y. Nazé1,??, A. David-Uraz3, G. Handler4, F. Raucq1, E. Gosset1,???, A. F. J. Moffat5, C. Neiner6, H. Pablo7, A. Popowicz8, S. M. Rucinski10, G. A. Wade9, W. Weiss11, and K. Zwintz12 1 Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août, 19c, Bât B5c, 4000 Liège, Belgium e-mail: [email protected] 2 Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland 3 Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA 4 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warszawa, Poland 5 Département de Physique, Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal PQ H3C 3J7, Canada 6 LESIA, Observatoire de Paris, Place Jules Janssen, 5, 92195 Meudon, France 7 AAVSO Headquarters, 49 Bay State Rd., Cambridge, MA 02138, USA 8 Instytut Automatyki, WydziałAutomatyki Elektroniki i Informatyki, Politechnika Sl˛aska,Akademicka´ 16, 44-100 Gliwice, Poland 9 Department of Physics and Space Science, Royal Military College of Canada, PO Box 17000, Stn Forces, Kingston, Ontario K7K 7B4, Canada 10 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4, Canada 11 Institute for Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria 12 Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, 6020 Innsbruck, Austria Received 8 June 2018 / Accepted 23 October 2018 ABSTRACT Context.
    [Show full text]
  • DRAGON - 8U Nanosatellite Orbital Deployer
    DRAGON - 8U Nanosatellite Orbital Deployer Marcin Dobrowolski*, Jerzy Grygorczuk*Â ÃB_*, Marta Tokarz* and Maciej Borys* Abstract The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing. Introduction BRITE Constellation is a group of scientific nanosatellites whose purpose is to study oscillations in the light intensity of the most luminous stars (brighter than magnitude +3.5) in our galaxy. The observations will have a precision at least 10 times better than achievable using ground-based observations. The BRITE (BRight Target Explorer) mission formed by Austria, Canada and Poland will send to space a constellation of six nanosatelites, two from each country. BRITE-PL satellite is based on the Generic Nanosatellite Bus (GNB) from the Canadian SFL/UTIAS (Space Flight Laboratory / University of Toronto, Institute for Aerospace Studies). The spacecraft are to use the SFL XPOD (Experimental Push Out Deployer) as a separation system. Figure 1. DRAGON Orbital Deployer and BRITE-PL Heweliusz Spacecraft (in a safety box) * Space Research Centre of the Polish Academy of Sciences, Warsaw, Poland ! " # 487 The first scientific satellite, BRITE-PL Lem, is a modified version of the original SFL design. The second one, BRITE-PL Heweliusz, has the significant changes – it carries additional technological experiments implemented by SRC PAS.
    [Show full text]
  • Aeronáutica Y ASTRONÁUTICA NÚM
    Revista de Aeronáutica Y ASTRONÁUTICA NÚM. 835 JULIO-AGOSTO 2014 ILA 2014: el Festival Aeronáutico de Berlín El Ejército del Aire en el Tratado de Cielos Abiertos Sanciones internacionales, un recurso polifacético EL REPLIEGUE DE AFGANISTÁN UCRANIA.UCRANIA. LALA PATRIAPATRIA DIVIDIDADIVIDIDA Sumario Sumario Sumario Sumario Sumario dossier EL REPLIEGUE DE AFGANISTÁN ................................................................ 613 EL REPLIEGUE DE QALA-I-NAW (QUIN) DESDE LA BASE AÉREA DE HERAT Por FERNANDO DE LA CRUZ CARAVACA, general del Ejército del Aire ................ 614 ¿UN REPLIEGUE MÁS? Por ANTONIO ÁLVARO GONZÁLEZ, coronel del Ejército del Aire ....................... 630 EL REPLIEGUE DE LAS FUERZAS ESPAÑOLAS EN QALA-I-NAW Por MIGUEL IVORRA RUIZ, teniente coronel del Ejército del Aire........................ 642 FUNCIONAMIENTO DEL CATO (COMBINED AIR TERMINAL OPERATIONS) DE HERAT Por EDUARDO LUIS DE AGUIAR RODRÍGUEZ, capitán del Ejército del Aire ............. 656 Nuestra portada: El repliegue de Afganistán. Sanciones internacionales, un recurso polifacético REVISTA Situadas entre la amble diplomacia de salón y la categórica declaración de DE AERONÁUTICA guerra, las sanciones internacionales son un mecanismo de presión para Y ASTRONÁUTICA. limitar las acciones ilegítimas de determinados estados o regímenes. Aunque teóricamente funcionan mejor como amenaza, lo que se NÚMERO 835. ha demostrado como evidente es que son más creíbles JULIO-AGOSTO 2014 si están firmemente respaldadas por la diplomacia y la fuerza militar. artículos UCRANIA. LA PATRIA DIVIDIDA Por NATIVIDAD FERNÁNDEZ SOLA .......................................................... 592 EL EJÉRCITO DEL AIRE EN EL TRATADO DE LOS CIELOS ABIERTOS Por JULIO MAÍZ SANZ ......................................................................... 600 DE AVIONES Y DE LÁPICES Por DIEGO CARRAL SÁNCHEZ, capitán del Ejército del Aire...................... 610 ILA 2014. EL FESTIVAL AERONÁUTICO DE BERLÍN Por JOSÉ RAMÓN ASENSI MIRALLES, teniente coronel del Ejército del Aire......
