International Ocean Discovery Program Lord Howe Rise Marine

Total Page:16

File Type:pdf, Size:1020Kb

International Ocean Discovery Program Lord Howe Rise Marine International Ocean Discovery Program Lord Howe Rise Marine Seismic and Sampling Cnr Jerrabomberra Avenue and Hindmarsh Drive, Survey 2017 Symonston ACT 2609 GPO Box 378, Canberra ACT 2601 Australia Information Sheet for Stakeholders +61 2 6249 9111 www.ga.gov.au ABN 80 091 799 039 Introduction Geoscience Australia (GA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) are undertaking a collaborative project with involvement of the international science community to examine the geological and climatic history of the Lord Howe Rise located about 800 km east of Australia. The project comprises four main activities: 1. Deep Seismic Survey for Crustal Structure and Tectonic Framework (completed March–May 2016). 2. Detailed Site Survey at Proposed IODP Drilling Sites (November–December 2017; this information sheet). 3. Deep Stratigraphic Drilling (proposed for 2019/2020, if funded). 4. Processing and storage of data and samples. Information from the surveys and drilling will provide a globally-significant record of the evolution of the Earth’s crust and of climatic and environmental change during the Mesozoic Era (250–66 million years ago). The drilling stage of the project will be conducted through the International Ocean Discovery Program (IODP Proposal 871-CPP). This information sheet describes the timing, location and details of the 2017 Detailed Site Survey and invites comment and enquiries from stakeholders with an interest in the proposed survey area. Survey Location and Timing The Detailed Site Survey will take place in the southern Coral Sea, about 800 km east of Brisbane. Operations will focus on sites that are being considered for IODP drilling (Figure 1). At these sites, seafloor imagery, bathymetry, sub-bottom profiles, seafloor samples and a detailed grid of seismic lines will be acquired (100– 200 m line spacing). A single seismic line of about 200 km in length will also be acquired across one of the sites. The survey is scheduled to take place between 14 November and 27 December 2017. Figure 1. Location map of seismic and sampling survey proposed for November and December 2017 Survey Activities Dates indicated below are indicative only and subject to change. • 24 hour operation of a deep-towed seafloor imaging, bathymetry and sub-bottom mapping system (16–22 November). • Daytime seabed sampling operations: piston coring, grab sampling (29 November–2 December). • Temporary deployment and recovery of up to 100 ocean bottom seismometers on the seabed (9–25 December). • 24 hour operation of a towed seismic system using an airgun array with up to 7800 cubic inch capacity (12–21 December). • 24 hour operation of shipboard multibeam, sub-bottom profiles, gravity and magnetics (14 November–27 December). The seismic array will be used to image the subsurface to a depth of 30 km or more. Ocean bottom seismometers are passive instruments used to record seismic signals that allow measurements of the thickness of the Earth’s crust. Survey Vessel The survey vessel will be the RV Kairei, owned and operated by JAMSTEC. In accordance with requirements for foreign-flagged vessels seeking to undertake marine scientific research under UNCLOS Part XIII within Australia’s Exclusive Economic Zone, an application for Public Vessel Status will be submitted to the Department of Foreign Affairs and Trade. Environmental Impact Geoscience Australia is preparing an evaluation of the possible environmental impact of the Detailed Site Survey as required under the Environment Protection and Biodiversity Conservation Act 1999 (Cth) (EPBC Act). This evaluation will include identification of listed threatened and migratory species that may occur in, or may relate to, the nominated survey area. Specific focus will be placed on assessing the likely physical and/or behavioural impacts of the seismic activity on marine fauna (including marine mammals). Sound propagation from the seismic array and acoustic exposure levels modelled prior to the Deep Seismic Survey completed in 2016 will be used to inform this assessment. The use of air-guns during the seismic survey will be subject to the EPBC Act Policy Statement 2.1 – Interaction between offshore seismic exploration and whales. The risk of potential disturbance and injury to marine mammals from underwater noise produced by the airgun array will be carefully considered and adaptive management will be used in conjunction with other mitigation measures, as outlined in EPBC Act Policy Statement 2.1. These measures will include pre start-up observations, soft-start procedures, increased precaution zones, as well as visual and passive acoustic monitoring (PAM) for whales by trained marine mammal observers and passive acoustic monitoring operators. All data collected from the survey will be made freely available, including