Progress on Developing Australia's National Plan of Action For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extinction Risk and Conservation of the World's Sharks and Rays
RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation -
AC30 Doc. 20 A1
AC30 Doc. 20 Annex 1 (in the original language / dans la langue d’origine / en el idioma original) Responses to Notification to the Parties No 2018/041 Table of Contents Australia 2 China 14 Colombia 16 European Union 18 Indonesia 22 Mexico 52 New Zealand 56 Peru 59 Philippines 65 United States of America 67 Uruguay 116 Florida International University 121 The Pew Charitable Trusts 123 Wildlife Conservation Society 125 Notification 2018/041 Request for new information on shark and ray conservation and management activities, including legislation Australia is pleased to provide the following response to Notification 2018/041 ‘Request for new information on shark and ray conservation and management activities, including legislation’. This document is an update of the information submitted in 2017 in response to Notification 2017/031. The Australian Government is committed to the sustainable use of fisheries resources and the conservation of marine ecosystems and biodiversity. In particular, we are committed to the conservation of shark species in Australian waters and on the high seas. The Australian Government manages some fisheries directly, others are managed by state and territory governments. The Australian Government also regulates the export of commercially harvested marine species. Australia cooperates internationally to protect sharks by implementing our Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) obligations, and by working with regional fisheries management organisations on the management of internationally straddling and highly migratory stocks. For more information on Australia’s fisheries management and international cooperation see the Australian Government Department of the Environment and Energy’s fisheries webpages at http://www.environment.gov.au/marine/fisheries. -
Sawfish and River Sharks Multispecies Recovery Plan
Sawfish and River Sharks Multispecies Recovery Plan 2015 The issues paper linked to this plan is obtainable from: http://www.environment.gov.au/resource/recovery-plan-sawfish-and-river-sharks © Copyright Commonwealth of Australia 2015 Sawfish and River Sharks Multispecies Recovery Plan is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/. This report should be attributed as ‘Sawfish and River Sharks Multispecies Recovery Plan, Commonwealth of Australia 2015’. The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. Image Credits Front Cover: Largetooth sawfish (Pristis pristis) in the Daly River (© Copyright, Richard Pillans). Back Cover: Green sawfish (Pristis zijsron) juvenile from Pilbara (© Copyright, Richard Pillans). -
A Practical Key for the Identification of Large Fish Rostra 145-160 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; Download
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2015 Band/Volume: 038 Autor(en)/Author(s): Lange Tabea, Brehm Julian, Moritz Timo Artikel/Article: A practical key for the identification of large fish rostra 145-160 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 38 1 145-160 München, August 2015 ISSN 0341-8391 A practical key for the identification of large fish rostra (Pisces) Tabea Lange, Julian Brehm & Timo Moritz Lange, T., Brehm, J. & Moritz, T. 2015. A practical key for the identification of large fish rostra (Pisces). Spixiana 38 (1): 145-160. Large fish rostra without data of origin or determination are present in many museum collections or may appear in customs inspections. In recent years the inclu- sion of fish species on national and international lists for the protection of wildlife resulted in increased trading regulations. Therefore, useful identification tools are of growing importance. Here, we present a practical key for large fish rostra for the families Pristidae, Pristiophoridae, Xiphiidae and Istiophoridae. This key allows determination on species level for three of four families. Descriptions of the rostrum characteristics of the respective taxa are given. Tabea Lange, Lindenallee 38, 18437 Stralsund Julian Brehm, Königsallee 5, 95448 Bayreuth Timo Moritz, Deutsches Meeresmuseum, Katharinenberg 14-20, 18439 Stralsund; e-mail: [email protected] Introduction Polyodon spathula is equipped with a spoon-like rostrum which is used as an electrosensory organ Rostra are found in many fish species and can for locating plankton in water columns (Wilkens & be used for hunting (Wueringer et al. -
Northern River Shark, Glyphis Garricki
Published Date: 1 March 2019 Northern River Shark, Glyphis garricki Report Card Depleted assessment IUCN Red List IUCN Red List Australian Refer to Global Assessment Global Critically Endangered Assessment Assessment Assessors Pogonoski, J. & Pollard, D. Report Card Remarks Rare species with possibly very few mature individuals remaining Summary The Northern River Shark is a rare species found in northern Australia and Papua New Guinea. It is suggested that fewer than 250 mature individuals exist. It is threatened by fishing pressure and is presumably taken as bycatch in commercial and recreational fisheries. Habitat Source: White et al. 2015. License: CC By degradation is another likely Attribution. threat due to its coastal and estuarine distribution. It is listed as Endangered on the Environment Protection Biodiversity Conservation Act 1999 list of threatened species and hence protected under Commonwealth law. A recovery plan has been developed. Until abundance can be proven to be greater than suspected levels, it is assessed as Critically Endangered (IUCN) and in Australia, Overfished (SAFS). Distribution The distribution of the Northern River Shark is uncertain. It occurs in marine, freshwater and estuarine habitats and is known to occur in several areas in Western Australia (Ord and King Rivers, King Sound and Joseph Bonaparte Gulf) and Northern Territory (South and East Alligator Rivers and Wessel islands) (Last and Stevens 2009). It has been confirmed as occurring in Papua New Guinea with the finding of two individuals in the coastal marine waters of the Daru region (White et al. 2015). This was the first confirmed record of this species in Papua New Guinea since the 1970s (White et al. -
