Trophic Ecology of Euryhaline and Coastal Elasmobranchs in Northern Australia

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Ecology of Euryhaline and Coastal Elasmobranchs in Northern Australia Trophic ecology of euryhaline and coastal elasmobranchs in northern Australia Sharon Louise Every A thesis submitted for the degree of Doctor of Philosophy at Charles Darwin University and The Australian National University 12th of May 2017 © Copyright by Sharon Louise Every All Rights Reserved Plate 1 South Alligator River 2014 ii Plate 2 Speartooth Shark Glyphis glyphis Declaration by Author This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the Libraries of my two Universities, being made available for loan and photocopying online via the Universities open access repositories. I have received copyright permissions from the Journal of Experimental Marine Biology and Ecology and Marine Ecology Progress Series to use my publications in this thesis. Sharon Every 12th of May 2017 iii Acknowledgements Thank you to the Bininj and Mungguy people for allowing me to conduct this research on their traditional country. I would like to thank my principal supervisor, Associate Professor David Crook who guided the formation of key ecological questions, provided expertise in aquatic and fish ecology, kept me on track and provided critical support and guidance throughout my candidature. Also to my co-supervisors; Associate Professor Christopher Fulton who helped direct me to consider key areas of ecological theory, and what general philosophy I was trying to address in this thesis as well as statistical assistance and ensuring that my writing was succinct, Dr. Heidi Pethybridge for her guidance within the laboratory and introducing me to biotracer techniques, Dr. Peter Kyne for teaching me fieldwork practice, and the ecology and biology of elasmobranchs. I thank all my supervisors for the timely feedback, encouragement and assistance. Thanks must also go to Professor Karen Edyvane and Dr. Emile Ens for assisting at the beginning of my PhD. Thank you to Dr. David Parry who accepted my scholarship to North Australia Marine Research Association, then to Dr. Edward Butler, the current director of NAMRA who has assisted and mentored me throughout my PhD candidature. By being a part of NAMRA I was fortunate to be made welcome as a part of the Australian Institute of Marine Science (AIMS) and the Arafura Timor Research Facility. I thank all my colleagues, particularly Dr. Claire Streten for providing invaluable advice and feedback. iv To Dr. Thor Saunders and Northern Territory Fisheries for their expertise and equipment, particularly to Grant Johnson for assisting in the field and his guidance in the collection of elasmobranchs. I also appreciate all the people that assisted in the field including Mark Grubert, Duncan Buckle, Roy Tipagola, Kirsty McAllister and Crew of Solander RV, Dominic Valdez and Francisco Zillamarin and volunteers. I thank the Commonwealth Scientific Industrial Research Organization (CSIRO) for allowing me the use of Dr. Peter Nichols lipid laboratories. Dr. Nichols also provided invaluable assistance with lipid analysis along with Dr. Peter Mansuer. I also wish to thank my relatives for allowing me to stay in their homes in Hobart whilst working at CSIRO. I would like to thank my late father Capt. Mark Every and mother Lesley who sparked and encouraged my interested in marine life by taking my brother and I snorkelling and diving and allowing us free rein at the beach to explore rock pools. I also thank my mother for her continuous support throughout my PhD candidature. v Table of Contents Declaration by author ......................................................................................... iii Acknowledgements ......................................................................................... iv Table of Contents ............................................................................................... vi Abbreviations .................................................................................................... viii List of Figures ......................................................................................................xi List of Tables ...................................................................................................... xiii Abstract ............................................................................................................ 1 1 General Introduction ...................................................................................... 3 1.1 Trophic ecology ....................................................................................................................................3 1.1.1 Food webs............................................................................................................................................... 3 1.2 Trophic cascades and keystone species .....................................................................................5 1.3 Ecological Niche....................................................................................................................................6 1.4 Trophic ecology of cartilaginous fishes ......................................................................................8 1.5 Trophic specialisation ..................................................................................................................... 10 1.6 Measuring trophic niche and resource overlap ................................................................... 12 1.6.1 Stable carbon and nitrogen isotopes as trophic indicators .......................................... 13 1.6.2 Stable isotope analysis of elasmobranchs ............................................................................. 15 1.6.3 Fatty acids as food web tracers ................................................................................................. 17 1.6.4 Fatty acids in elasmobranchs ..................................................................................................... 19 1.7 Study Site: South Alligator River ................................................................................................ 20 1.8 Thesis Outline & Aims ..................................................................................................................... 28 2 Comparison of fin and muscle tissues for analysis of signature fatty acids in tropical euryhaline sharks .................................................................................. 32 2.1 Abstract ................................................................................................................................................. 33 2.2 Introduction ........................................................................................................................................ 34 2.3 Methods ................................................................................................................................................ 36 2.3.1 Ethics statement ............................................................................................................................... 36 2.3.2 Tissue sampling and preparation ............................................................................................. 37 2.1.1 Lipid and fatty acid extraction ................................................................................................... 38 2.3.3 Statistical analyses .......................................................................................................................... 39 2.4 Results ................................................................................................................................................... 40 2.4.1 Intraspecific tissue differences ................................................................................................... 42 2.4.2 Interspecific differences ................................................................................................................. 48 2.5 Discussion ............................................................................................................................................ 50 2.6 Conclusion ........................................................................................................................................... 55 2.7 Acknowledgments ............................................................................................................................ 57 3 Niche metrics suggest euryhaline and coastal elasmobranchs provide trophic connections among marine and freshwater biomes in northern Australia .......... 58 3.1 Abstract ................................................................................................................................................. 59 3.2 Introduction ........................................................................................................................................ 60 3.3 Methods ................................................................................................................................................ 64 3.3.1 Site description, sample collection and preparation ....................................................... 64 3.3.2 Stable isotopes ..................................................................................................................................