public release of a post-survey report in 2018. Contact details for Geoscience Australia For further information or to provide comment on the proposed survey please contact Jessica Gurney no later than 7 April 2017. Jessica Gurney Project Manager Geoscience Australia P: (02) 6249 9043 E: [email protected] 13 March 2017 Re: International Ocean Discovery Program Lord Howe Rise Marine Seismic and Sampling Survey Invitation to Comment Dear Sir/Madam, The Australian Government, through Geoscience Australia, is proposing to conduct a detailed scientific marine seismic and sampling survey on the Lord Howe Rise (southern Coral Sea) in 2017. The survey will be conducted in collaboration with the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and is part of a larger research project proposed under the International Ocean Discovery Program (IODP Proposal 871-CPP) titled “First Deep Stratigraphic Record for the Cretaceous Eastern Gondwana Margin: Tectonics, paleoclimate and deep life on the Lord Howe Rise high-latitude continental ribbon”. The proposed survey is scheduled to take place between 9 November and 28 December 2017 and will involve the operation of a multi-channel towed seismic system, the temporary deployment of ocean bottom seismometers on the seafloor, and the collection of seabed imagery and sediment samples. Further information regarding the survey is provided in the attached information sheet. Geoscience Australia is currently preparing a referral report for the proposed survey that will address the potential impacts of the survey activities on matters of environmental significance (including Threatened and Migratory species) protected under the Environment Protection and Biodiversity Conservation (EPBC) Act 1999. This EPBC referral process involves public consultation with relevant stakeholders. To assist us with compiling a thorough referral, we welcome the submission of any comments or concerns you may have about the proposed survey. To ensure timely submission of the EPBC Referral to the Australian Government’s Minister for the Environment and Energy, we would greatly appreciate your response by 7 April 2017. Please don’t hesitate to contact me with any questions you may have regarding the proposal. Sincerely, Jessica Gurney Project Manager, Lord Howe Rise Survey Geoscience Australia P: (02) 6249 9043 E: [email protected] D2017-55542 From: Gurney Jessica Sent: Friday, 24 March 2017 To: 'Lay, Steven K' Subject: RE: Invitation to Comment: Lord Howe Rise Marine Seismic and Sampling Survey 2017 Hi Steven, As requested, please find attached the zip file with a map in shape file. Kind regards, Jessica Jessica Gurney | Project Manager Energy System Branch | Resources Division From: Lay, Steven K Sent: Friday, 24 March 2017 10:50 AM To: Gurney Jessica Subject: RE: Invitation to Comment: Lord Howe Rise Marine Seismic and Sampling Survey 2017 Hi Jessica Would you be able to provide a shapefile or KMZ or the proposed survey area? This will help Telstra assess if there is any impact to international submarine telecommunication cables in the Lord Howe Rise region. Steven K Lay S Submarine Cable Project Engineer Marine Operations & Services International Operations & Services, Telstra Global Enterprise & Services D2017-55482 From: Phillip Murphy Sent: Monday, 10 April 2017 To: Gurney Jessica Subject: RE: Due on 7 April: Invitation to Comment: Lord Howe Rise Marine Seismic and Sampling Survey 2017 Hi Jessica, Understood. Regards Philip Murphy General Manager Marine Operations Service Global Enterprises & Services From: Gurney Jessica Sent: Monday, 10 April 2017 To: Murphy, Philip Cc: Lay, Steven K Subject: RE: Due on 7 April: Invitation to Comment: Lord Howe Rise Marine Seismic and Sampling Survey 2017 Hi Philip, The coordinates that I sent to you in my previous email is for define area for main operation, seabed mapping and seismic activities. The file attached in this email has coordinates defining area for opportunistic mapping during transit to and from port using shipboard systems. Please let me know if there are any issues. Thank you. Kind regards, Jessica Jessica Gurney | Project Manager Energy System Branch | Resources Division From: Gurney Jessica Sent: Monday, 10 April 2017 To: 'Murphy, Philip' Cc: Lay, Steven K Subject: RE: Due on 7 April: Invitation to Comment: Lord Howe Rise Marine Seismic and Sampling Survey 2017 Hi Philip, As requested, please find attached an Excel Spreadsheet with coordinates of the survey area. Please let me know if there are any issues. Thank you. Kind regards, Jessica Jessica Gurney | Project Manager Energy System Branch | Resources Division From: Murphy, Philip Sent: Friday, 7 April 2017 To: Gurney Jessica
Recommended publications
  • Submarine Cable Protection) Bill 2013 [Provisions]