    [Show full text]
  • M. Sc. Dissertation
    Gda´nsk University of Technology Faculty of Electronics, Telecommunications and Informatics Department: Katedra System´owGeoinformatycznych Author: Tomasz Mrugalski Studies type: M. Sc. Studies M. Sc. Dissertation Dissertation topic: Trajectory determination and orbital maneuvers in Earth vicinity Polish title: Wyznaczanie trajektorii i manewry orbitalne w otoczeniu Ziemi Supervisor: prof. dr hab. in_z. Cezary Specht Technical Supervisor: dr in_z. Mariusz Specht Gda´nsk, 2020-09-27 Contents 1. Introduction 2 1.1. Astrodynamics.....................................................2 1.2. Thesis overview and goals...............................................2 1.3. History of orbital mechanics..............................................3 1.3.1. Antiquity....................................................3 1.3.2. Middle Ages..................................................4 1.3.3. Age of Experiments..............................................5 1.4. Orbital elements....................................................6 1.5. Orbit classification by shape.............................................. 12 1.6. Orbit classification by altitude............................................ 12 1.7. Orbit classification by inclination........................................... 13 1.8. Special purpose orbits................................................. 14 1.9. Lagrangian points and exotic orbits.......................................... 15 1.10. Reference systems................................................... 16 1.11. Popular orbital notations..............................................
    [Show full text]
  • WALLONIE ESPACE INFOS N 44 Mai-Juin 2009
    WALLONIE ESPACE INFOS n°90 janvier-février 2017 WALLONIE ESPACE INFOS n°90 janvier-février 2017 Coordonnées de l’association des acteurs du spatial wallon Wallonie Espace WSL, Liege Science Park, Rue des Chasseurs Ardennais, B-4301 Angleur-Liège, Belgique Tel. 32 (0)4 3729329 Skywin Aerospace Cluster of Wallonia Chemin du Stockoy, 3, B-1300 Wavre, Belgique Contact: Michel Stassart, e-mail: [email protected] Le présent bulletin d’infos en format pdf est disponible sur le site de Wallonie Espace (www.wallonie-espace.be), sur le portal de l’Euro Space Center/Belgium, sur le site du pôle Skywin (http://www.skywin.be). SOMMAIRE : Thèmes : articles Mentions Wallonie Espace Page Actualité : Touristes d’un périple lunaire - Agence spatiale belge (ISAB) 2 1. Politique spatiale/EU + ESA : quid de l’Europe de l’espace ? - L’ESA Skywin, WSL 3 boostée par Galileo et Copernicus - Objectifs pour la France spatiale - Moyens en hausse pour le CNES – Texas, Etat spatial - Agence spatiale grecque ! – Mode des constellations 2. Accès à l'espace/Arianespace : Arianespace en pleine forme – Sonaca 16 Demande urgente d’Airbus Safran Launchers – SpaceX aux prises avec ses lancements – Systèmes chinois de transport spatial – Le business mondial pour l’accès à l’orbite GEO – Lanceurs spatiaux indiens – Echec d’un nano-lanceur nippon – H3 au Japon pour 2020 3. Télédétection/GMES : Idées pour prochains Sentinel - Projet Skywin Spacebel, I-mage, Skywin 26 EO Regions ! – Systèmes spatiaux d’observation en Europe 4. Télécommunications/télévision : Premier SmallGEO en orbite – Redu Space Services, Centre 30 Yahsat et Thuraya à l’heure globale – Systèmes spatiaux de ESA de Redu WEI n°90 2017-01 - 1 WALLONIE ESPACE INFOS n°90 janvier-février 2017 télécommunications en Europe 5.
