The Genomics of Selenium: Its Past, Present and Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variation in Protein Coding Genes Identifies Information
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
A High-Throughput Study in Melanoma Identifies Epithelial- Mesenchymal Transition As a Major Determinant of Metastasis
Research Article A High-Throughput Study in Melanoma Identifies Epithelial- Mesenchymal Transition as a Major Determinant of Metastasis Soledad R. Alonso,1 Lorraine Tracey,1 Pablo Ortiz,4 Beatriz Pe´rez-Go´mez,5 Jose´ Palacios,1 Marina Polla´n,5 Juan Linares,6 Salvio Serrano,7 Ana I. Sa´ez-Castillo,6 Lydia Sa´nchez,2 Raquel Pajares,2 Abel Sa´nchez-Aguilera,1 Maria J. Artiga,1 Miguel A. Piris,1 and Jose´ L. Rodrı´guez-Peralto3 1Molecular Pathology Programme and 2Histology and Immunohistochemistry Unit, Centro Nacional de Investigaciones Oncolo´gicas; Departments of 3Pathology and 4Dermatology, Hospital Universitario 12 de Octubre; 5Centro Nacional de Epidemiologı´a, Instituto de Salud Carlos III, Madrid, Spain; and Departments of 6Pathology and 7Dermatology, Hospital Universitario San Cecilio, Granada, Spain Abstract with a less favorable prognosis as potential candidates for adjuvant Metastatic disease is the primary cause of death in cutaneous or novel therapies. malignant melanoma (CMM) patients. To understand the Currently, the prognosis of primary CMM is mainly based mechanisms of CMM metastasis and identify potential on histopathologic criteria. The most important of these is the predictive markers, we analyzed gene-expression profiles of Breslow index, although it is merely a measure of tumor depth. 34 vertical growth phase melanoma cases using cDNA micro- New molecular markers that correlate with melanoma genesis and/or progression are continuously being identified but, to date, arrays. All patients had a minimum follow-up of 36 months. Twenty-one cases developed nodal metastatic disease and 13 most of them have been obtained in experimental models and did not. -
Pan-Tissue Transcriptome Analysis of Long Noncoding Rnas in the American Beaver Castor Canadensis
Kashyap et al. BMC Genomics (2020) 21:153 https://doi.org/10.1186/s12864-019-6432-4 RESEARCH ARTICLE Open Access Pan-tissue transcriptome analysis of long noncoding RNAs in the American beaver Castor canadensis Amita Kashyap1, Adelaide Rhodes2, Brent Kronmiller2, Josie Berger3, Ashley Champagne3, Edward W. Davis2, Mitchell V. Finnegan5, Matthew Geniza6, David A. Hendrix7,8, Christiane V. Löhr1, Vanessa M. Petro3, Thomas J. Sharpton9,10, Jackson Wells2, Clinton W. Epps4, Pankaj Jaiswal6, Brett M. Tyler2,6 and Stephen A. Ramsey1,8* Abstract Background: Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. Results: Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. -
Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN. -
Establishment and Characterization of New Tumor Xenografts and Cancer Cell Lines from EBV-Positive Nasopharyngeal Carcinoma
UC Davis UC Davis Previously Published Works Title Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Permalink https://escholarship.org/uc/item/79j9621x Journal Nature communications, 9(1) ISSN 2041-1723 Authors Lin, Weitao Yip, Yim Ling Jia, Lin et al. Publication Date 2018-11-07 DOI 10.1038/s41467-018-06889-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE DOI: 10.1038/s41467-018-06889-5 OPEN Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma Weitao Lin 1, Yim Ling Yip 1, Lin Jia 1, Wen Deng2, Hong Zheng 3,4, Wei Dai3, Josephine Mun Yee Ko 3, Kwok Wai Lo 5, Grace Tin Yun Chung5, Kevin Y. Yip 6, Sau-Dan Lee6, Johnny Sheung-Him Kwan5, Jun Zhang1, Tengfei Liu1, Jimmy Yu-Wai Chan7, Dora Lai-Wan Kwong3, Victor Ho-Fun Lee3, John Malcolm Nicholls8, Pierre Busson 9, Xuefeng Liu 10,11,12, Alan Kwok Shing Chiang13, Kwai Fung Hui13, Hin Kwok14, Siu Tim Cheung 15, Yuk Chun Cheung1, Chi Keung Chan1, Bin Li1,16, 1234567890():,; Annie Lai-Man Cheung1, Pok Man Hau5, Yuan Zhou5, Chi Man Tsang1,5, Jaap Middeldorp 17, Honglin Chen 18, Maria Li Lung3 & Sai Wah Tsao1 The lack of representative nasopharyngeal carcinoma (NPC) models has seriously hampered research on EBV carcinogenesis and preclinical studies in NPC. Here we report the successful growth of five NPC patient-derived xenografts (PDXs) from fifty-eight attempts of trans- plantation of NPC specimens into NOD/SCID mice. -
