Jackson Riverfront Pines Natural Area Public Use Facilities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defoliation by the Royal Poinciana Caterpillar (Melipotis Acontioides) and the Snowbush Caterpillar (Melanchroiamelanchroia Chephisechephise) in Naples, Florida
Proc. Fla. State Hort. Soc. 120:360–362. 2007. Caterpillar Outbreaks: Defoliation by the Royal Poinciana Caterpillar (Melipotis acontioides) and the Snowbush Caterpillar (MelanchroiaMelanchroia chephisechephise) in Naples, Florida DOUGLAS L. CALDWELL* University of Florida, IFAS, Collier County Extension Service, Naples, FL 34120 ADDITIONAL INDEX WORDS. landscape pests, Lepidoptera, Geometridae, Noctuidae, Delonix regia, Breynia disticha Recent outbreaks of the royal poinciana caterpillar [Melipotis acontioides (Guenée)] and the snowbush caterpillar [Mel- anchroia chephise (Cramer)] provided opportunities to gather more information on these two Lepidoptera. The royal poinciana caterpillar (host is Delonix regia), in particular, appears to have long periods—10 years or more—between outbreaks. The Naples area experienced localized defoliation of very large trees in 2006. The snowbush caterpillar (host is Breynia disticha) occurred in outbreak numbers in 2005. Information and photos are provided on various aspects of their biology and host damage and responses. Insect populations ebb and wane in cyclical fashion to the point During the day, larvae hide in debris at the soil surface near that in some years certain species are diffi cult to fi nd, while in the base of trees or sometimes in broken seed pods in the trees other years overabundance may cause signifi cant damage. This (Watson, 1944a). Larvae pupate in plant debris or piled up frass report covers two caterpillar species that were new landscape near the soil surface. No cocoon nor silken wrapping was found plant pests to this author since my move to southern Florida in protecting the pupae. One predator observed by this author and 2001. Very little information was available in the literature about mentioned by others was the paper wasp (Polistes sp.). -
Butterflies and Moths of Brevard County, Florida, United States
Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail -
Reading the Complex Skipper Butterfly Fauna of One Tropical Place
Reading the Complex Skipper Butterfly Fauna of One Tropical Place Daniel H. Janzen1*, Winnie Hallwachs1, John M. Burns2, Mehrdad Hajibabaei3, Claudia Bertrand3, Paul D. N. Hebert3 1 Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America, 3 Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, Canada Abstract Background: An intense, 30-year, ongoing biodiversity inventory of Lepidoptera, together with their food plants and parasitoids, is centered on the rearing of wild-caught caterpillars in the 120,000 terrestrial hectares of dry, rain, and cloud forest of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica. Since 2003, DNA barcoding of all species has aided their identification and discovery. We summarize the process and results for a large set of the species of two speciose subfamilies of ACG skipper butterflies (Hesperiidae) and emphasize the effectiveness of barcoding these species (which are often difficult and time-consuming to identify). Methodology/Principal Findings: Adults are DNA barcoded by the Biodiversity Institute of Ontario, Guelph, Canada; and they are identified by correlating the resulting COI barcode information with more traditional information such as food plant, facies, genitalia, microlocation within ACG, caterpillar traits, etc. This process has found about 303 morphologically defined species of eudamine and pyrgine Hesperiidae breeding in ACG (about 25% of the ACG butterfly fauna) and another 44 units indicated by distinct barcodes (n = 9,094), which may be additional species and therefore may represent as much as a 13% increase. -
Schaus' Swallowtail
Bring this image to life: Schaus’ Swallowtail see reverse side for details Heraclides aristodemus ponceanus Florida Museum 3D Butterfly Cards Inspiring people to care about life on earth The critically endangered Schaus’ Swallowtail (Heraclides aristodemus ponceanus) is a large, iconic butterfly found in South Florida. Historically, the butterfly inhabited dense upland forests called tropical hardwood hammocks from the greater Miami area south through the Florida Keys. Habitat loss and fragmentation over the past century have led to severe population declines and range reductions. Today, Schaus’ Swallowtail is restricted to only a few remaining sites in the northern Florida Keys, making it one of the rarest butterflies in the U.S. and our only federally listed swallowtail. Although small numbers occur on Key Largo, the main population resides on islands in Biscayne National Park. Because recent surveys indicate extremely small numbers of butterflies throughout its range, the risk of extinction is thought to be very high. Collaborative conservation and recovery efforts are underway for the Schaus’ Swallowtail. They include regular population monitoring, captive breeding, organism reintroduction and habitat restoration. • Download the Libraries of Life app from the iTunes or Android store and install on your device. • Launch the app and select the Florida Museum icon. • Hold your mobile device camera about 6 inches away from card image. • View specimen and click buttons to view content. Cover photo by: Jaret Daniels The Florida Museum of Natural History is a leading authority in biodiversity and cultural heritage, using its expertise to advance knowledge and solve real world problems. The Florida Museum inspires people to value the biological richness and cultural heritage of our diverse world and make a positive difference in its future. -