Chondrichthyan Bycatch: Risk Assessment, Spatiotemporal Trends and Contributions to Management
CHONDRICHTHYAN BYCATCH: RISK ASSESSMENT, SPATIOTEMPORAL TRENDS AND CONTRIBUTIONS TO MANAGEMENT MARCELO REIS A thesis submitted in fulfilment for the requirements for the degree of Doctor in Philosophy at the University of Sydney School of Life and Environmental Sciences Coastal and Marine Ecosystems Group Sydney, Australia August 2018 Attribution of authorship for published and collaborative work contained in this thesis The work contained in the body of this thesis, except otherwise acknowledged, is the result of my own investigations. For the four data chapters, I led and undertook the following: study design, field organization, data analysis, and writing of thesis chapters. - Chapter 2 and Chapter 3: I wrote these studies entirely and conducted the analyses based on the database built upon individual fishing logbooks provided by the Australian Fisheries Management Authority – AFMA. The study was designed by me in collaboration with the Co- Author Dr. Will Figueira. - Chapter 4 and Chapter 5: Sample collection was made by the Department of Primary Industries, New South Wales – DPI Fisheries Observer Program under the Animal Research Authority permission ACEC Ref 16/02 provided by the Primary Industries (Fisheries) Animal Care & Ethics Committee. The study was designed by me in collaboration with the Co-Author Dr. Will Figueira. Samples processing and collection of data as well data analyses writing of the study were conducted by me. Marcelo Reis Signature: Date: 23/08/2018 Table of Contents List of Tables ......................................................................................................................................... -
Angel Shark Squatina Squatina in the Northeast Atlantic.Pdf
CMS/Sharks/MOS3/Inf.23 ICES WGEF REPORT 2018 | i Contents 22 Angel shark Squatina squatina in the Northeast Atlantic ................................. 631 22.1 Stock distribution .............................................................................................. 631 22.2 The fishery ......................................................................................................... 631 22.2.1 History of the fishery ........................................................................... 631 22.2.2 The fishery in 2017 ............................................................................... 631 22.2.3 ICES Advice applicable ....................................................................... 631 22.2.4 Management applicable ...................................................................... 632 22.3 Catch data .......................................................................................................... 632 22.3.1 Landings ................................................................................................ 632 22.3.2 Discards ................................................................................................. 632 22.3.3 Quality of catch data............................................................................ 633 22.3.4 Discard survival ................................................................................... 633 22.4 Commercial catch composition ....................................................................... 633 22.5 Commercial catch and effort -
Complete Mitochondrial DNA Genome of Bonnethead Shark, Sphyrna Tiburo, and Phylogenetic Relationships Among Main Superorders of Modern Elasmobranchs
Meta Gene 7 (2016) 48–55 Contents lists available at ScienceDirect Meta Gene journal homepage: www.elsevier.com/locate/mgene Complete mitochondrial DNA genome of bonnethead shark, Sphyrna tiburo, and phylogenetic relationships among main superorders of modern elasmobranchs Píndaro Díaz-Jaimes a,⁎, Natalia J. Bayona-Vásquez a, Douglas H. Adams b, Manuel Uribe-Alcocer a a Laboratorio de Genética de Organismos Acuáticos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apdo. Postal 70-305, México D.F. 04510, Mexico b Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 1220 Prospect Avenue, Suite 285, Melbourne, FL 32901, USA article info abstract Article history: Elasmobranchs are one of the most diverse groups in the marine realm represented by 18 orders, 55 families and Received 2 September 2015 about 1200 species reported, but also one of the most vulnerable to exploitation and to climate change. Phyloge- Revised 18 November 2015 netic relationships among main orders have been controversial since the emergence of the Hypnosqualean Accepted 19 November 2015 hypothesis by Shirai (1992) that considered batoids as a sister group of sharks. The use of the complete Available online 24 November 2015 mitochondrial DNA (mtDNA) may shed light to further validate this hypothesis by increasing the number of Keywords: informative characters. We report the mtDNA genome of the bonnethead shark Sphyrna tiburo, and compare it Bonnethead with mitogenomes of other 48 species to assess phylogenetic relationships. The mtDNA genome of S. tiburo,is Mitogenome quite similar in size to that of congeneric species but also similar to the reported mtDNA genome of other Phylogeny Carcharhinidae species. -