    The Senate Environment and Communications Legislation Committee Telecommunications Legislation Amendment (Submarine Cable Protection) Bill 2013 [Provisions] March 2014 © Commonwealth of Australia 2014 ISBN 978-1-74229-980-8 Committee address PO Box 6100 Parliament House Canberra ACT 2600 Tel: 02 6277 3526 Fax: 02 6277 5818 Email: [email protected] Internet: http://www.aph.gov.au/Parliamentary_Business/Committees/Senate/Environment_and_Com munications This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Australia License. The details of this licence are available on the Creative Commons website: http://creativecommons.org/licenses/by-nc-nd/3.0/au/. This document was printed by the Senate Printing Unit, Parliament House, Canberra Committee membership Committee members Senator John Williams, Chair NATS, New South Wales Senator Anne Urquhart, Deputy Chair ALP, Tasmania Senator David Fawcett LP, South Australia Senator Louise Pratt ALP, Western Australia Senator Anne Ruston LP, South Australia Senator Larissa Waters AG, Queensland Substitute member for this inquiry Senator Scott Ludlam (AG, WA) to replace Senator Larissa Waters (AG, QLD) for this inquiry. Committee secretariat Ms Christine McDonald, Committee Secretary Mr Chris Lawley, Senior Research Officer Mrs Dianne Warhurst, Administration Officer iii iv Table of Contents Committee membership ................................................................................... iii Chapter 1 - Introduction ...................................................................................
    [Show full text]
  • Issue 23 November 2005 1 Submarine Telecoms Forum Is Published Bi-Monthly by WFN Strategies, L.L.C
    DDefenseefense & Non-traditionaNon-traditional CableCable SystemsSystems – 4th4th AnnAnniiversaryversary IssueIssue November 2005 Issue 23 1 Submarine Telecoms Forum is published bi-monthly by WFN Strategies, L.L.C. The publication may not be reproduced or transmitted in any form, in whole or in part, without the Exordium permission of the publishers. NNovember’sovember’s iissuessue mmarksarks ourour ffourthourth aanniversarynniversary inin publishingpublishing SubmarineSubmarine TelecomsTelecoms Forum,Forum, andand thoughthough tthngshngs sstilltill aaren’tren’t aass rrosyosy aass theythey werewere inin thethe “build“build itit andand theythey willwill come”come” era,era, nornor willwill theythey probablyprobably everever Submarine Telecoms Forum is an independent com- bbee – tthingshings aarere stillstill ccertainlyertainly mmuchuch improved.improved. mercial publication, serving as a freely accessible forum for professionals in industries connected with submarine optical TThehe ffewew pprinciplesrinciples wwee establishedestablished inin thethe beginning,beginning, wewe continuecontinue toto holdhold dear.dear. WeWe promisedpromised then,then, andand fi bre technologies and techniques. ccontinueontinue ttoo ppromiseromise yyou,ou, oourur rreaders:eaders: Liability: while every care is taken in preparation of this 11.. TThathat wwee wwillill pproviderovide a wwideide rrangeange ooff iideasdeas aandnd iissues;ssues; publication, the publishers cannot be held responsible for the 22.That.That wwee wwillill sseekeek ttoo iincite,ncite, eentertainntertain
    [Show full text]
  • Mapping the Information Environment in the Pacific Island Countries: Disruptors, Deficits, and Decisions
    December 2019 Mapping the Information Environment in the Pacific Island Countries: Disruptors, Deficits, and Decisions Lauren Dickey, Erica Downs, Andrew Taffer, and Heidi Holz with Drew Thompson, S. Bilal Hyder, Ryan Loomis, and Anthony Miller Maps and graphics created by Sue N. Mercer, Sharay Bennett, and Michele Deisbeck Approved for Public Release: distribution unlimited. IRM-2019-U-019755-Final Abstract This report provides a general map of the information environment of the Pacific Island Countries (PICs). The focus of the report is on the information environment—that is, the aggregate of individuals, organizations, and systems that shape public opinion through the dissemination of news and information—in the PICs. In this report, we provide a current understanding of how these countries and their respective populaces consume information. We map the general characteristics of the information environment in the region, highlighting trends that make the dissemination and consumption of information in the PICs particularly dynamic. We identify three factors that contribute to the dynamism of the regional information environment: disruptors, deficits, and domestic decisions. Collectively, these factors also create new opportunities for foreign actors to influence or shape the domestic information space in the PICs. This report concludes with recommendations for traditional partners and the PICs to support the positive evolution of the information environment. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor or client. Distribution Approved for public release: distribution unlimited. 12/10/2019 Cooperative Agreement/Grant Award Number: SGECPD18CA0027. This project has been supported by funding from the U.S.