An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice
bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: 2 An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice 3 Short Title: 4 Genomic response to selection for longer limbs 5 One-sentence summary: 6 Genome sequencing of mice selected for longer limbs reveals that rapid selection response is 7 due to both discrete loci and polygenic adaptation 8 Authors: 9 João P. L. Castro 1,*, Michelle N. Yancoskie 1,*, Marta Marchini 2, Stefanie Belohlavy 3, Marek 10 Kučka 1, William H. Beluch 1, Ronald Naumann 4, Isabella Skuplik 2, John Cobb 2, Nick H. 11 Barton 3, Campbell Rolian2,†, Yingguang Frank Chan 1,† 12 Affiliations: 13 1. Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany 14 2. University of Calgary, Calgary AB, Canada 15 3. IST Austria, Klosterneuburg, Austria 16 4. Max Planck Institute for Cell Biology and Genetics, Dresden, Germany 17 Corresponding author: 18 Campbell Rolian 19 Yingguang Frank Chan 20 * indicates equal contribution 21 † indicates equal contribution 22 Abstract: 23 Evolutionary studies are often limited by missing data that are critical to understanding the 24 history of selection. Selection experiments, which reproduce rapid evolution under controlled 25 conditions, are excellent tools to study how genomes evolve under strong selection. Here we 1 bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018. -
Weighted Single-Step GWAS Identified Candidate Genes
G C A T T A C G G C A T genes Article Weighted Single-Step GWAS Identified Candidate Genes Associated with Growth Traits in a Duroc Pig Population Donglin Ruan 1,2,†, Zhanwei Zhuang 1,2,†, Rongrong Ding 1,2, Yibin Qiu 1,2, Shenping Zhou 1,2, Jie Wu 1,2, Cineng Xu 1,2, Linjun Hong 1,2, Sixiu Huang 1,2, Enqin Zheng 1,2, Gengyuan Cai 1, Zhenfang Wu 1,2,* and Jie Yang 1,2,* 1 National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; [email protected] (D.R.); [email protected] (Z.Z.); [email protected] (R.D.); [email protected] (Y.Q.); [email protected] (S.Z.); [email protected] (J.W.); [email protected] (C.X.); [email protected] (L.H.); [email protected] (S.H.); [email protected] (E.Z.); [email protected] (G.C.) 2 Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China * Correspondence: [email protected] (Z.W.); [email protected] (J.Y.) † These authors contributed equally to this work. Abstract: Growth traits are important economic traits of pigs that are controlled by several major genes and multiple minor genes. To better understand the genetic architecture of growth traits, we performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain (ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. -
Membranes of Human Neutrophils Secretory Vesicle Membranes And
Downloaded from http://www.jimmunol.org/ by guest on September 30, 2021 is online at: average * The Journal of Immunology , 25 of which you can access for free at: 2008; 180:5575-5581; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.180.8.5575 http://www.jimmunol.org/content/180/8/5575 Comparison of Proteins Expressed on Secretory Vesicle Membranes and Plasma Membranes of Human Neutrophils Silvia M. Uriarte, David W. Powell, Gregory C. Luerman, Michael L. Merchant, Timothy D. Cummins, Neelakshi R. Jog, Richard A. Ward and Kenneth R. McLeish cites 44 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2008/04/01/180.8.5575.DC1 This article http://www.jimmunol.org/content/180/8/5575.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 30, 2021. The Journal of Immunology Comparison of Proteins Expressed on Secretory Vesicle Membranes and Plasma Membranes of Human Neutrophils1 Silvia M. -