    [Show full text]
  • Fotometrické a Spektroskopické Charakteristiky Červeného Veleobra Betelgeuse Bakalářská Práce Daniel Jadlovský
    MASARYKOVA UNIVERZITA Pøírodovìdecká fakulta Ústav teoretické fyziky a astrofyziky Bakalářská práce Brno 2021 Daniel Jadlovský Pøírodovìdecká fakulta Ústav teoretické fyziky a astrofyziky Fotometrické a spektroskopické charakteristiky červeného veleobra Betelgeuse Bakalářská práce Daniel Jadlovský Vedoucí práce: prof. Mgr. Jiří Krtička, Ph.D. Brno 2021 Bibliograficky´za´znam Autor: Daniel Jadlovsky´ Prˇı´rodoveˇdecka´fakulta, Masarykova univerzita U´ stav teoreticke´fyziky a astrofyziky Na´zev pra´ce: Fotometricke´a spektroskopicke´charakteristiky cˇervene´ho veleo- bra Betelgeuse Studijnı´program: PrˇFB-FY Fyzika Studijnı´obor: PrˇFASTR Astrofyzika Vedoucı´pra´ce: prof. Mgr. Jirˇı´Krticˇka, Ph.D. Akademicky´rok: 2020/2021 Pocˇet stran: viii + 71 Klı´cˇova´slova: Betelgeuse; cˇervenı´veleobrˇi;radia´lnı´rychlost; fotometrie; spek- troskopie; hveˇzdna´pulzace Bibliographic Entry Author: Daniel Jadlovsky´ Faculty of Science, Masaryk University Department of Theoretical Physics and Astrophysics Title of Thesis: Photometric and spectroscopic characteristics of red supergiant Betelgeuse Degree Programme: PrˇFB-FY Physics Field of Study: PrˇFASTR Astrophysics Supervisor: prof. Mgr. Jirˇı´Krticˇka, Ph.D. Academic Year: 2020/2021 Number of Pages: viii + 71 Keywords: Betelgeuse; red supergiants; radial velocity; photometry; spec- troscopy; stellar pulsations Abstrakt Betelgeuse je pulzujı´cı´cˇerveny´veleobr, jehozˇjasnost se nepravidelneˇmeˇnı´a v u´noru 2020 dosa´hla historicke´ho minima. Cı´lem te´to pra´ce je charakterizovat promeˇnnost Betel- geuse na za´kladeˇdostupny´ch archivnı´ch dat a studium mozˇny´ch prˇı´cˇin promeˇnnosti. Pro spektra´lnı´ charakterizaci bylo pouzˇito velke´ mnozˇstvı´ spekter z ultrafialove´ a opticke´ oblasti. Spektra byla vyuzˇita zejme´na pro urcˇenı´radia´lnı´ch rychlostı´a jejich dlouhodobe´ho vy´voje v obou oblastech. Bylo take´ vyuzˇito velke´ho mnozˇstvı´ fotometricky´ch dat v ru˚zny´ch filtrech k vytvorˇenı´sveˇtelne´krˇivkya urcˇenı´period jejı´ch zmeˇn.