    [Show full text]
  • SUPPLY RECORD - REPEATERED SYSTEM ( 1 ) 1St Generation (Regenerator System Using 1.31 Micron Wavelength)
    SUPPLY RECORD - REPEATERED SYSTEM ( 1 ) 1st Generation (Regenerator System using 1.31 micron wavelength) System Landing Countries Capacity Route Length Delivery Japan, U.S.A. (Guam, TPC-3 (Note 1) 560Mbps (280Mbps x 2fp) 3,760km Dec. 88 Hawaii) Hong Kong, Japan, Hong Kong-Japan-Korea 560Mbps (280Mbps x 2fp) 4,700km Apr. 90 Korea Kuantan-Kota Kinabaru Malaysia 840Mbps (420Mbps x 2fp) 1,570km Dec. 90 Japan, U.S.A. North Pacific Cable (NPC) 1680Mbps (420Mbps x 4fp) 9,400km Apr. 91 (Mainland) Surabaya-Banjarmasin Indonesia 280Mbps (280Mbps x 1fp) 410km Dec. 91 N. ote 1:The very first Branching Units deployed in the Pacific 1 SUPPLY RECORD - REPEATERED SYSTEM ( 2 ) 2nd Generation (Regenerator System using 1.55 micron wavelength) System Landing Sites Capacity Route Length Delivery UK-Germany No.5 (Note 2) UK, Germany 3.6Gbps (1.8Gbps x 2fp) 500km Oct. 91 Brunei-Singapore Brunei, Singapore 1120Mbps (560Mbps x 2fp) 1500km Nov. 91 Brunei, Malaysia, Brunei-Malaysia-Philippines (BMP) 1120Mbps (560Mbps x 2fp) 1500km Jan. 92 Philippines Japan, U.S.A. TPC-4 1680Mbps (560Mbps x 3fp) 5000km Oct. 92 (Mainland) Japan, Hong Kong, APC Taiwan, Malaysia, 1680Mbps (560Mbps x 3fp) 7600km Aug. 93 Singapore Malaysia-Thailand Malaysia, Thailand 1120Mbps (560Mbps x 2fp) 1500km Aug. 94 (incl. Petchaburi-Sri Racha) Russia-Japan-Korea (RJK) Russia, Japan, Korea 1120Mbps (560Mbps x 2fp) 1700km Nov. 94 Thailand, Vietnam, Thailand-Vietnam-Hong Kong (T-V-H) 1120Mbps (560Mbps x 2fp) 3400km Nov. 95 Hong Kong N. ote 2: The very first giga bit submarine cable system in the world 2 SUPPLY RECORD - REPEATERED SYSTEM ( 3 ) 3rd Generation (Optical Amplifier System) System Landing Sites Capacity Route Length Delivery Malaysia Domestic (Southern Link) Malaysia 10Gbps (5Gbps x 2fp) 2,300km Jul.