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Feeding Activities of Two Euryhaline Small-Sized Fish in a Western Baltic Brackish Fjord
    HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgolander Meeresunters. 45,287-300 (1991) Feeding activities of two euryhaline small-sized fish in a western Baltic brackish fjord Birgit Antholz, Wolfgang Meyer-Antholz & C. Dieter Zander Zoologisches Institut und Zoologisches Museum der Universit~t Hamburg; Martin-Luther-King-Platz 3, D-W-2000 Hamburg 13, Federal Repubfic of Germany ABSTRACT: The daily food intake and feeding activities of the common goby Pomatoschistus microps (Kroyer) and the nine-spined stickleback Pungitius pungitius (L.) were investigated in the brackish Schlei fjord. At the investigation site of Olpenitz, salinities varied between 11 and 15 %o, and water temperatures between 5 and 18 ~ during the period of in-situ experiments in 1981 and 1982. Common gobies sometimes attained a density of more than 100 individuals per square metre, nine-spined sticklebacks as much as 18 individuals per square meter. Their food changed depend- ing on the supply of plankton or benthos. Regarding numbers, their food consisted mainly of harpacticoids, in springtimes of calanoids; with regard to weight, amphipods, polychaetes or chironomid larvae often prevailed. The total food ingestion, measured by means of its relation to fish weights (fullness index), was highest in spring and summer: 2.3 % in P. microps and 2.6 % in P. pungitius. Low fullness indices of 0.8 % in P. microps and 0.3 % in P. pungitius were found during times of low water temperatures. 24-h field investigations revealed that the adult P. microps presented clear diurnal rhythms with highest fullness indices after dawn and a further maximum at dusk. Only young gobies ingested some benthos at night.
    [Show full text]
  • Species Bathytoshia Brevicaudata (Hutton, 1875)
    FAMILY Dasyatidae Jordan & Gilbert, 1879 - stingrays SUBFAMILY Dasyatinae Jordan & Gilbert, 1879 - stingrays [=Trygonini, Dasybatidae, Dasybatidae G, Brachiopteridae] GENUS Bathytoshia Whitley, 1933 - stingrays Species Bathytoshia brevicaudata (Hutton, 1875) - shorttail stingray, smooth stingray Species Bathytoshia centroura (Mitchill, 1815) - roughtail stingray Species Bathytoshia lata (Garman, 1880) - brown stingray Species Bathytoshia multispinosa (Tokarev, in Linbergh & Legheza, 1959) - Japanese bathytoshia ray GENUS Dasyatis Rafinesque, 1810 - stingrays Species Dasyatis chrysonota (Smith, 1828) - blue stingray Species Dasyatis hastata (DeKay, 1842) - roughtail stingray Species Dasyatis hypostigma Santos & Carvalho, 2004 - groovebelly stingray Species Dasyatis marmorata (Steindachner, 1892) - marbled stingray Species Dasyatis pastinaca (Linnaeus, 1758) - common stingray Species Dasyatis tortonesei Capapé, 1975 - Tortonese's stingray GENUS Hemitrygon Muller & Henle, 1838 - stingrays Species Hemitrygon akajei (Muller & Henle, 1841) - red stingray Species Hemitrygon bennettii (Muller & Henle, 1841) - Bennett's stingray Species Hemitrygon fluviorum (Ogilby, 1908) - estuary stingray Species Hemitrygon izuensis (Nishida & Nakaya, 1988) - Izu stingray Species Hemitrygon laevigata (Chu, 1960) - Yantai stingray Species Hemitrygon laosensis (Roberts & Karnasuta, 1987) - Mekong freshwater stingray Species Hemitrygon longicauda (Last & White, 2013) - Merauke stingray Species Hemitrygon navarrae (Steindachner, 1892) - blackish stingray Species
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Chondrichthyes: Dasyatidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F.