Plant Species List for Bob Janes Preserve
Plant Species List for Bob Janes Preserve Scientific and Common names obtained from Wunderlin 2013 Scientific Name Common Name Status EPPC FDA IRC FNAI Family: Azollaceae (mosquito fern) Azolla caroliniana mosquito fern native R Family: Blechnaceae (mid-sorus fern) Blechnum serrulatum swamp fern native Woodwardia virginica Virginia chain fern native R Family: Dennstaedtiaceae (cuplet fern) Pteridium aquilinum braken fern native Family: Nephrolepidaceae (sword fern) Nephrolepis cordifolia tuberous sword fern exotic II Nephrolepis exaltata wild Boston fern native Family: Ophioglossaceae (adder's-tongue) Ophioglossum palmatum hand fern native E I G4/S2 Family: Osmundaceae (royal fern) Osmunda cinnamomea cinnamon fern native CE R Osmunda regalis royal fern native CE R Family: Polypodiaceae (polypody) Campyloneurum phyllitidis long strap fern native Phlebodium aureum golden polypody native Pleopeltis polypodioides resurrection fern native Family: Psilotaceae (whisk-fern) Psilotum nudum whisk-fern native Family: Pteridaceae (brake fern) Acrostichum danaeifolium giant leather fern native Pteris vittata China ladder break exotic II Family: Salviniaceae (floating fern) Salvinia minima water spangles exotic I Family: Schizaeaceae (curly-grass) Lygodium japonicum Japanese climbing fern exotic I Lygodium microphyllum small-leaf climbing fern exotic I Family: Thelypteridaceae (marsh fern) Thelypteris interrupta hottentot fern native Thelypteris kunthii widespread maiden fern native Thelypteris palustris var. pubescens marsh fern native R Family: Vittariaceae -
Lake Worth Lagoon
TABLE OF CONTENTS INTRODUCTION ................................................................................ 1 PURPOSE AND SIGNIFICANCE OF THE PARK ...................................... 1 Park Significance .............................................................................. 1 PURPOSE AND SCOPE OF THE PLAN ................................................... 2 MANAGEMENT PROGRAM OVERVIEW ................................................. 7 Management Authority and Responsibility ............................................ 7 Park Management Goals .................................................................... 8 Management Coordination ................................................................. 8 Public Participation ........................................................................... 9 Other Designations ........................................................................... 9 RESOURCE MANAGEMENT COMPONENT INTRODUCTION .............................................................................. 15 RESOURCE DESCRIPTION AND ASSESSMENT ................................... 15 Natural Resources .......................................................................... 16 Topography ............................................................................... 20 Geology .................................................................................... 21 Soils ......................................................................................... 21 Minerals ................................................................................... -
Butterfly Gardening Tips & Tricks Gardening for Butterflies Is Fun, Beautiful, and Good for the Environment
Butterfly Gardening Tips & Tricks Gardening for butterflies is fun, beautiful, and good for the environment. It is also simple and can be done in almost any location. The key guidelines are listed below: NO PESTICIDES! Caterpillars are highly susceptible to almost all pesticides so keep them away from your yard if you want butterflies to thrive. Select the right plants. You will need to provide nectar sources for adults and host plants for caterpillars. See the lists below for inspiration. Keep to native varieties as much as possible. Plants come in lots and lots of varieties and cultivars. When selecting plants, especially host plants, try to find native species as close to the natural or wild variety as possible. Provide shelter. Caterpillars need shelter from the sun and shelter from cold nights. Adults need places to roost during the night. And protected areas are needed for the chrysalis to safely undergo its transformation. The best way to provide shelter is with large clumps of tall grasses (native or ornamental) and medium to large evergreen trees and/or shrubs. Nectar Sources Top Ten Nectar Sources: Asclepias spp. (milkweed) Aster spp. Buddleia spp. (butterfly bush) Coreopsis spp. Echinacea spp. (coneflower) Eupatorium spp. (joe-pye weed) Lantana spp. Liatris spp. Pentas spp. Rudbeckia spp. (black-eyed susan) Others: Agastache spp. (hyssop), Apocynum spp. (dogbane), Ceanothus americanus (New Jersey tea), Cephalanthus occidentalis (button bush), Clethra alnifolia, Cuphea spp. (heather), Malus spp. (apple), Mentha spp. (mint), Phlox spp., Pycanthemum incanum (mountain mint), Salivs spp. (sage), Sedum spectabile (stonecrop), Stokesia laevis (cornflower), Taraxacum officinale (dandelion), Triofolium spp. -