    [Show full text]
  • Detailed Project Report for Connecting Lakshadweep Islands on Submarine
    DETAILED PROJECT REPORT FOR CONNECTING LAKSHADWEEP ISLANDS ON SUBMARINE OFC Contents 1.0 EXECUTIVE SUMMARY 11 1.1 BACKGROUND 11 1.2 METHODOLOGY TO PREPARE THE DPR 11 1.3 BROAD FINDINGS 12 1.3.1 SUBMARINE CABLE LENGTH AND TYPE 12 1.3.2. SITE SURVEY 12 1.3.3. SUBMARINE SYSTEM DESIGN 12 1.3.4. PROPOSED TOPOLOGIES 14 1.3.5 PROJECT TIMELINES 16 2.0 INTRODUCTION 17 2.1 ABOUT LAKSHADWEEP 17 2.2 PRESENT TELECOM SCENARIO 18 2.3 ISSUES IN PRESENT TELECOM CONNECTIVITY 19 2.4 CHALLENGES IN DEVELOPING RELIABLE TELECOM CONNECTIVITY 19 2.5 TCIL SCOPE OF WORK 19 3.0 ASSESMENT OF TELECOM CONNECTIVITY REQUIREMENTS 22 3.1 IDENTIFY THE FACTORS REQUIRING RELIABLE TELECOM CONNECTIVITY 22 3.2 ESTIMATION OF TELECOM BANDWDITH REQUIREMENT IN LAKSHADWEEP 23 4.1 ABOUT SUBMARINE OFC SYSTEM 26 4.1.1 WET PLANT COMPONENTS 27 4.1.2 DRY PLANT 32 4.2 CAPACITY OF SUBMARINE OFC LINKS 33 4.3. MARINE SERVICES 43 4.4. WORLDWIDE CABLE NETWORKS 48 5.0 DESKTOP STUDY 52 5.1. SITE VISIT FINDINGS 53 5.2. CABLE TYPES 55 5.3. CABLE BURIAL 56 6. LAKSHADWEEP NETWORK ARCHITECTURE 72 6.1. BACKGROUND 72 6.1.1. TRAI REPORT 72 6.2. ROUTE SELECTION 73 6.3. TOPOLOGY 73 6.4. SYSTEM DESIGN 79 6.4.1. NUMBER OF FIBER IN LAKSHADWEEP SUBMARINE OPTICAL FIBER CABLE 79 6.4.2. SUBMARINE EQUIPMENT CONFIGURATION IN LAKSHADWEEP 81 6.5. KEY DESIGN PARAMETERS 84 6.6. REDUNDANCY 85 7. PROJECT COST 87 7.1.
    [Show full text]
  • 2013 Submarine Cable Market Industry Report
    submarine telecoms INDUSTRY REPORT 2013 Authored by Submarine Cable Industry Report Issue 2 March 2013 Copyright © 2013 by Submarine Telecoms Forum, Inc. All rights reserved. No part of this book may be used or reproduced by any means, graphic, electronic, or mechanical, including photocopying, recording, taping or by any information storage retrieval system without the written permission of the publisher except in the case of brief quotations embodied in critical articles and reviews. Submarine Telecoms Forum, Inc. 21495 Ridgetop Circle Suite 201 Sterling, Virginia 20166 USA www.subtelforum.com ISSN: pending 2 Disclaimer: While every care is taken in preparation of this publication, the publishers cannot be held responsible for the accuracy of the information herein, or any errors which may occur in advertising or editorial content, or any consequence arising from any errors or omissions, and the editor reserves the right to edit any advertising or editorial material submitted for publication. If you have a suggestion, please let us know by emailing [email protected]. 3 Table of Contents 1. Foreword 10 2. Introduction 11 3. Executive Summary 13 4. Worldwide Market Analysis and Outlook 18 4.1 Overview of Historical System Investment 20 4.2 2008 – 2012 Systems in Review 20 4.3 Systems Investment in 2013 and Beyond 21 5. Supplier Analysis 25 5.1 System Suppliers 25 5.2 Upgrade Suppliers 26 6. Ownership Analysis 28 6.1 Financing of Current Submarine Systems 28 7. Regional Market Analysis and Capacity Outlook 31 7.1 Transatlantic
    [Show full text]
  • IPTP Networks 2 Contents
    1 www.iptp.net IPTP Networks 2 Contents CONTENTS Our history ........................................................................ 4 About us ............................................................................... 6 Global partnership .............................................................. 10 1-Stop-IT-Shop .................................................................... 12 A-Z Infrastructure ................................................................13 Managed services ..............................................................14 Managed Security Services .................................................................................. 15 IPTP Pentest ........................................................................................................... 15 Global Network and Points of Presence Map ....................................................... 16 Managed Connectivity Services ............................................................................... 17 Internet Exchanges and peering facilities .................................................................. 19 Low Latency Routes Map ......................................................................................... 20 Map of Cable Systems ........................................................................................... 21 Data Centers ....................................................................... 24 Managed Datacenter Services ...................................................................................24
