Nature Watch Diary Appendices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollination Ecology and Evolution of Epacrids
Pollination Ecology and Evolution of Epacrids by Karen A. Johnson BSc (Hons) Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania February 2012 ii Declaration of originality This thesis contains no material which has been accepted for the award of any other degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Karen A. Johnson Statement of authority of access This thesis may be made available for copying. Copying of any part of this thesis is prohibited for two years from the date this statement was signed; after that time limited copying is permitted in accordance with the Copyright Act 1968. Karen A. Johnson iii iv Abstract Relationships between plants and their pollinators are thought to have played a major role in the morphological diversification of angiosperms. The epacrids (subfamily Styphelioideae) comprise more than 550 species of woody plants ranging from small prostrate shrubs to temperate rainforest emergents. Their range extends from SE Asia through Oceania to Tierra del Fuego with their highest diversity in Australia. The overall aim of the thesis is to determine the relationships between epacrid floral features and potential pollinators, and assess the evolutionary status of any pollination syndromes. The main hypotheses were that flower characteristics relate to pollinators in predictable ways; and that there is convergent evolution in the development of pollination syndromes. -
Focusing on the Landscape Biodiversity in Australia’S National Reserve System Contents
Focusing on the Landscape Biodiversity in Australia’s National Reserve System Contents Biodiversity in Australia’s National Reserve System — At a glance 1 Australia’s National Reserve System 2 The Importance of Species Information 3 Our State of Knowledge 4 Method 5 Results 6 Future Work — Survey and Reservation 8 Conclusion 10 Summary of Data 11 Appendix Species with adequate data and well represented in the National Reserve System Flora 14 Fauna 44 Species with adequate data and under-represented in the National Reserve System Flora 52 Fauna 67 Species with inadequate data Flora 73 Fauna 114 Biodiversity in Australia’s National Reserve System At a glance • Australia’s National Reserve System (NRS) consists of over 9,000 protected areas, covering 89.5 million hectares (over 11 per cent of Australia’s land mass). • Australia is home to 7.8 per cent of the world’s plant and animal species, with an estimated 566,398 species occurring here.1 Only 147,579 of Australia’s species have been formally described. • This report assesses the state of knowledge of biodiversity in the National Reserve System based on 20,146 terrestrial fauna and flora species, comprising 54 per cent of the known terrestrial biodiversity of Australia. • Of these species, 33 per cent (6,652 species) have inadequate data to assess their reservation status. • Of species with adequate data: • 23 per cent (3,123 species) are well represented in the NRS • 65 per cent (8,692 species) are adequately represented in the NRS • 12 per cent (1,648 species) are under- represented in the NRS 1 Chapman, A.D. -
Brian Everingham, Tony Galceran, Ken Griffiths, Graham Grocott, Roger Lembit, Allen Lowe, Gary Schoer, Mike Scotland, Suzanne Wicks and Helen Zammitt
Tuesday 27th June 2017 Curra Moors Party: Kay Elliott, Brian Everingham, Tony Galceran, Ken Griffiths, Graham Grocott, Roger Lembit, Allen Lowe, Gary Schoer, Mike Scotland, Suzanne Wicks and Helen Zammitt Length: 10km Grade: 2 It’s a delightful short meander through forest and heath, interrupted by the songs of a practising Lyrebird and by floral tributes, even in the midst of winter. Styphelia viridis Styphelia viridis, commonly called green five corners is a plant in the heather family, Ericaceae and is endemic to the east coast of Australia. It owes its common name to the appearance of its fruit - a drupe with a flat top and five distinct ribs, and to the colour of its flowers. The flowers are a translucent bottle-green. The sepals are green, 8.5–16 millimetres (0.3– 0.6 in) long and glabrous. The petals are fused into a tube 14–23 millimetres (0.6–0.9 in) long with the ends of the petals rolled back, exposing the hairy inner surface of the tube. The filaments of the stamens and the style extend well beyond the tube, both about 10–16 millimetres (0.4–0.6 in) long. The anthers are brown and a further 3.2–6.3 millimetres (0.1–0.2 in) long. Flowering occurs from April to August and is followed by the fruit which is a flat-topped, five-sided greenish-red drupe. Ref: https://en.wikipedia.org/wiki/Styphelia_viridis 1 | P a g e Ricinocarpos pinifolius – Wedding Bush Ricinocarpos pinifolius is the most widespread member of the genus and is a conspicuous member of coastal heath and woodland communities when it is in flower during spring. -
Specified Protected Matters Impact Profiles (Including Risk Assessment)