The Speciation History of Heliconius: Inferences from Multilocus DNA Sequence Data
The speciation history of Heliconius: inferences from multilocus DNA sequence data by Margarita Sofia Beltrán A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2004 Department of Biology University College London 1 Abstract Heliconius butterflies, which contain many intermediate stages between local varieties, geographic races, and sympatric species, provide an excellent biological model to study evolution at the species boundary. Heliconius butterflies are warningly coloured and mimetic, and it has been shown that these traits can act as a form of reproductive isolation. I present a species-level phylogeny for this group based on 3834bp of mtDNA (COI, COII, 16S) and nuclear loci (Ef1α, dpp, ap, wg). Using these data I test the geographic mode of speciation in Heliconius and whether mimicry could drive speciation. I found little evidence for allopatric speciation. There are frequent shifts in colour pattern within and between sister species which have a positive and significant correlation with species diversity; this suggests that speciation is facilitated by the evolution of novel mimetic patterns. My data is also consistent with the idea that two major innovations in Heliconius, adult pollen feeding and pupal-mating, each evolved only once. By comparing gene genealogies from mtDNA and introns from nuclear Tpi and Mpi genes, I investigate recent speciation in two sister species pairs, H. erato/H. himera and H. melpomene/H. cydno. There is highly significant discordance between genealogies of the three loci, which suggests recent speciation with ongoing gene flow. Finally, I explore the phylogenetic relationships between races of H. melpomene using an AFLP band tightly linked to the Yb colour pattern locus (which determines the yellow bar in the hindwing). -
Growth of Fern Gametophytes After 20 Years of Storage in Liquid Nitrogen
FERN GAZ. 20(8): 337-346. 2018 337 GROWTH OF FERN GAMETOPHYTES AFTER 20 YEARS OF STORAGE IN LIQUID NITROGEN V. C. Pence Center for Conservation and Research of Endangered Wildlife (CREW) Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA email: [email protected] Key words: cryopreservation, ex situ conservation, gametophyte; in vitro; long-term storage ABSTRACT In vitro grown gametophytes of six species of ferns, which had been cryopreserved using the encapsulation dehydration procedure, were evaluated for survival after 20 yrs of storage in liquid nitrogen. Tissues were rewarmed and transferred to a recovery medium with the same methods originally used to test pre-storage viability. All six species resumed growth. Post-storage viability was not consistently higher or lower than pre-storage viability of LN exposed tissues, likely reflecting the small sample sizes. However, these results demonstrate that long-term storage in liquid nitrogen is a viable option for preserving gametophytes of at least some fern species and could be utilized as an additional tool for preserving valuable gametophyte collections and for the ex situ conservation of fern biodiversity. INTRODUCTION For many species of ferns, gametophyte tissues have proven to be highly adaptable to growth in vitro (Table 1) . Most of these have been initiated through the aseptic germination of spores, although the aseptic germination of gemmae has also been demonstrated (Raine & Sheffield, 1997). As in vitro cultures, gametophytes can provide tissues for research and for propagation, both for ornamental ferns as well as for ferns of conservation concern. The ex situ conservation of ferns has traditionally relied on living collections and spore banks (Ballesteros, 2011). -
Phocides, Chioides, Typhedanus, and Polythrix (Hesperiidae: Eudaminae) Matthew J.W