Diet of the Australian Sea Lion (Neophoca Cinerea): an Assessment of Novel DNA-Based and Contemporary Methods to Determine Prey Consumption
Diet of the Australian sea lion (Neophoca cinerea): an assessment of novel DNA-based and contemporary methods to determine prey consumption Kristian John Peters BSc (hons), LaTrobe University, Victoria Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Adelaide (October, 2016) 2 DECLARATION OF ORIGINALITY I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. -
Identifying Sharks and Rays
NSW DPI Identifying sharks and rays A guide for NSW commercial fishers Important If a shark or ray cannot be confidently identified using this guide, it is recommended that either digital images are obtained or the specimen is preserved. Please contact NSW DPI research staff for assistance: phone 1300 550 474 or email [email protected] Contents Introduction 4 How to use this guide 5 Glossary 6-7 Key 1 Whaler sharks and other sharks of similar appearance 8-9 to whalers – upper precaudal pit present Key 2 Sharks of similar appearance to whaler sharks – no 10 precaudal pit Key 3 Mackerel (great white and mako), hammerhead and 11 thresher sharks Key 4 Wobbegongs and some other patterned 12 bottom-dwelling sharks Key 5 Sawsharks and other long-snouted sharks and rays 13 2 Sandbar shark 14 Great white shark 42 Bignose shark 15 Porbeagle 43 Dusky whaler 16 Shortfin mako 44 Silky shark 17 Longfin mako 45 Oceanic whitetip shark 18 Thresher shark 46 Tiger shark 19 Pelagic thresher 47 Common blacktip shark 20 Bigeye thresher 48 Spinner shark 21 Great hammerhead 49 Blue shark 22 Scalloped hammerhead 50 Sliteye shark 23 Smooth hammerhead 51 Bull shark 24 Eastern angelshark 52 Bronze whaler 25 Australian angelshark 53 Weasel shark 26 Banded wobbegong 54 Lemon shark 27 Ornate wobbegong 55 Grey nurse shark 28 Spotted wobbegong 56 Sandtiger (Herbst’s nurse) shark 29 Draughtboard shark 57 Bluntnose sixgill shark 30 Saddled swellshark 58 Bigeye sixgill shark 31 Whitefin swellshark 59 Broadnose shark 32 Port Jackson shark 60 Sharpnose sevengill -
(Speartooth Shark) Approved Conservation Advice Page 1 of 7 This Conservation Advice Was Approved by the Delegate of the Minister on 11 April 2014
This Conservation Advice was approved by the Delegate of the Minister on 11 April 2014 Approved Conservation Advice for Glyphis glyphis (speartooth shark) (s266B of the Environment Protection and Biodiversity Conservation Act 1999) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing and draft plans, records or management prescriptions for this species. Description Glyphis glyphis (speartooth shark), family Carcharhinidae, also known as Bizant river shark and Queensland river shark, is a medium-sized whaler shark characterised by a short snout, broadly rounded in dorsoventral view, bluntly pointed in lateral view; tall second dorsal fin, height 67–76% of first dorsal-fin; 26-29 triangular, blade-like upper teeth and 27-29 tall narrow lower teeth. It has a slate greyish coloration dorsally and is abruptly white below, with tonal junction extending just below the eyes and a total vertebrae count of 213–222 (Last & Stevens, 2009; Compagno et al., 2008). Based on limited data, speartooth sharks are approximately 50-60 cm at birth and are believed to grow to over 2 m when mature (Stevens et al., 2005; Pillans et al., 2008). Conservation Status Speartooth sharks (Glyphis glyphis) are listed as critically endangered under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). The species is eligible for listing as critically endangered as it satisfies criterion 2 (geographic distribution), 3 (population size and decline in numbers or distribution) and 4 (population size) of the eligibility criteria (TSSC, 2001). The species was listed as critically endangered in 2001 based on its limited geographic distribution and the estimated total number of mature individuals being extremely low and likely to continue to decline (TSSC, 2001). -
Rapid Assessment of Sustainability for Ecological Risk of Shark and Other
Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett Project No. 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross K. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and William C. Hamlett July 2008 Project Number 2002/033 Rapid assessment of sustainability for ecological risk of shark and other chondrichthyan bycatch species taken in the Southern and Eastern Scalefish and Shark Fishery FRDC Report 2002/033 Terence I. Walker, John D. Stevens, J. Matias Braccini, Ross J. Daley, Charlie Huveneers, Sarah B. Irvine, Justin D. Bell, Javier Tovar‐ Ávila, Fabian I. Trinnie, David T. Phillips, Michelle A. Treloar, Cynthia A. Awruck, Anne S. Gason, John Salini, and Hamlett, W. C. Published by Department of Primary Industries, Fisheries Research Brand, Queenscliff, Victoria, 3225. © Fisheries Research and Development Corporation, and Fisheries Victoria. 2008 This work is copyright. Except as permitted under the Copyright Act 1968 (Cth), no part of this publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owners.