    [Show full text]
  • PPC-1 Sydney-Guam PIPE Pacific Cable: New Internet Gateway for PNG Via Madang
    Contemporary PNG Studies: DWU Research Journal Volume 15, November 2011 1 PPC-1 Sydney-Guam PIPE Pacific Cable: New Internet Gateway for PNG via Madang Peter K. Anderson Joseph Kim Suwamaru Abstract PPC-1 Sydney Guam PIPE Pacific Cable (PPC1) provides a third Internet gateway for Australia. A branching unit to Madang will be an initial connection for PNG to connect to the Internet via this pathway. The PPC- 1 undersea submarine cable which runs from Guam to Sydney provides a third high speed international gateway to Australia. A branching unit to Madang will be an initial connection for PNG providing a total bandwidth capacity of 10Gbps enabling high speed telecommunication traffic within PNG and also between PNG and the world. This paper presents the technical characteristics of the PPC-1 including the earlier submarine cable facilities. Key words: submarine cable , fiber optic, attenuation, signal amplification, dense wave division multiplexing (DWDM), optical add/drop multiplexing (OADM), branching unit. Introduction The evolving digital revolution is making a seemingly insatiable demand on bandwidth 1. Simultaneous paradigm shifts in telecommunications technology leading to enormous growth of transmission and switching capacity make more digital services available which further fuels the demand for bandwidth. Well known digital online services which drive demands on bandwidth include instant messaging (email) and Web access with file downloads, online shopping or electronic commerce (e.g. purchasing from Amazon.com), Internet banking and video conferencing 2. Emerging bandwidth demanding services include movie and video downloads, real time audio and video streaming, video on demand, free long distance telephone calls (VOIP 3), digital TV, and social networking sites such as Face Book, Twitter and Youtube which provides low definition TV.
    [Show full text]
  • Maximising Availability of International Connectivity in the Pacific
    Thematic reports ITUPublications Regulatory & market environment Maximising availability of international connectivity in the Pacific International Telecommunication Union Telecommunication Development Bureau Place des Nations CH-1211 Geneva 20 Switzerland ISBN: 978-92-61-27451-1 9 7 8 9 2 6 1 2 7 4 5 1 1 Published in Switzerland Geneva, 2018 Maximising availability of connectivity in the Pacific international Photo credits: Shutterstock Maximising availability of international connectivity in the Pacific Acknowledgements This report was prepared by International Telecommunication Union (ITU) expert Matthew O’Rourke and produced by ITU Telecommunication Development Bureau (BDT) in partnership with the Pacific Islands Telecommunications Association and with support from the Government of Australia through Department of Communications and the Arts. ITU would like to acknowledge the information contributed by John Hibbard, Paul McCann, Maui Sanford and delegates from the Pacific island telecommunication ministries, regulators and operators for their contributions to the content of this report. The designations employed and presentation of material in this publication, including maps, do not imply the expression of any opinion whatsoever on the part of ITU concerning the legal status of any country, territory, city or area, or concerning the delimitations of its frontiers or boundaries. ISBN 978-92-61-27441-2 (Paper version) 978-92-61-27451-1 (Electronic version) 978-92-61-27461-0 (EPUB version) 978-92-61-27471-9 (Mobi version) Please consider
    [Show full text]
  • Abkürzungs-Liste ABKLEX
    Abkürzungs-Liste ABKLEX (Informatik, Telekommunikation) W. Alex 1. Juli 2021 Karlsruhe Copyright W. Alex, Karlsruhe, 1994 – 2018. Die Liste darf unentgeltlich benutzt und weitergegeben werden. The list may be used or copied free of any charge. Original Point of Distribution: http://www.abklex.de/abklex/ An authorized Czechian version is published on: http://www.sochorek.cz/archiv/slovniky/abklex.htm Author’s Email address: [email protected] 2 Kapitel 1 Abkürzungen Gehen wir von 30 Zeichen aus, aus denen Abkürzungen gebildet werden, und nehmen wir eine größte Länge von 5 Zeichen an, so lassen sich 25.137.930 verschiedene Abkür- zungen bilden (Kombinationen mit Wiederholung und Berücksichtigung der Reihenfol- ge). Es folgt eine Auswahl von rund 16000 Abkürzungen aus den Bereichen Informatik und Telekommunikation. Die Abkürzungen werden hier durchgehend groß geschrieben, Akzente, Bindestriche und dergleichen wurden weggelassen. Einige Abkürzungen sind geschützte Namen; diese sind nicht gekennzeichnet. Die Liste beschreibt nur den Ge- brauch, sie legt nicht eine Definition fest. 100GE 100 GBit/s Ethernet 16CIF 16 times Common Intermediate Format (Picture Format) 16QAM 16-state Quadrature Amplitude Modulation 1GFC 1 Gigabaud Fiber Channel (2, 4, 8, 10, 20GFC) 1GL 1st Generation Language (Maschinencode) 1TBS One True Brace Style (C) 1TR6 (ISDN-Protokoll D-Kanal, national) 247 24/7: 24 hours per day, 7 days per week 2D 2-dimensional 2FA Zwei-Faktor-Authentifizierung 2GL 2nd Generation Language (Assembler) 2L8 Too Late (Slang) 2MS Strukturierte