    [Show full text]
  • Last Month's Newsletter
    WESTCHESTER AMATEUR ASTRONOMERS May 2015 An Interesting Galaxy Olivier Prache captured this image of M106, a spiral galaxy in In This Issue . Canes Venatici (almost 8 hours of exposure with an ML16803 pg. 2 Events For May camera and the Hyperion 12.5” astrograph, processed with pg. 3 Astrophotography Exhibition ccdstack and Pixinsight). pg. 4 Almanac About 23 million light years away, M106 harbors a huge black pg. 5 Strange Brew hole in its center. The black hole generates massive shock waves that roil the galaxy as well as provide an impressive display in the X-ray spectrum. See Chandra X-ray observatory images. SERVING THE ASTRONOMY COMMUNITY SINCE 1986 1 WESTCHESTER AMATEUR ASTRONOMERS May 2015 Events for May 2015 WAA April Lecture Jimmy Gondek and Jennifer Jukich - Jefferson Valley “How Rare Are Earth-like Planets?” Jeffrey Jacobs - Rye Friday May 1st, 7:30pm John & Maryann Fusco - Yonkers Lienhard Lecture Hall, Lori Wood - Yonkers Pace University, Pleasantville, NY James Peale – Bronxville The NASA Kepler mission has increased vastly the number of planets we know about around other stars. Dr. David Hogg will review how planets are discov- WAA Apparel ered in this data set, how they are understood physi- Charlie Gibson will be bringing WAA apparel for cally, and how it is possible to make inferences about sale to WAA meetings. Items include: the full population of planets in the Galaxy. Some of Caps and Tee Shirts ($10) the key questions revolve around the formation of Short Sleeve Polos ($12) planetary systems and the typicality of the Earth and Hoodies ($20) our Solar System.
    [Show full text]
  • Astroexpress 28
    Astroexpress 28 Waldemar Zwierzchlejski Częstochowa, 29.05.2015 Inne wydarzenia grudzień 2013-maj 2015 Waldemar Zwierzchlejski Częstochowa, 29.05.2015 Grudzień 2013 • 19 – Kourou, Sojuz-STB/Fregat-MT, Gaia • 20 – Xichang, CZ-3B/E, Túpac Katari (Boliwia) • 25 – Plesieck, Rokot/Briz-KM, Kosmos 2488-2491 • 26 – Bajkonur, Proton-M/Briz-M, Ekspress-AM5 • 28 – Plesieck, Sojuz-2.1w/Wołga, Aist-1, 2×SKRL- 756 Gaia - satelita astro- i fotometryczny ESA; - pomiar pozycji 3D i jasności miliarda gwiazd Galaktyki o jasności do 20 mag; - 2 teleskopy 1,4×0,5m, 106 CCD 4500x1966 pix.; - orbita Lissajous wokół L2 Słońce-Ziemia; - cena: 650 mln USD. Sojuz-STB/Fregat-MT Gaia Rokot/Briz-KM i Strieła-3M/Rodnik-S Kosmos 2491 ? Sojuz-2.1w/Wołga Sojuz-2.1w/Wołga Sojuz-2.1w/Wołga Styczeń 2014 • 05 – Sriharikota, GSLV Mk II, Gsat-14 • 06 – Canaveral, Falcon 9 v1.1, Thaicom-6 • 09 – Wallops, Antares-120, Cygnus-1 • 24 – Canaveral, Atlas-5, TDRS-12 GSLV, Gsat-14 Falcon-9 v1.1, Thaicom-6 Antares, Cygnus Atlas-5/401, TDRS-12 Luty 2014 • 05 – Bajkonur, Sojuz-U, Progress M-22M • 06 – Kourou, Ariane-5ECA, ABS-2, Athena-Fidus • 14 – Bajkonur, Proton-M/Briz-M, Türksat 4A • 21 – Canaveral, Delta-4M+(4,2), Navstar-2F F5 • 27 – Tanegashima, H-2A/202, GPM-C Ariane-5, Athena-Fidus Athena-Fidus Access on theatres for European allied forces nations French Italian dual use satellite Proton-M/Briz-M, Türksat 4A Delta-4M+(4,2), Navstar-2F F5 H-2A/202, GPM-C GPN-C Global Precipitation Measurement - Core Marzec 2014 • 15 – Bajkonur, Proton-M/Briz-M, Ekspress-AT1, 2 • 22 – Kourou, Ariane-5ECA,
    [Show full text]
  • BRITE Constellation- 5 Years of Successful Science Operations