Appendix F Specified Protected Matters impact profiles (including risk assessment) Roads and Maritime Services EPBC Act Strategic Assessment – Strategic Assessment Report 1. FA1 - Wetland-dependent fauna Species included (common name, scientific name) Listing SPRAT ID Australasian Bittern (Botaurus poiciloptilus) Endangered 1001 Oxleyan Pygmy Perch (Nannoperca oxleyana) Endangered 64468 Blue Mountains Water Skink (Eulamprus leuraensis) Endangered 59199 Yellow-spotted Tree Frog/Yellow-spotted Bell Frog (Litoria castanea) Endangered 1848 Giant Burrowing Frog (Heleioporus australicus) Vulnerable 1973 Booroolong Frog (Litoria booroolongensis) Endangered 1844 Littlejohns Tree Frog (Litoria littlejohni) Vulnerable 64733 1.1 Wetland-dependent fauna description Item Summary Description Found in the waters, riparian vegetation and associated wetland vegetation of a diversity of freshwater wetland habitats. B. poiciloptilus is a large, stocky, thick-necked heron-like bird with camouflage-like plumage growing up to 66-76 cm with a wingspan of 1050-1180 cm and feeds on freshwater crustacean, fish, insects, snakes, leaves and fruit. N. oxleyana is light brown to olive coloured freshwater fish with mottling and three to four patchy, dark brown bars extending from head to tail and a whitish belly growing up to 35-60 mm. This is a mobile species that is often observed individually or in pairs and sometimes in small groups but does not form schools and feed on aquatic insects and their larvae (Allen, 1989; McDowall, 1996). E. leuraensis is an insectivorous, medium-sized lizard growing to approximately 20 cm in length. This species has a relatively dark brown/black body when compared to other Eulamprus spp. Also has narrow yellow/bronze to white stripes along its length to beginning of the tail and continuing along the tail as a series of spots (LeBreton, 1996; Cogger, 2000). -
Native Plants of Sydney Harbour National Park: Historical Records and Species Lists, and Their Value for Conservation Monitoring
Native plants of Sydney Harbour National Park: historical records and species lists, and their value for conservation monitoring Doug Benson National Herbarium of New South Wales, Royal Botanic Gardens, Mrs Macquaries Rd, Sydney 2000 AUSTRALIA [email protected] Abstract: Sydney Harbour National Park (lat 33° 53’S; long 151° 13’E), protects significant vegetation on the harbour foreshores close to Sydney City CBD; its floristic abundance and landscape beauty has been acknowledged since the writings of the First Fleet in 1788. Surprisingly, although historical plant collections were made as early as1802, and localised surveys have listed species for parts of the Park since the 1960s, a detailed survey of the flora of whole Park is still needed. This paper provides the first definitive list of the c.400 native flora species for Sydney Harbour National Park (total area 390 ha) showing occurrence on the seven terrestrial sub-regions or precincts (North Head, South Head, Dobroyd Head, Middle Head, Chowder Head, Bradleys Head and Nielsen Park). The list is based on historical species lists, records from the NSW Office of Environment and Heritage (formerly Dept of Environment, Climate Change and Water) Atlas, National Herbarium of New South Wales specimen details, and some additional fieldwork. 131 species have only been recorded from a single precinct site and many are not substantiated with a recent herbarium specimen (though there are historical specimens from the general area for many). Species reported in the sources but for which no current or historic specimen exists are listed separately as being of questionable/non-local status. -
Plant Tracker 97
Proprietor: Ashley Elliott 230 Tannery Lane Mandurang Victoria 3551 Telephone: (03) 5439 5384 PlantPlant CatalogueCatalogue Facsimile: (03) 5439 3618 E-mail: [email protected] Central & Northern Victoria's Indigenous Nursery Please contact the nursery to confirm stock availablity Non-Local Plants aneura Mulga or Yarran Acacia ramulosa Horse Mulga or Narrow Leaf Mulga Acacia aphylla Acacia redolens Acacia argrophylla Silver Mulga Acacia restiacea Acacia beckleri Barrier Range Wattle Acacia rhigiophylla Dagger-leaved Acacia Acacia cardiophylla Wyalong Wattle Acacia riceana Acacia chinchillensis Acacia rossei Acacia cliftoniana ssp congesta Acacia spectabilis Mudgee Wattle Acacia cognata River Wattle - low form Acacia spinescens Spiny Wattle Acacia cognata River or Bower Wattle Acacia spongilitica Acacia conferta Crowded-leaf Wattle Acacia squamata Bright Sedge Wattle Acacia convenyii Blue Bush Acacia stigmatophylla Acacia cultriformis Knife-leaf Wattle Acacia subcaerulea Acacia cupularis Coastal prostrate Acacia vestita Hairy Wattle Acacia cyclops Round-seeded Acacia Acacia victoriae Bramble Wattle or Elegant Wattle Acacia declinata Acacia wilhelmiana Dwarf Nealie Acacia decora Western Silver Wattle Acacia willdenowiana Leafless Wattle Acacia denticulosa Sandpaper Wattle Acacia caerulescens caerulescens Buchan Blue Acacia drummondii subsp Dwarf Drummond Wattle Acanthocladium dockeri Laura Daisy drummondii Actinodium cunninghamii Albany Daisy or Swamp Daisy Acacia elata Cedar Wattle Actinodium species (prostrate form) Acacia -
Indigigrow Bush Foods & Native Plant Nursery