    [Show full text]
  • ITU-Dstudygroups
    ITU-D Study Groups Study period 2018-2021 Broadband development and connectivity solutions for rural and Question 5/1 Telecommunications/ remote areas ICTs for rural and remote areas Executive summary This annual deliverable reviews major backbone telecommunication Annual deliverable infrastructure installation efforts and approaches to last-mile connectivity, 2019-2020 describes current trends in last-mile connectivity and policy interventions and recommended last-mile technologies for use in rural and remote areas, as well as in small island developing States (SIDS). Discussions and contributions made during a workshop on broadband development in rural areas, held in September 2019, have been included in this document, which concludes with two sets of high-level recommendations for regulators and policy-makers, and for operators to use as guidelines for connecting rural and remote communities. 1 More information on ITU-D study groups: E-mail: [email protected] Tel.: +41 22 730 5999 Web: www.itu.int/en/ITU-D/study-groups ITU -D Study Groups Contents Executive summary 1 Introduction 3 Trends in telecommunication/ICT backbone infrastructure 4 Last mile-connectivity 5 Trends in last-mile connectivity 6 Business regulatory models and policies 7 Recommendations and guidelines for regulators and policy-makers 8 Recommendations and guidelines for operators 9 Annex 1: Map of the global submarine cable network 11 Annex 2: Listing of submarine cables (A-Y) 12 2 More information on ITU-D study groups: E-mail: [email protected] Tel.: +41 22 730 5999 Web: www.itu.int/en/ITU-D/study-groups ITU -D Study Groups Introduction The telecommunications/ICT sector and technologies have evolved over a long period of time, starting with ancient communication systems such as drum beating and smoke signals to the electric telegraph, the fixed telephone, radio and television, transistors, video telephony and satellite.
    [Show full text]
  • Connectivity Across Borders: Leading Practices for Cross-Border Infrastructure Projects February 2021 Cover Image: Drago Prvulovic/Øresundsbron Foreword
    REFERENCE GUIDE Connectivity Across Borders: Leading practices for cross-border infrastructure projects February 2021 Cover image: Drago Prvulovic/Øresundsbron Foreword We live in a period of rapid and ongoing globalisation. Although the COVID-19 pandemic has at the time of this writing led to decreased physical connectivity, “Globally, it is an important other connectivity has increased and become more important than ever before. time for us to provide a resource Digital connectivity has reshaped daily life, and strong and secure trade links devoted to the unique challenges and regional cooperation have proven critical to ensuring supply chains remain of planning and delivering cross-border infrastructure. operational and economies do not come to a standstill. In this sense, the pandemic Increasing physical and digital has heightened awareness of the continued need for connectivity across borders. connectivity between nations Cross-border infrastructure plays an important role in facilitating economic and is vital to enlivening trade and social connectivity. In addition to enabling physical and virtual/digital connectivity, improving the socioeconomic cross-border infrastructure projects can be instrumental in achieving higher-level realities of populations socioeconomic goals, giving rise to knowledge diffusion, technology transfer and worldwide, and ensuring fair cultural exchange. They also create value through integration of markets and distribution of benefits of projects communities beyond what could be achieved via a collection of national projects. across countries.” Given these benefits, it is not surprising that the G20 Development Working Group Marie Lam-Frendo (DWG) has identified regional connectivity as a priority topic, with the aims of Chief Executive Officer, promoting dialogue on connectivity issues and raising awareness of bottlenecks Global Infrastructure Hub and challenges.
    [Show full text]