    08/02/2018 BRITE Constellation- 5 Years of Successful Science Operations O. Koudelka, R.Kuschnig, M.Wenger, P.Romano Graz University of Technology K.Zwintz W.Weiss University of Innsbruck University of Vienna Contents • Introduction • Scientific goals of BRITE Constellation • BRITE Characteristics • Scientific Results • Summary and Outlook 1 08/02/2018 BRITE – BRight Target Explorer World‘s first nanosatellite constellation dedicated to asteroseismology TUGSAT‐1 / BRITE‐A Bab 2013‐02‐25 100.36 blue UniBRITE UBr 2013‐02‐25 100.37 red 3 countries –5 (6) satellites – ONE MISSION Launch TUGSAT-1/BRITE-Austria and UniBRITE were launched by PSLV-C20 of ISRO/ANTRIX on 25 February 2013 from the Satish Dhawan Space Centre in Sriharikota Sun-synchonous LEO orbit Courtesy: ISRO 2 08/02/2018 Scientific Goals • Measurement of brightness and temperature variations of massive luminous stars (brighter than visual magnitude 4) • Observations: 6 months typ. • High duty cycle • 2-colour (blue and red): satellites operate in pairs •24°field of view Raster Photometry High pointing accuracy required: 1 arcminute 3 08/02/2018 TUGSAT-1/BRITE-Austria Flight Model magnetometer S-band antenna solar cells Generic Nanosatellite Bus telescope by star tracker BRITE Characteristics • Nanosatellite: 20 x 20 x 20 cm • Mass: 7 kg • Electrical power: 6…11 W • Transmit power: 0.5 W • Frequency bands: S-band downlink / UHF uplink • Data rates: 32…256 kbit/s downlink, 9.6 kbit/s uplink • Pointing accuracy: 1 arcmin. • Science data volume: 18…40 MB / day per satellite 4 08/02/2018
    [Show full text]
  • Vom 30.05.2014
    Von Jürgen Esders 30.05.2014 INTERNATIONALE RAUMSTATION Soyuz TMA-13M mit der Mannschaft Surayev, Wiseman und Gerst ist am 28.5.14 pünktlich um 19h57 UTC zur Internationalen Raumstation gestartet. Bereits 5 Stunden und 47 Minuten später koppelte die Crew am Razvet-Modul an. Nächste Progress-Mission ist Progress M-24M am 24.7.14. Weiterer Start: 29.10. Die dritte kommerzielle Cygnus-Kapsel Orb-2 soll auf NASA-Wunsch erst am 10. Juni auf einer Antares-Rakete gestartet werden. Insgesamt hat die NASA bis 2015 8 Flüge gebucht. Der darauf folgende Start - Orb 3 - folgt am 3.10.14. Orb-4 folgt am 8.1.15. Die Crew von Soyuz TMA-12M - Skvortsov, Artemyev, Swanson - soll am 16.9.14 wieder auf der Erde landen. Nächste bemannte Mission zur ISS ist Soyuz TMA-14M am 30.9.14. Crew: Aleksandar Samokutayev, Yelena Serova, Barry E. Wilmore. Soyuz TMA-15M wird der letzte Taxi-Flug im Jahr 2014 sein: 1.12.14. Crew: Shkaplerov, Cristoforetti, Virts. HTV-5, das fünfte japanische Frachtraumschiff, soll nun erst am 1.2.15 von Tanegashima aus auf einer H-2B zur Internationalen Raumstation starten. RUSSISCHE RAUMFAHRT Eutelsat 3B, europäischer Kommunikationssatellit, ist am 27. Mai 2014 um 21H09 UTC auf einer Zenith 3SL von der Odyssee-Plattform vor der kalifornischen Küste gestartet worden. Der Start einer Foton M4-Rückkehrkapsel soll nun am 17.7.14 stattfinden. Rakete: Sojus-Rakete vom Kosmodrom Baikonur. Astra 2G, privater Fernsehsatellit aus Luxembourg, wird nicht vor September 2014 auf einer Proton Breeze M im Kosmodrom Baikonur starten. EUROPÄISCHE RAUMFAHRT Ariane VA218 mit Measat 3B, einem TV-Satelliten für Malaysia, und Optus B, ein Fernsehsatellit für Australien und Neuseeland, verschiebt sich weiter über den 6.6.14 hinaus.
    [Show full text]