IndigiGrow Bush Foods & Native Plant Nursery Corner Bunnerong Road & Yarra Road, IndigiGrow is a not-for-profit social La Perouse Public School La Perouse NSW 2036 enterprise of Nursery Mob: 0439 327 933 First Hand Solutions Aboriginal Corporation www.indigigrow.com.au www.firsthandsolutions.org www.facebook.com/indigigrownativebushfoodplants www.indigigrow.com.au www.facebook.com/firsthandsolutions www.facebook.com/indigigrow ABN: 24365530976 Tubestock: 140mm Pot Size: 1-20 plants $2.80* 1-20 plants $8* 21-50 plants $2.70* 21 plants or more $7* 51-99 plants $2.50* 100 plants or more $1.90* * Unless specified otherwise PLEASE NOTE: Quantity discounts are only available when purchasing over the phone or when purchasing in person at the nursery at La Perouse NB: Tray charge of $5 per tray applies for tubestock/shuttle trays. Alternatively, plants can be placed in a cardboard/foam box. The tray charge is refunded if you return the tray. NB: IndigiGrow recommends caution when foraging for bush foods in the wild. Like fungi, there are native plants which although may look like they may be edible, are in fact highly toxic. The plants we grow are known to be edible or medicinal and are classified as safe to use in this regard. Last Updated 6th November 2019 Common Name Binomial Name 140mm Pot Tubestock Other Size Pot Size Coastal Wattle Acacia longifolia var sophorae 1 Parramatta Wattle Acacia parramattensis 0 Sweet-scented wattle Acacia suaveolens 3 77 Sunshine Wattle Acacia terminalis 1 Prickly Moses Acacia ulicifolia 0 Flannel Flower Actinotus -
The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation. -
Ecology of Pyrmont Peninsula 1788 - 2008
Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there. -
Biodiversity Summary for NRM Regions Species List
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Relationship Between Leaf Traits, Insect Communities and Resource Availability
Relationship between Leaf Traits, Insect Communities and Resource Availability Emma Laxton BSc (Hons), BA (Hons), MIntS Department of Biological Sciences Division of Environment and Life Sciences Macquarie University North Ryde, NSW 2109 Australia Thesis submitted for the degree of Doctor of Philosophy November 2005 The work described in this thesis is original and has not been submitted in any form for a higher degree at any other university or institution. All of the work presented in this thesis is my own and was undertaken during my PhD candidature: February 2002 to November 2005. November 2005 Emma Laxton 2 Abstract This project used the resource availability hypothesis (Coley et al., 1985) as a framework for investigating the relationship between resource availability (as defined by soil nutrients), leaf traits, insect herbivore damage and insect community structure. According to the hypothesis, plants from low resource environments should be better-defended, have longer leaf lifespans and slower growth rates than plants from higher resource environments. Higher resource plant species are expected to suffer higher levels of herbivory and recover faster from herbivory than low resource plant species (Coley et al. 1985). A corollary to this hypothesis is that plants from higher resource sites should support greater densities of insect herbivores than low resource species. The study was performed in Sydney, Australia, providing a temperate, southern hemisphere complement to most previous studies on herbivory conducted in the tropics and the northern hemisphere. The project had five components. Comparisons between high and low resource sites were made in terms of: (i) leaf traits of mature and immature leaves; (ii) phenology of leaf maturation; (iii) herbivore damage in the field and laboratory; (iv) diversity and abundance of herbivorous insect fauna; and (v) ability to recover from herbivory. -
Managing Bird Damage
Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops. These species possess marked differences in feeding strategies and movement patterns which influence the nature, timing and severity of the damage they cause. Reducing bird damage is difficult because of the to Fruit and Other Horticultural Crops Fruit and Other Horticultural to unpredictability of damage from year to year and a lack of information about the cost-effectiveness of commonly used management practices. Growers therefore need information on how to better predict patterns of bird movement and abundance, and simple techniques to estimate the extent of damage to guide future management investment. This book promotes the adoption of a more strategic approach to bird management including use of better techniques to reduce damage and increased cooperation between neighbours. Improved collaboration and commit- John Tracey ment from industry and government is also essential along with reconciliation of legislation and responsibilities. Mary Bomford Whilst the focus of this review is pest bird impacts on Quentin Hart horticulture, most of the issues are of relevance to pest bird Glen Saunders management in general. Ron Sinclair DEPARTMENT OF AGRICULTURE, FISHERIES AND FORESTRY Managing Bird Damage Managing Bird Managing Bird Damage Bird damage is a significant problem in Australia with total to Fruit and Other Horticultural Crops damage to horticultural production estimated at nearly $300 million annually. Over 60 bird species are known to damage horticultural crops.