    [Show full text]
  • ENVIRONMENTAL STUDIES Vol
    PURARI RIVER (WABO) HYDROELECTRIC SCHEME ENVIRONMENTAL STUDIES Vol. 3 THE ECOLOGICA SIGNIFICANCE AND ECONOMIC IMPORTANCE OF THE MANGROVE ~AND ESTU.A.INE COMMUNITIES OF THE GULF PROVINCE, PAPUA NEW GUINEA Aby David S.Liem and Allan K. Haines .:N. IA 1-:" .": ". ' A, _"Gulf of Papua \-.. , . .. Office of Environment and Gonservatior, Central Government Offices, Waigani, Department o Minerals and Energy,and P.O. Box 2352, Kot.edobu !" " ' "car ' - ;' , ,-9"... 1977 "~ ~ u l -&,dJ&.3.,' -a,7- ..g=.<"- " - Papua New Guinea -.4- "-4-4 , ' -'., O~Cx c.A -6 Editor: Dr. T. Petr, Office of Environment and Conservation, Central Government Offices, Waigani, Papua New Guinea Authors: David S. Liem, Wildlife Division, Department of Natural Resources, Port Moresby, Papua New Guinea Allan K. Haines, Fisher;es Division, Department of Primary Industry, Konedobu, Papua New Guinea Reports p--blished in the series -ur'ri River (.:abo) Hyrcelectr.c S-hane: Environmental Studies Vol.l: Workshop 6 May 1977 (Ed.by T.Petr) (1977) Vol.2: Computer simulaticn of the impact of the Wabo hydroelectric scheme on the sediment balance of the Lower Purari (by G.Pickup) (1977) Vol.3: The ecological significance and economic importance of the mangrove and estuarine communities of the Gulf Province,Papua New Guinea (by D.S.Liem & A.K.Haines) (1977) Vol.4: The pawaia of the Upper Purari (Gulf Province,Papua New Guinea) (by C.Warrillow)( 1978) Vol.5: An archaeological and ethnographic survey of the Purari River (Wabo) dam site and reservoir (by S.J.Egloff & R.Kaiku) (1978) In
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
    https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations.
    [Show full text]
  • Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
    MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia.
    [Show full text]
  • Threatened Species Nomination Form
    2010 NOMINATION – Carcharinus leucas Section 1 - Legal Status, Distribution, Biological, Ecological Conservation Theme 1. The conservation themes for the Carcharinus leucas is one of the few truly euryhaline shark assessment period commencing species present in tropical and temperate estuarine, riverine and 1 October 2009 (for which near shore environments in Australia. As a keystone predator in nominations close 26 March 2009) such ecosystems, C. leucas fits the conservation theme for this are ‘terrestrial, estuarine and assessment period. near–shore environments of Australia’s coast’, and ‘rivers, wetlands and groundwater dependent species and ecosystems of inland Australia’. How does this nomination relate to the conservation theme? Taxonomy 2. What are the currently Scientific Name: Carcharinus leucas (Müller & Henle, 1839) accepted scientific and common name/s for the species (please Common Name: include Indigenous names, where Bull Shark known)? Freshwater Whaler Note any other scientific names that River Whaler have been used recently. Note the Swan River Whaler species authority and the Order and Bull Whaler Family to which the species belongs (Family name alone is sufficient for Indigenous Names (Morgan et al, 2002): plants, however, both Order and Ngangu (Bunuba and Walmajarri language) Family name are required for Ngawoonkoo (Nyikina language) insects). 3. Is this species conventionally accepted? If not, explain why. Is This species is conventionally accepted. there any controversy about the taxonomy? 4. If the species is NOT Not applicable conventionally accepted, please provide: (i) a taxonomic description of the species in a form suitable for publication in conventional scientific literature; OR (ii) evidence that a scientific institution has a specimen of the species and a written statement signed by a person who has relevant taxonomic expertise (has worked, or is a published author, on the class of species nominated), that the person thinks the species is a new species.
    [Show full text]