Supplementary Materials Supplement to Lieber Et Al., Targeted Exome Sequencing of Suspected Mitochondrial Disorders
Supplementary Materials Supplement to Lieber et al., Targeted exome sequencing of suspected mitochondrial disorders Appendix e-1: Supplementary Methods MitoExome sequencing Targeted gene transcripts from the RefSeq1 and UCSC known gene2 collections were downloaded from the UCSC genome browser3 assembly hg19 (February 2009) corresponding to all genes listed in table e-1. Single 120bp baits were synthesized on a chip (Agilent) for each target region, or tiled across targets that exceeded 120bp. Two Agilent bait sets were synthesized: design1 contained 42,119 baits targeted to mtDNA and 1,560 nuclear genes (coding regions and 5’ UTRs, single bait per target), and design2 contained 25,963 baits targeted to mtDNA and a superset of 1,598 nuclear genes (coding regions only, two baits per nuclear target and single bait per mtDNA target) (table e-1). Genomic DNA was sheared, ligated to Illumina sequencing adapters, and selected for lengths between 200-350bp. This “pond” of DNA was hybridized with an excess of Agilent baits in solution. The “catch” was pulled down by magnetic beads coated with streptavidin, then eluted.4, 5 Index tags were added to 60 samples to facilitate “barcoded” multiplex sequencing. All samples were sequenced at the MGH Next-Generation Sequencing Core (http://nextgen.mgh.harvard.edu). 42 samples were sequenced in singleplex (one sample per lane, Agilent bait design1) and 60 barcoded samples were multiplexed (4-12 samples per lane, Agilent bait design2). Variant detection Sequence alignment, variant detection, and variant annotation for the nuclear and mitochondrial genomes were performed as described previously,6 with modifications described here. Illumina reads were aligned to the GRCh37 reference human genome assembly using BWA7 and variants were detected and annotated using the Genome Analysis Toolkit (GATK) software package version 1.0.5973 8 and custom scripts. -
List of 1124 Genes Whose Binding to Eif4e Was Induced by Radiation
Supplemental Table S1: List of 1124 genes whose binding to eIF4E was induced by radiation Fold Increase Gene Symbol Gene Description 1.5 AP4M1 adaptor-related protein 2.2 ABCA11 ATP-binding cassette, complex 4, mu 1 subunit sub-family A (ABC1), 1.7 APBB1 amyloid beta (A4) member 11 precursor protein- (pseudogene) binding, family B, 3.1 ABHD4 abhydrolase domain member 1 (Fe65) containing 4 2 APLP2 amyloid beta (A4) 1.9 ABHD6 abhydrolase domain precursor-like protein 2 containing 6 1.5 APOL3 apolipoprotein L, 3 1.5 ABT1 activator of basal 1.5 APTX aprataxin transcription 1 2.9 ARF3 ADP-ribosylation factor 1.8 ACAD8 acyl-Coenzyme A 3 dehydrogenase family, 1.5 ARL6IP5 ADP-ribosylation-like member 8 factor 6 interacting 1.8 ACAT1 acetyl-Coenzyme A protein 5 acetyltransferase 1 10.8 ARPC2 actin related protein 2/3 (acetoacetyl Coenzyme complex, subunit 2, A thiolase) 34kDa 1.7 ACOT7 acyl-CoA thioesterase 7 1.5 ARRB2 arrestin, beta 2 1.5 ACOT9 acyl-CoA thioesterase 9 1.8 ASB13 ankyrin repeat and 1.6 ACTR5 ARP5 actin-related SOCS box-containing 13 protein 5 homolog 11.2 ASCIZ ATM/ATR-Substrate (yeast) Chk2-Interacting Zn2+- 3 ADCK2 aarF domain containing finger protein kinase 2 2.3 ATP1B3 ATPase, Na+/K+ 1.8 ADPGK ADP-dependent transporting, beta 3 glucokinase polypeptide 2.4 ADSL adenylosuccinate lyase 1.7 ATP5B ATP synthase, H+ 2.2 AGPAT2 1-acylglycerol-3- transporting, phosphate O- mitochondrial F1 acyltransferase 2 complex, beta (lysophosphatidic acid polypeptide acyltransferase, beta) 1.6 ATP5C1 ATP synthase, H+ 1.5 AIM1L absent in melanoma