Observations on the Biology of Skipper Butterflies in Trinidad, Trinidad and Tobago: Phocides, Chioides, Typhedanus, and Polythrix (Hesperiidae: Eudaminae) Matthew J.W. Cock Cock, M.J.W. 2014. Observations on the Biology of Skipper Butterflies in Trinidad, Trinidad and Tobago: Phocides, Chioides, Typhedanus, and Polythrix (Hesperiidae: Eudaminae). Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club , 2014, 1-11. Cock, M.J.W. 2014. Observations on the Biology of Skipper Butterflies in Trinidad, Trinidad and Tobago: Phocides, Chioides, Typhedanus, and Polythrix (Hesperiidae: Eudaminae). Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club , 2014, 1-11. Observations on the Biology of Skipper Butterflies in Trinidad, Trinidad and Tobago: Phocides, Chioides, Typhedanus, and Polythrix (Hesperiidae: Eudaminae) Matthew J.W. Cock c/o CABI, Bakeham Lane, Egham, Surrey TW20 9TY, UK. [email protected] / [email protected] ABSTRACT Observations are provided on the early stages and food plants of Phocides polybius polybius (Fabricius), P. pigmalion pigmalion (Cramer), Chioides catillus catillus (Cramer), Typhedanus undulatus (Hewitson), Polythrix auginus (Hewitson), P. caunus (Herrich-Schäffer), P. metallescens (Mabille), P. octomaculata (Sepp), Polythrix roma Evans from Trinidad, supplemented with observations on Phocides polybius lilea (Reakirt) and Polythrix octomaculata in Mexico. Key words (not in title): egg, caterpillar, larva, pupa, leaf shelter, parasitoid, Mexico, guava. INTRODUCTION phanias (Burmeister) from southern Brazil to Argentina. In 1981, I started to publish a series of papers in Liv- The biology of ssp. phanias on guava (Psidium guaja- ing World to document the butterfly family Hesperiidae va; Myrtaceae) was documented more than 100 years in Trinidad (Cock 1981), which at that time was only ago (Jones 1882-3, as Pyrrhopyga palemon (Cramer), documented with lists of recorded species (Kaye 1921, a synonym), and more recently by Moss (1949). -
In Biscayne National Monument, Florida
136 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY phalidae) with a consideration of the evolutionary relationships within the group. Zoologic a, New York 48: 85-130. NEUSTETTER, H. 1931. Neue Heiiconius. Intern. Entomol. Zeit. Guben 25: 165- 174. SEITZ, A. 1913. Heliconiinae, in A. Seitz, ed., The Macrolepidoptera of the world. Stuttgart, Kernen. STICHEL, H. 1906. Lepidoptera, fam. Nymphalidae, subfam. Heliconiinae. Genera Insectorum 37: 1-74. BruxelIes, vVytsman. ---. & H. RIFFARTH. 1905. Heliconiidae. Das Tierreich 22: 1-290. Berlin, Friedlander. TURNER, J. R. G. 1966. A rare mimetic Heliconius (Lepidoptera: Nymphalidae). Proc. Roy. Entomol. Soc. London. (B) 35: 128-132. ---. 1967. A little-recognised species of Heliconius butterfly (Nymphalidae). J. Res. Lepid. 5: 97-112. ---. 1968. Some new Heliconius pupae: their taxonomic and evolutionary significance in relation to mimicry (Lepidoptera, N ymphalidae ). J. Zool. ( London) 155: 311-325. ---. 1971. Studies of Mullerian mimicry and its evolution in burnet moths and heliconid butterflies. in, E. R. Creed, ed., Ecological Genetics and Evolution. Oxford, Blackwell. p. 224-260. POPULATIONS OF PAPILlO ANDRAEMON BONHOTEI SHARPE AND PAPILlO ARISTODEMUS PONCEANUS SCHAUS (PAPILIONIDAE) IN BISCAYNE NATIONAL MONUMENT, FLORIDA LARRY N. BROWN Department of Biology, University of South Florida, Tampa, Florida 33620 A survey of the Lepidoptera found on the islands of Biscayne National Monument, Florida, in April and May 1972, revealed sizeable breeding populations of two rare papilionid butterflies. These are the Bahaman Swallowtail (Papilio andraemon bonhotei Sharpe) and Schaus' Swallow tail (Papilio aristodemus ponceanus Schaus). The former species has been recorded only a few times in Florida (Holland, 1902; Clarke, 1940; Kimball, 1965) and until now has been considered only a stray or acci dental visitor to United States shores following hurricanes. -
Record of Two New Butterflies for Bangladesh JEZS 2016; 4(3): 32-34 © 2016 JEZS Received: 05-03-2016 Accepted: 06-04-2016 Mohan Kumar Das, Shawan Chowdhury
Journal of Entomology and Zoology Studies 2016; 4(3): 32-34 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Record of two new butterflies for Bangladesh JEZS 2016; 4(3): 32-34 © 2016 JEZS Received: 05-03-2016 Accepted: 06-04-2016 Mohan Kumar Das, Shawan Chowdhury Mohan Kumar Das Abstract Department of Zoology, Butterflies are considered as one of the most studied groups of insects and are termed as bio-indicator. University of Dhaka, Hence the total number of butterflies of a certain region should be well documented. In the field survey Bangladesh. of Pablakhali Wildlife Sanctuary and Madhabkunda Eco Park, we found two butterflies which are new to Shawan Chowdhury Bangladesh, according to the most recent checklist. The Plane (Bindahara phocides, Fabricus) was Department of Zoology, recorded from Pablakhali Wildlife Sanctuary and Orange Tail Awl (Bibasis sena, Moore) from University of Dhaka, Madhabkunda Eco Park. Though Plane was recorded by Gladman (1947) and Emmet (1948) but Larsen Bangladesh. did not find this species. In addition, no one ever recorded Orange Tail Awl from this region. Keywords: Biodiversity, Bibasis sena, Bindahara phocides, Conservation, Discovery Introduction Tropical regions are very rich in biodiversity but we know very little about them. Because of that, almost 40000 already estimates to have gone extinct over the past 600 years, only 70 have been documented, half of which were Lepidoptera [1]. The world contains roughly 18000- 20000 species of butterflies, of which most are distributed in the tropical region [2, 3]. Butterflies are a biodiversity indicator group and the redundancy of a forest or an area largely depends upon the abundance and diversity of butterflies [4].